elfxx-mips.c 278 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431
/* MIPS-specific support for ELF
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
   2003 Free Software Foundation, Inc.

   Most of the information added by Ian Lance Taylor, Cygnus Support,
   <ian@cygnus.com>.
   N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
   <mark@codesourcery.com>
   Traditional MIPS targets support added by Koundinya.K, Dansk Data
   Elektronik & Operations Research Group. <kk@ddeorg.soft.net>

   This file is part of BFD, the Binary File Descriptor library.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

/* This file handles functionality common to the different MIPS ABI's.  */

#include "bfd.h"
#include "sysdep.h"
#include "libbfd.h"
#include "libiberty.h"
#include "elf-bfd.h"
#include "elfxx-mips.h"
#include "elf/mips.h"

/* Get the ECOFF swapping routines.  */
#include "coff/sym.h"
#include "coff/symconst.h"
#include "coff/ecoff.h"
#include "coff/mips.h"

#include "hashtab.h"

/* This structure is used to hold .got entries while estimating got
   sizes.  */
struct mips_got_entry
{
  /* The input bfd in which the symbol is defined.  */
  bfd *abfd;
  /* The index of the symbol, as stored in the relocation r_info, if
     we have a local symbol; -1 otherwise.  */
  long symndx;
  union
  {
    /* If abfd == NULL, an address that must be stored in the got.  */
    bfd_vma address;
    /* If abfd != NULL && symndx != -1, the addend of the relocation
       that should be added to the symbol value.  */
    bfd_vma addend;
    /* If abfd != NULL && symndx == -1, the hash table entry
       corresponding to a global symbol in the got (or, local, if
       h->forced_local).  */
    struct mips_elf_link_hash_entry *h;
  } d;
  /* The offset from the beginning of the .got section to the entry
     corresponding to this symbol+addend.  If it's a global symbol
     whose offset is yet to be decided, it's going to be -1.  */
  long gotidx;
};

/* This structure is used to hold .got information when linking.  */

struct mips_got_info
{
  /* The global symbol in the GOT with the lowest index in the dynamic
     symbol table.  */
  struct elf_link_hash_entry *global_gotsym;
  /* The number of global .got entries.  */
  unsigned int global_gotno;
  /* The number of local .got entries.  */
  unsigned int local_gotno;
  /* The number of local .got entries we have used.  */
  unsigned int assigned_gotno;
  /* A hash table holding members of the got.  */
  struct htab *got_entries;
  /* A hash table mapping input bfds to other mips_got_info.  NULL
     unless multi-got was necessary.  */
  struct htab *bfd2got;
  /* In multi-got links, a pointer to the next got (err, rather, most
     of the time, it points to the previous got).  */
  struct mips_got_info *next;
};

/* Map an input bfd to a got in a multi-got link.  */

struct mips_elf_bfd2got_hash {
  bfd *bfd;
  struct mips_got_info *g;
};

/* Structure passed when traversing the bfd2got hash table, used to
   create and merge bfd's gots.  */

struct mips_elf_got_per_bfd_arg
{
  /* A hashtable that maps bfds to gots.  */
  htab_t bfd2got;
  /* The output bfd.  */
  bfd *obfd;
  /* The link information.  */
  struct bfd_link_info *info;
  /* A pointer to the primary got, i.e., the one that's going to get
     the implicit relocations from DT_MIPS_LOCAL_GOTNO and
     DT_MIPS_GOTSYM.  */
  struct mips_got_info *primary;
  /* A non-primary got we're trying to merge with other input bfd's
     gots.  */
  struct mips_got_info *current;
  /* The maximum number of got entries that can be addressed with a
     16-bit offset.  */
  unsigned int max_count;
  /* The number of local and global entries in the primary got.  */
  unsigned int primary_count;
  /* The number of local and global entries in the current got.  */
  unsigned int current_count;
};

/* Another structure used to pass arguments for got entries traversal.  */

struct mips_elf_set_global_got_offset_arg
{
  struct mips_got_info *g;
  int value;
  unsigned int needed_relocs;
  struct bfd_link_info *info;
};

struct _mips_elf_section_data
{
  struct bfd_elf_section_data elf;
  union
  {
    struct mips_got_info *got_info;
    bfd_byte *tdata;
  } u;
};

#define mips_elf_section_data(sec) \
  ((struct _mips_elf_section_data *) elf_section_data (sec))

/* This structure is passed to mips_elf_sort_hash_table_f when sorting
   the dynamic symbols.  */

struct mips_elf_hash_sort_data
{
  /* The symbol in the global GOT with the lowest dynamic symbol table
     index.  */
  struct elf_link_hash_entry *low;
  /* The least dynamic symbol table index corresponding to a symbol
     with a GOT entry.  */
  long min_got_dynindx;
  /* The greatest dynamic symbol table index corresponding to a symbol
     with a GOT entry that is not referenced (e.g., a dynamic symbol
     with dynamic relocations pointing to it from non-primary GOTs).  */
  long max_unref_got_dynindx;
  /* The greatest dynamic symbol table index not corresponding to a
     symbol without a GOT entry.  */
  long max_non_got_dynindx;
};

/* The MIPS ELF linker needs additional information for each symbol in
   the global hash table.  */

struct mips_elf_link_hash_entry
{
  struct elf_link_hash_entry root;

  /* External symbol information.  */
  EXTR esym;

  /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
     this symbol.  */
  unsigned int possibly_dynamic_relocs;

  /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
     a readonly section.  */
  bfd_boolean readonly_reloc;

  /* The index of the first dynamic relocation (in the .rel.dyn
     section) against this symbol.  */
  unsigned int min_dyn_reloc_index;

  /* We must not create a stub for a symbol that has relocations
     related to taking the function's address, i.e. any but
     R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
     p. 4-20.  */
  bfd_boolean no_fn_stub;

  /* If there is a stub that 32 bit functions should use to call this
     16 bit function, this points to the section containing the stub.  */
  asection *fn_stub;

  /* Whether we need the fn_stub; this is set if this symbol appears
     in any relocs other than a 16 bit call.  */
  bfd_boolean need_fn_stub;

  /* If there is a stub that 16 bit functions should use to call this
     32 bit function, this points to the section containing the stub.  */
  asection *call_stub;

  /* This is like the call_stub field, but it is used if the function
     being called returns a floating point value.  */
  asection *call_fp_stub;

  /* Are we forced local?  .*/
  bfd_boolean forced_local;
};

/* MIPS ELF linker hash table.  */

struct mips_elf_link_hash_table
{
  struct elf_link_hash_table root;
#if 0
  /* We no longer use this.  */
  /* String section indices for the dynamic section symbols.  */
  bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
#endif
  /* The number of .rtproc entries.  */
  bfd_size_type procedure_count;
  /* The size of the .compact_rel section (if SGI_COMPAT).  */
  bfd_size_type compact_rel_size;
  /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
     entry is set to the address of __rld_obj_head as in IRIX5.  */
  bfd_boolean use_rld_obj_head;
  /* This is the value of the __rld_map or __rld_obj_head symbol.  */
  bfd_vma rld_value;
  /* This is set if we see any mips16 stub sections.  */
  bfd_boolean mips16_stubs_seen;
};

/* Structure used to pass information to mips_elf_output_extsym.  */

struct extsym_info
{
  bfd *abfd;
  struct bfd_link_info *info;
  struct ecoff_debug_info *debug;
  const struct ecoff_debug_swap *swap;
  bfd_boolean failed;
};

/* The names of the runtime procedure table symbols used on IRIX5.  */

static const char * const mips_elf_dynsym_rtproc_names[] =
{
  "_procedure_table",
  "_procedure_string_table",
  "_procedure_table_size",
  NULL
};

/* These structures are used to generate the .compact_rel section on
   IRIX5.  */

typedef struct
{
  unsigned long id1;		/* Always one?  */
  unsigned long num;		/* Number of compact relocation entries.  */
  unsigned long id2;		/* Always two?  */
  unsigned long offset;		/* The file offset of the first relocation.  */
  unsigned long reserved0;	/* Zero?  */
  unsigned long reserved1;	/* Zero?  */
} Elf32_compact_rel;

typedef struct
{
  bfd_byte id1[4];
  bfd_byte num[4];
  bfd_byte id2[4];
  bfd_byte offset[4];
  bfd_byte reserved0[4];
  bfd_byte reserved1[4];
} Elf32_External_compact_rel;

typedef struct
{
  unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
  unsigned int rtype : 4;	/* Relocation types. See below.  */
  unsigned int dist2to : 8;
  unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
  unsigned long konst;		/* KONST field. See below.  */
  unsigned long vaddr;		/* VADDR to be relocated.  */
} Elf32_crinfo;

typedef struct
{
  unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
  unsigned int rtype : 4;	/* Relocation types. See below.  */
  unsigned int dist2to : 8;
  unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
  unsigned long konst;		/* KONST field. See below.  */
} Elf32_crinfo2;

typedef struct
{
  bfd_byte info[4];
  bfd_byte konst[4];
  bfd_byte vaddr[4];
} Elf32_External_crinfo;

typedef struct
{
  bfd_byte info[4];
  bfd_byte konst[4];
} Elf32_External_crinfo2;

/* These are the constants used to swap the bitfields in a crinfo.  */

#define CRINFO_CTYPE (0x1)
#define CRINFO_CTYPE_SH (31)
#define CRINFO_RTYPE (0xf)
#define CRINFO_RTYPE_SH (27)
#define CRINFO_DIST2TO (0xff)
#define CRINFO_DIST2TO_SH (19)
#define CRINFO_RELVADDR (0x7ffff)
#define CRINFO_RELVADDR_SH (0)

/* A compact relocation info has long (3 words) or short (2 words)
   formats.  A short format doesn't have VADDR field and relvaddr
   fields contains ((VADDR - vaddr of the previous entry) >> 2).  */
#define CRF_MIPS_LONG			1
#define CRF_MIPS_SHORT			0

/* There are 4 types of compact relocation at least. The value KONST
   has different meaning for each type:

   (type)		(konst)
   CT_MIPS_REL32	Address in data
   CT_MIPS_WORD		Address in word (XXX)
   CT_MIPS_GPHI_LO	GP - vaddr
   CT_MIPS_JMPAD	Address to jump
   */

#define CRT_MIPS_REL32			0xa
#define CRT_MIPS_WORD			0xb
#define CRT_MIPS_GPHI_LO		0xc
#define CRT_MIPS_JMPAD			0xd

#define mips_elf_set_cr_format(x,format)	((x).ctype = (format))
#define mips_elf_set_cr_type(x,type)		((x).rtype = (type))
#define mips_elf_set_cr_dist2to(x,v)		((x).dist2to = (v))
#define mips_elf_set_cr_relvaddr(x,d)		((x).relvaddr = (d)<<2)

/* The structure of the runtime procedure descriptor created by the
   loader for use by the static exception system.  */

typedef struct runtime_pdr {
	bfd_vma	adr;		/* Memory address of start of procedure.  */
	long	regmask;	/* Save register mask.  */
	long	regoffset;	/* Save register offset.  */
	long	fregmask;	/* Save floating point register mask.  */
	long	fregoffset;	/* Save floating point register offset.  */
	long	frameoffset;	/* Frame size.  */
	short	framereg;	/* Frame pointer register.  */
	short	pcreg;		/* Offset or reg of return pc.  */
	long	irpss;		/* Index into the runtime string table.  */
	long	reserved;
	struct exception_info *exception_info;/* Pointer to exception array.  */
} RPDR, *pRPDR;
#define cbRPDR sizeof (RPDR)
#define rpdNil ((pRPDR) 0)

static struct bfd_hash_entry *mips_elf_link_hash_newfunc
  PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
static void ecoff_swap_rpdr_out
  PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
static bfd_boolean mips_elf_create_procedure_table
  PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
	   struct ecoff_debug_info *));
static bfd_boolean mips_elf_check_mips16_stubs
  PARAMS ((struct mips_elf_link_hash_entry *, PTR));
static void bfd_mips_elf32_swap_gptab_in
  PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
static void bfd_mips_elf32_swap_gptab_out
  PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
static void bfd_elf32_swap_compact_rel_out
  PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
static void bfd_elf32_swap_crinfo_out
  PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
#if 0
static void bfd_mips_elf_swap_msym_in
  PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
#endif
static void bfd_mips_elf_swap_msym_out
  PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
static int sort_dynamic_relocs
  PARAMS ((const void *, const void *));
static int sort_dynamic_relocs_64
  PARAMS ((const void *, const void *));
static bfd_boolean mips_elf_output_extsym
  PARAMS ((struct mips_elf_link_hash_entry *, PTR));
static int gptab_compare PARAMS ((const void *, const void *));
static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
static struct mips_got_info *mips_elf_got_info
  PARAMS ((bfd *, asection **));
static long mips_elf_get_global_gotsym_index PARAMS ((bfd *abfd));
static bfd_vma mips_elf_local_got_index
  PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
static bfd_vma mips_elf_global_got_index
  PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
static bfd_vma mips_elf_got_page
  PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
static bfd_vma mips_elf_got16_entry
  PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
static bfd_vma mips_elf_got_offset_from_index
  PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
static struct mips_got_entry *mips_elf_create_local_got_entry
  PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
static bfd_boolean mips_elf_sort_hash_table
  PARAMS ((struct bfd_link_info *, unsigned long));
static bfd_boolean mips_elf_sort_hash_table_f
  PARAMS ((struct mips_elf_link_hash_entry *, PTR));
static bfd_boolean mips_elf_record_local_got_symbol
  PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
static bfd_boolean mips_elf_record_global_got_symbol
  PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
	   struct mips_got_info *));
static const Elf_Internal_Rela *mips_elf_next_relocation
  PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
	   const Elf_Internal_Rela *));
static bfd_boolean mips_elf_local_relocation_p
  PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
static bfd_vma mips_elf_high PARAMS ((bfd_vma));
static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
static bfd_boolean mips_elf_create_compact_rel_section
  PARAMS ((bfd *, struct bfd_link_info *));
static bfd_boolean mips_elf_create_got_section
  PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
static asection *mips_elf_create_msym_section
  PARAMS ((bfd *));
static bfd_reloc_status_type mips_elf_calculate_relocation
  PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
	   const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
	   Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
	   bfd_boolean *, bfd_boolean));
static bfd_vma mips_elf_obtain_contents
  PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
static bfd_boolean mips_elf_perform_relocation
  PARAMS ((struct bfd_link_info *, reloc_howto_type *,
	   const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
	   bfd_boolean));
static bfd_boolean mips_elf_stub_section_p
  PARAMS ((bfd *, asection *));
static void mips_elf_allocate_dynamic_relocations
  PARAMS ((bfd *, unsigned int));
static bfd_boolean mips_elf_create_dynamic_relocation
  PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
	   struct mips_elf_link_hash_entry *, asection *,
	   bfd_vma, bfd_vma *, asection *));
static void mips_set_isa_flags PARAMS ((bfd *));
static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
static void mips_elf_irix6_finish_dynamic_symbol
  PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));

static bfd_boolean mips_elf_multi_got
  PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
	   asection *, bfd_size_type));
static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
static int mips_elf_merge_gots PARAMS ((void **, void *));
static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
static void mips_elf_resolve_final_got_entries
  PARAMS ((struct mips_got_info *));
static bfd_vma mips_elf_adjust_gp
  PARAMS ((bfd *, struct mips_got_info *, bfd *));
static struct mips_got_info *mips_elf_got_for_ibfd
  PARAMS ((struct mips_got_info *, bfd *));

/* This will be used when we sort the dynamic relocation records.  */
static bfd *reldyn_sorting_bfd;

/* Nonzero if ABFD is using the N32 ABI.  */

#define ABI_N32_P(abfd) \
  ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)

/* Nonzero if ABFD is using the N64 ABI.  */
#define ABI_64_P(abfd) \
  (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)

/* Nonzero if ABFD is using NewABI conventions.  */
#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))

/* The IRIX compatibility level we are striving for.  */
#define IRIX_COMPAT(abfd) \
  (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))

/* Whether we are trying to be compatible with IRIX at all.  */
#define SGI_COMPAT(abfd) \
  (IRIX_COMPAT (abfd) != ict_none)

/* The name of the options section.  */
#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
  (NEWABI_P (abfd) ? ".MIPS.options" : ".options")

/* The name of the stub section.  */
#define MIPS_ELF_STUB_SECTION_NAME(abfd) \
  (NEWABI_P (abfd) ? ".MIPS.stubs" : ".stub")

/* The size of an external REL relocation.  */
#define MIPS_ELF_REL_SIZE(abfd) \
  (get_elf_backend_data (abfd)->s->sizeof_rel)

/* The size of an external dynamic table entry.  */
#define MIPS_ELF_DYN_SIZE(abfd) \
  (get_elf_backend_data (abfd)->s->sizeof_dyn)

/* The size of a GOT entry.  */
#define MIPS_ELF_GOT_SIZE(abfd) \
  (get_elf_backend_data (abfd)->s->arch_size / 8)

/* The size of a symbol-table entry.  */
#define MIPS_ELF_SYM_SIZE(abfd) \
  (get_elf_backend_data (abfd)->s->sizeof_sym)

/* The default alignment for sections, as a power of two.  */
#define MIPS_ELF_LOG_FILE_ALIGN(abfd)				\
  (get_elf_backend_data (abfd)->s->log_file_align)

/* Get word-sized data.  */
#define MIPS_ELF_GET_WORD(abfd, ptr) \
  (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))

/* Put out word-sized data.  */
#define MIPS_ELF_PUT_WORD(abfd, val, ptr)	\
  (ABI_64_P (abfd) 				\
   ? bfd_put_64 (abfd, val, ptr) 		\
   : bfd_put_32 (abfd, val, ptr))

/* Add a dynamic symbol table-entry.  */
#ifdef BFD64
#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val)			\
  (ABI_64_P (elf_hash_table (info)->dynobj)				\
   ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val)	\
   : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
#else
#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val)			\
  (ABI_64_P (elf_hash_table (info)->dynobj)				\
   ? (abort (), FALSE)							\
   : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
#endif

#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela)			\
  (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))

/* Determine whether the internal relocation of index REL_IDX is REL
   (zero) or RELA (non-zero).  The assumption is that, if there are
   two relocation sections for this section, one of them is REL and
   the other is RELA.  If the index of the relocation we're testing is
   in range for the first relocation section, check that the external
   relocation size is that for RELA.  It is also assumed that, if
   rel_idx is not in range for the first section, and this first
   section contains REL relocs, then the relocation is in the second
   section, that is RELA.  */
#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx)				\
  ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr)			\
    * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel		\
    > (bfd_vma)(rel_idx))						\
   == (elf_section_data (sec)->rel_hdr.sh_entsize			\
       == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela)		\
	   : sizeof (Elf32_External_Rela))))

/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
   from smaller values.  Start with zero, widen, *then* decrement.  */
#define MINUS_ONE	(((bfd_vma)0) - 1)

/* The number of local .got entries we reserve.  */
#define MIPS_RESERVED_GOTNO (2)

/* The offset of $gp from the beginning of the .got section.  */
#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)

/* The maximum size of the GOT for it to be addressable using 16-bit
   offsets from $gp.  */
#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)

/* Instructions which appear in a stub.  For some reason the stub is
   slightly different on an SGI system.  */
#define STUB_LW(abfd)						\
  ((ABI_64_P (abfd)  						\
    ? 0xdf998010		/* ld t9,0x8010(gp) */		\
    : 0x8f998010))              /* lw t9,0x8010(gp) */
#define STUB_MOVE(abfd)                                         \
  (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821)         /* move t7,ra */
#define STUB_JALR 0x0320f809				/* jal t9 */
#define STUB_LI16(abfd)                                         \
  (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000)         /* ori t8,zero,0 */
#define MIPS_FUNCTION_STUB_SIZE (16)

/* The name of the dynamic interpreter.  This is put in the .interp
   section.  */

#define ELF_DYNAMIC_INTERPRETER(abfd) 		\
   (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" 	\
    : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" 	\
    : "/usr/lib/libc.so.1")

#ifdef BFD64
#define MNAME(bfd,pre,pos) \
  (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
#define ELF_R_SYM(bfd, i)					\
  (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
#define ELF_R_TYPE(bfd, i)					\
  (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
#define ELF_R_INFO(bfd, s, t)					\
  (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
#else
#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
#define ELF_R_SYM(bfd, i)					\
  (ELF32_R_SYM (i))
#define ELF_R_TYPE(bfd, i)					\
  (ELF32_R_TYPE (i))
#define ELF_R_INFO(bfd, s, t)					\
  (ELF32_R_INFO (s, t))
#endif

  /* The mips16 compiler uses a couple of special sections to handle
     floating point arguments.

     Section names that look like .mips16.fn.FNNAME contain stubs that
     copy floating point arguments from the fp regs to the gp regs and
     then jump to FNNAME.  If any 32 bit function calls FNNAME, the
     call should be redirected to the stub instead.  If no 32 bit
     function calls FNNAME, the stub should be discarded.  We need to
     consider any reference to the function, not just a call, because
     if the address of the function is taken we will need the stub,
     since the address might be passed to a 32 bit function.

     Section names that look like .mips16.call.FNNAME contain stubs
     that copy floating point arguments from the gp regs to the fp
     regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
     then any 16 bit function that calls FNNAME should be redirected
     to the stub instead.  If FNNAME is not a 32 bit function, the
     stub should be discarded.

     .mips16.call.fp.FNNAME sections are similar, but contain stubs
     which call FNNAME and then copy the return value from the fp regs
     to the gp regs.  These stubs store the return value in $18 while
     calling FNNAME; any function which might call one of these stubs
     must arrange to save $18 around the call.  (This case is not
     needed for 32 bit functions that call 16 bit functions, because
     16 bit functions always return floating point values in both
     $f0/$f1 and $2/$3.)

     Note that in all cases FNNAME might be defined statically.
     Therefore, FNNAME is not used literally.  Instead, the relocation
     information will indicate which symbol the section is for.

     We record any stubs that we find in the symbol table.  */

#define FN_STUB ".mips16.fn."
#define CALL_STUB ".mips16.call."
#define CALL_FP_STUB ".mips16.call.fp."

/* Look up an entry in a MIPS ELF linker hash table.  */

#define mips_elf_link_hash_lookup(table, string, create, copy, follow)	\
  ((struct mips_elf_link_hash_entry *)					\
   elf_link_hash_lookup (&(table)->root, (string), (create),		\
			 (copy), (follow)))

/* Traverse a MIPS ELF linker hash table.  */

#define mips_elf_link_hash_traverse(table, func, info)			\
  (elf_link_hash_traverse						\
   (&(table)->root,							\
    (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
    (info)))

/* Get the MIPS ELF linker hash table from a link_info structure.  */

#define mips_elf_hash_table(p) \
  ((struct mips_elf_link_hash_table *) ((p)->hash))

/* Create an entry in a MIPS ELF linker hash table.  */

static struct bfd_hash_entry *
mips_elf_link_hash_newfunc (entry, table, string)
     struct bfd_hash_entry *entry;
     struct bfd_hash_table *table;
     const char *string;
{
  struct mips_elf_link_hash_entry *ret =
    (struct mips_elf_link_hash_entry *) entry;

  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
  if (ret == (struct mips_elf_link_hash_entry *) NULL)
    ret = ((struct mips_elf_link_hash_entry *)
	   bfd_hash_allocate (table,
			      sizeof (struct mips_elf_link_hash_entry)));
  if (ret == (struct mips_elf_link_hash_entry *) NULL)
    return (struct bfd_hash_entry *) ret;

  /* Call the allocation method of the superclass.  */
  ret = ((struct mips_elf_link_hash_entry *)
	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
				     table, string));
  if (ret != (struct mips_elf_link_hash_entry *) NULL)
    {
      /* Set local fields.  */
      memset (&ret->esym, 0, sizeof (EXTR));
      /* We use -2 as a marker to indicate that the information has
	 not been set.  -1 means there is no associated ifd.  */
      ret->esym.ifd = -2;
      ret->possibly_dynamic_relocs = 0;
      ret->readonly_reloc = FALSE;
      ret->min_dyn_reloc_index = 0;
      ret->no_fn_stub = FALSE;
      ret->fn_stub = NULL;
      ret->need_fn_stub = FALSE;
      ret->call_stub = NULL;
      ret->call_fp_stub = NULL;
      ret->forced_local = FALSE;
    }

  return (struct bfd_hash_entry *) ret;
}

bfd_boolean
_bfd_mips_elf_new_section_hook (abfd, sec)
     bfd *abfd;
     asection *sec;
{
  struct _mips_elf_section_data *sdata;
  bfd_size_type amt = sizeof (*sdata);

  sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
  if (sdata == NULL)
    return FALSE;
  sec->used_by_bfd = (PTR) sdata;

  return _bfd_elf_new_section_hook (abfd, sec);
}

/* Read ECOFF debugging information from a .mdebug section into a
   ecoff_debug_info structure.  */

bfd_boolean
_bfd_mips_elf_read_ecoff_info (abfd, section, debug)
     bfd *abfd;
     asection *section;
     struct ecoff_debug_info *debug;
{
  HDRR *symhdr;
  const struct ecoff_debug_swap *swap;
  char *ext_hdr = NULL;

  swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
  memset (debug, 0, sizeof (*debug));

  ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
  if (ext_hdr == NULL && swap->external_hdr_size != 0)
    goto error_return;

  if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
				  swap->external_hdr_size))
    goto error_return;

  symhdr = &debug->symbolic_header;
  (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);

  /* The symbolic header contains absolute file offsets and sizes to
     read.  */
#define READ(ptr, offset, count, size, type)				\
  if (symhdr->count == 0)						\
    debug->ptr = NULL;							\
  else									\
    {									\
      bfd_size_type amt = (bfd_size_type) size * symhdr->count;		\
      debug->ptr = (type) bfd_malloc (amt);				\
      if (debug->ptr == NULL)						\
	goto error_return;						\
      if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0	\
	  || bfd_bread (debug->ptr, amt, abfd) != amt)			\
	goto error_return;						\
    }

  READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
  READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
  READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
  READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
  READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
  READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
	union aux_ext *);
  READ (ss, cbSsOffset, issMax, sizeof (char), char *);
  READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
  READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
  READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
  READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
#undef READ

  debug->fdr = NULL;
  debug->adjust = NULL;

  return TRUE;

 error_return:
  if (ext_hdr != NULL)
    free (ext_hdr);
  if (debug->line != NULL)
    free (debug->line);
  if (debug->external_dnr != NULL)
    free (debug->external_dnr);
  if (debug->external_pdr != NULL)
    free (debug->external_pdr);
  if (debug->external_sym != NULL)
    free (debug->external_sym);
  if (debug->external_opt != NULL)
    free (debug->external_opt);
  if (debug->external_aux != NULL)
    free (debug->external_aux);
  if (debug->ss != NULL)
    free (debug->ss);
  if (debug->ssext != NULL)
    free (debug->ssext);
  if (debug->external_fdr != NULL)
    free (debug->external_fdr);
  if (debug->external_rfd != NULL)
    free (debug->external_rfd);
  if (debug->external_ext != NULL)
    free (debug->external_ext);
  return FALSE;
}

/* Swap RPDR (runtime procedure table entry) for output.  */

static void
ecoff_swap_rpdr_out (abfd, in, ex)
     bfd *abfd;
     const RPDR *in;
     struct rpdr_ext *ex;
{
  H_PUT_S32 (abfd, in->adr, ex->p_adr);
  H_PUT_32 (abfd, in->regmask, ex->p_regmask);
  H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
  H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
  H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
  H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);

  H_PUT_16 (abfd, in->framereg, ex->p_framereg);
  H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);

  H_PUT_32 (abfd, in->irpss, ex->p_irpss);
#if 0 /* FIXME */
  H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
#endif
}

/* Create a runtime procedure table from the .mdebug section.  */

static bfd_boolean
mips_elf_create_procedure_table (handle, abfd, info, s, debug)
     PTR handle;
     bfd *abfd;
     struct bfd_link_info *info;
     asection *s;
     struct ecoff_debug_info *debug;
{
  const struct ecoff_debug_swap *swap;
  HDRR *hdr = &debug->symbolic_header;
  RPDR *rpdr, *rp;
  struct rpdr_ext *erp;
  PTR rtproc;
  struct pdr_ext *epdr;
  struct sym_ext *esym;
  char *ss, **sv;
  char *str;
  bfd_size_type size;
  bfd_size_type count;
  unsigned long sindex;
  unsigned long i;
  PDR pdr;
  SYMR sym;
  const char *no_name_func = _("static procedure (no name)");

  epdr = NULL;
  rpdr = NULL;
  esym = NULL;
  ss = NULL;
  sv = NULL;

  swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;

  sindex = strlen (no_name_func) + 1;
  count = hdr->ipdMax;
  if (count > 0)
    {
      size = swap->external_pdr_size;

      epdr = (struct pdr_ext *) bfd_malloc (size * count);
      if (epdr == NULL)
	goto error_return;

      if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
	goto error_return;

      size = sizeof (RPDR);
      rp = rpdr = (RPDR *) bfd_malloc (size * count);
      if (rpdr == NULL)
	goto error_return;

      size = sizeof (char *);
      sv = (char **) bfd_malloc (size * count);
      if (sv == NULL)
	goto error_return;

      count = hdr->isymMax;
      size = swap->external_sym_size;
      esym = (struct sym_ext *) bfd_malloc (size * count);
      if (esym == NULL)
	goto error_return;

      if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
	goto error_return;

      count = hdr->issMax;
      ss = (char *) bfd_malloc (count);
      if (ss == NULL)
	goto error_return;
      if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
	goto error_return;

      count = hdr->ipdMax;
      for (i = 0; i < (unsigned long) count; i++, rp++)
	{
	  (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
	  (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
	  rp->adr = sym.value;
	  rp->regmask = pdr.regmask;
	  rp->regoffset = pdr.regoffset;
	  rp->fregmask = pdr.fregmask;
	  rp->fregoffset = pdr.fregoffset;
	  rp->frameoffset = pdr.frameoffset;
	  rp->framereg = pdr.framereg;
	  rp->pcreg = pdr.pcreg;
	  rp->irpss = sindex;
	  sv[i] = ss + sym.iss;
	  sindex += strlen (sv[i]) + 1;
	}
    }

  size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
  size = BFD_ALIGN (size, 16);
  rtproc = (PTR) bfd_alloc (abfd, size);
  if (rtproc == NULL)
    {
      mips_elf_hash_table (info)->procedure_count = 0;
      goto error_return;
    }

  mips_elf_hash_table (info)->procedure_count = count + 2;

  erp = (struct rpdr_ext *) rtproc;
  memset (erp, 0, sizeof (struct rpdr_ext));
  erp++;
  str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
  strcpy (str, no_name_func);
  str += strlen (no_name_func) + 1;
  for (i = 0; i < count; i++)
    {
      ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
      strcpy (str, sv[i]);
      str += strlen (sv[i]) + 1;
    }
  H_PUT_S32 (abfd, -1, (erp + count)->p_adr);

  /* Set the size and contents of .rtproc section.  */
  s->_raw_size = size;
  s->contents = (bfd_byte *) rtproc;

  /* Skip this section later on (I don't think this currently
     matters, but someday it might).  */
  s->link_order_head = (struct bfd_link_order *) NULL;

  if (epdr != NULL)
    free (epdr);
  if (rpdr != NULL)
    free (rpdr);
  if (esym != NULL)
    free (esym);
  if (ss != NULL)
    free (ss);
  if (sv != NULL)
    free (sv);

  return TRUE;

 error_return:
  if (epdr != NULL)
    free (epdr);
  if (rpdr != NULL)
    free (rpdr);
  if (esym != NULL)
    free (esym);
  if (ss != NULL)
    free (ss);
  if (sv != NULL)
    free (sv);
  return FALSE;
}

/* Check the mips16 stubs for a particular symbol, and see if we can
   discard them.  */

static bfd_boolean
mips_elf_check_mips16_stubs (h, data)
     struct mips_elf_link_hash_entry *h;
     PTR data ATTRIBUTE_UNUSED;
{
  if (h->root.root.type == bfd_link_hash_warning)
    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;

  if (h->fn_stub != NULL
      && ! h->need_fn_stub)
    {
      /* We don't need the fn_stub; the only references to this symbol
         are 16 bit calls.  Clobber the size to 0 to prevent it from
         being included in the link.  */
      h->fn_stub->_raw_size = 0;
      h->fn_stub->_cooked_size = 0;
      h->fn_stub->flags &= ~SEC_RELOC;
      h->fn_stub->reloc_count = 0;
      h->fn_stub->flags |= SEC_EXCLUDE;
    }

  if (h->call_stub != NULL
      && h->root.other == STO_MIPS16)
    {
      /* We don't need the call_stub; this is a 16 bit function, so
         calls from other 16 bit functions are OK.  Clobber the size
         to 0 to prevent it from being included in the link.  */
      h->call_stub->_raw_size = 0;
      h->call_stub->_cooked_size = 0;
      h->call_stub->flags &= ~SEC_RELOC;
      h->call_stub->reloc_count = 0;
      h->call_stub->flags |= SEC_EXCLUDE;
    }

  if (h->call_fp_stub != NULL
      && h->root.other == STO_MIPS16)
    {
      /* We don't need the call_stub; this is a 16 bit function, so
         calls from other 16 bit functions are OK.  Clobber the size
         to 0 to prevent it from being included in the link.  */
      h->call_fp_stub->_raw_size = 0;
      h->call_fp_stub->_cooked_size = 0;
      h->call_fp_stub->flags &= ~SEC_RELOC;
      h->call_fp_stub->reloc_count = 0;
      h->call_fp_stub->flags |= SEC_EXCLUDE;
    }

  return TRUE;
}

bfd_reloc_status_type
_bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
			       relocateable, data, gp)
     bfd *abfd;
     asymbol *symbol;
     arelent *reloc_entry;
     asection *input_section;
     bfd_boolean relocateable;
     PTR data;
     bfd_vma gp;
{
  bfd_vma relocation;
  unsigned long insn = 0;
  bfd_signed_vma val;

  if (bfd_is_com_section (symbol->section))
    relocation = 0;
  else
    relocation = symbol->value;

  relocation += symbol->section->output_section->vma;
  relocation += symbol->section->output_offset;

  if (reloc_entry->address > input_section->_cooked_size)
    return bfd_reloc_outofrange;

  /* Set val to the offset into the section or symbol.  */
  val = reloc_entry->addend;

  if (reloc_entry->howto->partial_inplace)
    {
      insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
      val += insn & 0xffff;
    }

  _bfd_mips_elf_sign_extend(val, 16);

  /* Adjust val for the final section location and GP value.  If we
     are producing relocateable output, we don't want to do this for
     an external symbol.  */
  if (! relocateable
      || (symbol->flags & BSF_SECTION_SYM) != 0)
    val += relocation - gp;

  if (reloc_entry->howto->partial_inplace)
    {
      insn = (insn & ~0xffff) | (val & 0xffff);
      bfd_put_32 (abfd, (bfd_vma) insn,
		  (bfd_byte *) data + reloc_entry->address);
    }
  else
    reloc_entry->addend = val;

  if (relocateable)
    reloc_entry->address += input_section->output_offset;
  else if (((val & ~0xffff) != ~0xffff) && ((val & ~0xffff) != 0))
    return bfd_reloc_overflow;

  return bfd_reloc_ok;
}

/* Swap an entry in a .gptab section.  Note that these routines rely
   on the equivalence of the two elements of the union.  */

static void
bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
     bfd *abfd;
     const Elf32_External_gptab *ex;
     Elf32_gptab *in;
{
  in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
  in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
}

static void
bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
     bfd *abfd;
     const Elf32_gptab *in;
     Elf32_External_gptab *ex;
{
  H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
  H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
}

static void
bfd_elf32_swap_compact_rel_out (abfd, in, ex)
     bfd *abfd;
     const Elf32_compact_rel *in;
     Elf32_External_compact_rel *ex;
{
  H_PUT_32 (abfd, in->id1, ex->id1);
  H_PUT_32 (abfd, in->num, ex->num);
  H_PUT_32 (abfd, in->id2, ex->id2);
  H_PUT_32 (abfd, in->offset, ex->offset);
  H_PUT_32 (abfd, in->reserved0, ex->reserved0);
  H_PUT_32 (abfd, in->reserved1, ex->reserved1);
}

static void
bfd_elf32_swap_crinfo_out (abfd, in, ex)
     bfd *abfd;
     const Elf32_crinfo *in;
     Elf32_External_crinfo *ex;
{
  unsigned long l;

  l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
       | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
       | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
       | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
  H_PUT_32 (abfd, l, ex->info);
  H_PUT_32 (abfd, in->konst, ex->konst);
  H_PUT_32 (abfd, in->vaddr, ex->vaddr);
}

#if 0
/* Swap in an MSYM entry.  */

static void
bfd_mips_elf_swap_msym_in (abfd, ex, in)
     bfd *abfd;
     const Elf32_External_Msym *ex;
     Elf32_Internal_Msym *in;
{
  in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
  in->ms_info = H_GET_32 (abfd, ex->ms_info);
}
#endif
/* Swap out an MSYM entry.  */

static void
bfd_mips_elf_swap_msym_out (abfd, in, ex)
     bfd *abfd;
     const Elf32_Internal_Msym *in;
     Elf32_External_Msym *ex;
{
  H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
  H_PUT_32 (abfd, in->ms_info, ex->ms_info);
}

/* A .reginfo section holds a single Elf32_RegInfo structure.  These
   routines swap this structure in and out.  They are used outside of
   BFD, so they are globally visible.  */

void
bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
     bfd *abfd;
     const Elf32_External_RegInfo *ex;
     Elf32_RegInfo *in;
{
  in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
  in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
  in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
  in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
  in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
  in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
}

void
bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
     bfd *abfd;
     const Elf32_RegInfo *in;
     Elf32_External_RegInfo *ex;
{
  H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
  H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
  H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
  H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
  H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
  H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
}

/* In the 64 bit ABI, the .MIPS.options section holds register
   information in an Elf64_Reginfo structure.  These routines swap
   them in and out.  They are globally visible because they are used
   outside of BFD.  These routines are here so that gas can call them
   without worrying about whether the 64 bit ABI has been included.  */

void
bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
     bfd *abfd;
     const Elf64_External_RegInfo *ex;
     Elf64_Internal_RegInfo *in;
{
  in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
  in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
  in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
  in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
  in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
  in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
  in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
}

void
bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
     bfd *abfd;
     const Elf64_Internal_RegInfo *in;
     Elf64_External_RegInfo *ex;
{
  H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
  H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
  H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
  H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
  H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
  H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
  H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
}

/* Swap in an options header.  */

void
bfd_mips_elf_swap_options_in (abfd, ex, in)
     bfd *abfd;
     const Elf_External_Options *ex;
     Elf_Internal_Options *in;
{
  in->kind = H_GET_8 (abfd, ex->kind);
  in->size = H_GET_8 (abfd, ex->size);
  in->section = H_GET_16 (abfd, ex->section);
  in->info = H_GET_32 (abfd, ex->info);
}

/* Swap out an options header.  */

void
bfd_mips_elf_swap_options_out (abfd, in, ex)
     bfd *abfd;
     const Elf_Internal_Options *in;
     Elf_External_Options *ex;
{
  H_PUT_8 (abfd, in->kind, ex->kind);
  H_PUT_8 (abfd, in->size, ex->size);
  H_PUT_16 (abfd, in->section, ex->section);
  H_PUT_32 (abfd, in->info, ex->info);
}

/* This function is called via qsort() to sort the dynamic relocation
   entries by increasing r_symndx value.  */

static int
sort_dynamic_relocs (arg1, arg2)
     const PTR arg1;
     const PTR arg2;
{
  Elf_Internal_Rela int_reloc1;
  Elf_Internal_Rela int_reloc2;

  bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
  bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);

  return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
}

/* Like sort_dynamic_relocs, but used for elf64 relocations.  */

static int
sort_dynamic_relocs_64 (arg1, arg2)
     const PTR arg1;
     const PTR arg2;
{
  Elf_Internal_Rela int_reloc1[3];
  Elf_Internal_Rela int_reloc2[3];

  (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
    (reldyn_sorting_bfd, arg1, int_reloc1);
  (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
    (reldyn_sorting_bfd, arg2, int_reloc2);

  return (ELF64_R_SYM (int_reloc1[0].r_info)
	  - ELF64_R_SYM (int_reloc2[0].r_info));
}


/* This routine is used to write out ECOFF debugging external symbol
   information.  It is called via mips_elf_link_hash_traverse.  The
   ECOFF external symbol information must match the ELF external
   symbol information.  Unfortunately, at this point we don't know
   whether a symbol is required by reloc information, so the two
   tables may wind up being different.  We must sort out the external
   symbol information before we can set the final size of the .mdebug
   section, and we must set the size of the .mdebug section before we
   can relocate any sections, and we can't know which symbols are
   required by relocation until we relocate the sections.
   Fortunately, it is relatively unlikely that any symbol will be
   stripped but required by a reloc.  In particular, it can not happen
   when generating a final executable.  */

static bfd_boolean
mips_elf_output_extsym (h, data)
     struct mips_elf_link_hash_entry *h;
     PTR data;
{
  struct extsym_info *einfo = (struct extsym_info *) data;
  bfd_boolean strip;
  asection *sec, *output_section;

  if (h->root.root.type == bfd_link_hash_warning)
    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;

  if (h->root.indx == -2)
    strip = FALSE;
  else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
	    || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
	   && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
	   && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
    strip = TRUE;
  else if (einfo->info->strip == strip_all
	   || (einfo->info->strip == strip_some
	       && bfd_hash_lookup (einfo->info->keep_hash,
				   h->root.root.root.string,
				   FALSE, FALSE) == NULL))
    strip = TRUE;
  else
    strip = FALSE;

  if (strip)
    return TRUE;

  if (h->esym.ifd == -2)
    {
      h->esym.jmptbl = 0;
      h->esym.cobol_main = 0;
      h->esym.weakext = 0;
      h->esym.reserved = 0;
      h->esym.ifd = ifdNil;
      h->esym.asym.value = 0;
      h->esym.asym.st = stGlobal;

      if (h->root.root.type == bfd_link_hash_undefined
	  || h->root.root.type == bfd_link_hash_undefweak)
	{
	  const char *name;

	  /* Use undefined class.  Also, set class and type for some
             special symbols.  */
	  name = h->root.root.root.string;
	  if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
	      || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
	    {
	      h->esym.asym.sc = scData;
	      h->esym.asym.st = stLabel;
	      h->esym.asym.value = 0;
	    }
	  else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
	    {
	      h->esym.asym.sc = scAbs;
	      h->esym.asym.st = stLabel;
	      h->esym.asym.value =
		mips_elf_hash_table (einfo->info)->procedure_count;
	    }
	  else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
	    {
	      h->esym.asym.sc = scAbs;
	      h->esym.asym.st = stLabel;
	      h->esym.asym.value = elf_gp (einfo->abfd);
	    }
	  else
	    h->esym.asym.sc = scUndefined;
	}
      else if (h->root.root.type != bfd_link_hash_defined
	  && h->root.root.type != bfd_link_hash_defweak)
	h->esym.asym.sc = scAbs;
      else
	{
	  const char *name;

	  sec = h->root.root.u.def.section;
	  output_section = sec->output_section;

	  /* When making a shared library and symbol h is the one from
	     the another shared library, OUTPUT_SECTION may be null.  */
	  if (output_section == NULL)
	    h->esym.asym.sc = scUndefined;
	  else
	    {
	      name = bfd_section_name (output_section->owner, output_section);

	      if (strcmp (name, ".text") == 0)
		h->esym.asym.sc = scText;
	      else if (strcmp (name, ".data") == 0)
		h->esym.asym.sc = scData;
	      else if (strcmp (name, ".sdata") == 0)
		h->esym.asym.sc = scSData;
	      else if (strcmp (name, ".rodata") == 0
		       || strcmp (name, ".rdata") == 0)
		h->esym.asym.sc = scRData;
	      else if (strcmp (name, ".bss") == 0)
		h->esym.asym.sc = scBss;
	      else if (strcmp (name, ".sbss") == 0)
		h->esym.asym.sc = scSBss;
	      else if (strcmp (name, ".init") == 0)
		h->esym.asym.sc = scInit;
	      else if (strcmp (name, ".fini") == 0)
		h->esym.asym.sc = scFini;
	      else
		h->esym.asym.sc = scAbs;
	    }
	}

      h->esym.asym.reserved = 0;
      h->esym.asym.index = indexNil;
    }

  if (h->root.root.type == bfd_link_hash_common)
    h->esym.asym.value = h->root.root.u.c.size;
  else if (h->root.root.type == bfd_link_hash_defined
	   || h->root.root.type == bfd_link_hash_defweak)
    {
      if (h->esym.asym.sc == scCommon)
	h->esym.asym.sc = scBss;
      else if (h->esym.asym.sc == scSCommon)
	h->esym.asym.sc = scSBss;

      sec = h->root.root.u.def.section;
      output_section = sec->output_section;
      if (output_section != NULL)
	h->esym.asym.value = (h->root.root.u.def.value
			      + sec->output_offset
			      + output_section->vma);
      else
	h->esym.asym.value = 0;
    }
  else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
    {
      struct mips_elf_link_hash_entry *hd = h;
      bfd_boolean no_fn_stub = h->no_fn_stub;

      while (hd->root.root.type == bfd_link_hash_indirect)
	{
	  hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
	  no_fn_stub = no_fn_stub || hd->no_fn_stub;
	}

      if (!no_fn_stub)
	{
	  /* Set type and value for a symbol with a function stub.  */
	  h->esym.asym.st = stProc;
	  sec = hd->root.root.u.def.section;
	  if (sec == NULL)
	    h->esym.asym.value = 0;
	  else
	    {
	      output_section = sec->output_section;
	      if (output_section != NULL)
		h->esym.asym.value = (hd->root.plt.offset
				      + sec->output_offset
				      + output_section->vma);
	      else
		h->esym.asym.value = 0;
	    }
#if 0 /* FIXME?  */
	  h->esym.ifd = 0;
#endif
	}
    }

  if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
				      h->root.root.root.string,
				      &h->esym))
    {
      einfo->failed = TRUE;
      return FALSE;
    }

  return TRUE;
}

/* A comparison routine used to sort .gptab entries.  */

static int
gptab_compare (p1, p2)
     const PTR p1;
     const PTR p2;
{
  const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
  const Elf32_gptab *a2 = (const Elf32_gptab *) p2;

  return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
}

/* Functions to manage the got entry hash table.  */

/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
   hash number.  */

static INLINE hashval_t
mips_elf_hash_bfd_vma (addr)
     bfd_vma addr;
{
#ifdef BFD64
  return addr + (addr >> 32);
#else
  return addr;
#endif
}

/* got_entries only match if they're identical, except for gotidx, so
   use all fields to compute the hash, and compare the appropriate
   union members.  */

static hashval_t
mips_elf_got_entry_hash (entry_)
     const PTR entry_;
{
  const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;

  return entry->symndx
    + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
       : entry->abfd->id
         + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
	    : entry->d.h->root.root.root.hash));
}

static int
mips_elf_got_entry_eq (entry1, entry2)
     const PTR entry1;
     const PTR entry2;
{
  const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
  const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;

  return e1->abfd == e2->abfd && e1->symndx == e2->symndx
    && (! e1->abfd ? e1->d.address == e2->d.address
	: e1->symndx >= 0 ? e1->d.addend == e2->d.addend
	: e1->d.h == e2->d.h);
}

/* multi_got_entries are still a match in the case of global objects,
   even if the input bfd in which they're referenced differs, so the
   hash computation and compare functions are adjusted
   accordingly.  */

static hashval_t
mips_elf_multi_got_entry_hash (entry_)
     const PTR entry_;
{
  const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;

  return entry->symndx
    + (! entry->abfd
       ? mips_elf_hash_bfd_vma (entry->d.address)
       : entry->symndx >= 0
       ? (entry->abfd->id
	  + mips_elf_hash_bfd_vma (entry->d.addend))
       : entry->d.h->root.root.root.hash);
}

static int
mips_elf_multi_got_entry_eq (entry1, entry2)
     const PTR entry1;
     const PTR entry2;
{
  const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
  const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;

  return e1->symndx == e2->symndx
    && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
	: e1->abfd == NULL || e2->abfd == NULL
	? e1->abfd == e2->abfd && e1->d.address == e2->d.address
	: e1->d.h == e2->d.h);
}

/* Returns the dynamic relocation section for DYNOBJ.  */

static asection *
mips_elf_rel_dyn_section (dynobj, create_p)
     bfd *dynobj;
     bfd_boolean create_p;
{
  static const char dname[] = ".rel.dyn";
  asection *sreloc;

  sreloc = bfd_get_section_by_name (dynobj, dname);
  if (sreloc == NULL && create_p)
    {
      sreloc = bfd_make_section (dynobj, dname);
      if (sreloc == NULL
	  || ! bfd_set_section_flags (dynobj, sreloc,
				      (SEC_ALLOC
				       | SEC_LOAD
				       | SEC_HAS_CONTENTS
				       | SEC_IN_MEMORY
				       | SEC_LINKER_CREATED
				       | SEC_READONLY))
	  || ! bfd_set_section_alignment (dynobj, sreloc,
					  MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
	return NULL;
    }
  return sreloc;
}

/* Returns the GOT section for ABFD.  */

static asection *
mips_elf_got_section (abfd, maybe_excluded)
     bfd *abfd;
     bfd_boolean maybe_excluded;
{
  asection *sgot = bfd_get_section_by_name (abfd, ".got");
  if (sgot == NULL
      || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
    return NULL;
  return sgot;
}

/* Returns the GOT information associated with the link indicated by
   INFO.  If SGOTP is non-NULL, it is filled in with the GOT
   section.  */

static struct mips_got_info *
mips_elf_got_info (abfd, sgotp)
     bfd *abfd;
     asection **sgotp;
{
  asection *sgot;
  struct mips_got_info *g;

  sgot = mips_elf_got_section (abfd, TRUE);
  BFD_ASSERT (sgot != NULL);
  BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
  g = mips_elf_section_data (sgot)->u.got_info;
  BFD_ASSERT (g != NULL);

  if (sgotp)
    *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;

  return g;
}

/* Obtain the lowest dynamic index of a symbol that was assigned a
   global GOT entry.  */
static long
mips_elf_get_global_gotsym_index (abfd)
     bfd *abfd;
{
  asection *sgot;
  struct mips_got_info *g;

  if (abfd == NULL)
    return 0;

  sgot = mips_elf_got_section (abfd, TRUE);
  if (sgot == NULL || mips_elf_section_data (sgot) == NULL)
    return 0;

  g = mips_elf_section_data (sgot)->u.got_info;
  if (g == NULL || g->global_gotsym == NULL)
    return 0;

  return g->global_gotsym->dynindx;
}

/* Returns the GOT offset at which the indicated address can be found.
   If there is not yet a GOT entry for this value, create one.  Returns
   -1 if no satisfactory GOT offset can be found.  */

static bfd_vma
mips_elf_local_got_index (abfd, ibfd, info, value)
     bfd *abfd, *ibfd;
     struct bfd_link_info *info;
     bfd_vma value;
{
  asection *sgot;
  struct mips_got_info *g;
  struct mips_got_entry *entry;

  g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);

  entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
  if (entry)
    return entry->gotidx;
  else
    return MINUS_ONE;
}

/* Returns the GOT index for the global symbol indicated by H.  */

static bfd_vma
mips_elf_global_got_index (abfd, ibfd, h)
     bfd *abfd, *ibfd;
     struct elf_link_hash_entry *h;
{
  bfd_vma index;
  asection *sgot;
  struct mips_got_info *g, *gg;
  long global_got_dynindx = 0;

  gg = g = mips_elf_got_info (abfd, &sgot);
  if (g->bfd2got && ibfd)
    {
      struct mips_got_entry e, *p;

      BFD_ASSERT (h->dynindx >= 0);

      g = mips_elf_got_for_ibfd (g, ibfd);
      if (g->next != gg)
	{
	  e.abfd = ibfd;
	  e.symndx = -1;
	  e.d.h = (struct mips_elf_link_hash_entry *)h;

	  p = (struct mips_got_entry *) htab_find (g->got_entries, &e);

	  BFD_ASSERT (p->gotidx > 0);
	  return p->gotidx;
	}
    }

  if (gg->global_gotsym != NULL)
    global_got_dynindx = gg->global_gotsym->dynindx;

  /* Once we determine the global GOT entry with the lowest dynamic
     symbol table index, we must put all dynamic symbols with greater
     indices into the GOT.  That makes it easy to calculate the GOT
     offset.  */
  BFD_ASSERT (h->dynindx >= global_got_dynindx);
  index = ((h->dynindx - global_got_dynindx + g->local_gotno)
	   * MIPS_ELF_GOT_SIZE (abfd));
  BFD_ASSERT (index < sgot->_raw_size);

  return index;
}

/* Find a GOT entry that is within 32KB of the VALUE.  These entries
   are supposed to be placed at small offsets in the GOT, i.e.,
   within 32KB of GP.  Return the index into the GOT for this page,
   and store the offset from this entry to the desired address in
   OFFSETP, if it is non-NULL.  */

static bfd_vma
mips_elf_got_page (abfd, ibfd, info, value, offsetp)
     bfd *abfd, *ibfd;
     struct bfd_link_info *info;
     bfd_vma value;
     bfd_vma *offsetp;
{
  asection *sgot;
  struct mips_got_info *g;
  bfd_vma index;
  struct mips_got_entry *entry;

  g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);

  entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
					   (value + 0x8000)
					   & (~(bfd_vma)0xffff));

  if (!entry)
    return MINUS_ONE;

  index = entry->gotidx;

  if (offsetp)
    *offsetp = value - entry->d.address;

  return index;
}

/* Find a GOT entry whose higher-order 16 bits are the same as those
   for value.  Return the index into the GOT for this entry.  */

static bfd_vma
mips_elf_got16_entry (abfd, ibfd, info, value, external)
     bfd *abfd, *ibfd;
     struct bfd_link_info *info;
     bfd_vma value;
     bfd_boolean external;
{
  asection *sgot;
  struct mips_got_info *g;
  struct mips_got_entry *entry;

  if (! external)
    {
      /* Although the ABI says that it is "the high-order 16 bits" that we
	 want, it is really the %high value.  The complete value is
	 calculated with a `addiu' of a LO16 relocation, just as with a
	 HI16/LO16 pair.  */
      value = mips_elf_high (value) << 16;
    }

  g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);

  entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
  if (entry)
    return entry->gotidx;
  else
    return MINUS_ONE;
}

/* Returns the offset for the entry at the INDEXth position
   in the GOT.  */

static bfd_vma
mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
     bfd *dynobj;
     bfd *output_bfd;
     bfd *input_bfd;
     bfd_vma index;
{
  asection *sgot;
  bfd_vma gp;
  struct mips_got_info *g;

  g = mips_elf_got_info (dynobj, &sgot);
  gp = _bfd_get_gp_value (output_bfd)
    + mips_elf_adjust_gp (output_bfd, g, input_bfd);

  return sgot->output_section->vma + sgot->output_offset + index - gp;
}

/* Create a local GOT entry for VALUE.  Return the index of the entry,
   or -1 if it could not be created.  */

static struct mips_got_entry *
mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
     bfd *abfd, *ibfd;
     struct mips_got_info *gg;
     asection *sgot;
     bfd_vma value;
{
  struct mips_got_entry entry, **loc;
  struct mips_got_info *g;

  entry.abfd = NULL;
  entry.symndx = -1;
  entry.d.address = value;

  g = mips_elf_got_for_ibfd (gg, ibfd);
  if (g == NULL)
    {
      g = mips_elf_got_for_ibfd (gg, abfd);
      BFD_ASSERT (g != NULL);
    }

  loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
						   INSERT);
  if (*loc)
    return *loc;

  entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;

  *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);

  if (! *loc)
    return NULL;

  memcpy (*loc, &entry, sizeof entry);

  if (g->assigned_gotno >= g->local_gotno)
    {
      (*loc)->gotidx = -1;
      /* We didn't allocate enough space in the GOT.  */
      (*_bfd_error_handler)
	(_("not enough GOT space for local GOT entries"));
      bfd_set_error (bfd_error_bad_value);
      return NULL;
    }

  MIPS_ELF_PUT_WORD (abfd, value,
		     (sgot->contents + entry.gotidx));

  return *loc;
}

/* Sort the dynamic symbol table so that symbols that need GOT entries
   appear towards the end.  This reduces the amount of GOT space
   required.  MAX_LOCAL is used to set the number of local symbols
   known to be in the dynamic symbol table.  During
   _bfd_mips_elf_size_dynamic_sections, this value is 1.  Afterward, the
   section symbols are added and the count is higher.  */

static bfd_boolean
mips_elf_sort_hash_table (info, max_local)
     struct bfd_link_info *info;
     unsigned long max_local;
{
  struct mips_elf_hash_sort_data hsd;
  struct mips_got_info *g;
  bfd *dynobj;

  dynobj = elf_hash_table (info)->dynobj;

  g = mips_elf_got_info (dynobj, NULL);

  hsd.low = NULL;
  hsd.max_unref_got_dynindx =
  hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
    /* In the multi-got case, assigned_gotno of the master got_info
       indicate the number of entries that aren't referenced in the
       primary GOT, but that must have entries because there are
       dynamic relocations that reference it.  Since they aren't
       referenced, we move them to the end of the GOT, so that they
       don't prevent other entries that are referenced from getting
       too large offsets.  */
    - (g->next ? g->assigned_gotno : 0);
  hsd.max_non_got_dynindx = max_local;
  mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
				elf_hash_table (info)),
			       mips_elf_sort_hash_table_f,
			       &hsd);

  /* There should have been enough room in the symbol table to
     accommodate both the GOT and non-GOT symbols.  */
  BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
  BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
	      <= elf_hash_table (info)->dynsymcount);

  /* Now we know which dynamic symbol has the lowest dynamic symbol
     table index in the GOT.  */
  g->global_gotsym = hsd.low;

  return TRUE;
}

/* If H needs a GOT entry, assign it the highest available dynamic
   index.  Otherwise, assign it the lowest available dynamic
   index.  */

static bfd_boolean
mips_elf_sort_hash_table_f (h, data)
     struct mips_elf_link_hash_entry *h;
     PTR data;
{
  struct mips_elf_hash_sort_data *hsd
    = (struct mips_elf_hash_sort_data *) data;

  if (h->root.root.type == bfd_link_hash_warning)
    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;

  /* Symbols without dynamic symbol table entries aren't interesting
     at all.  */
  if (h->root.dynindx == -1)
    return TRUE;

  /* Global symbols that need GOT entries that are not explicitly
     referenced are marked with got offset 2.  Those that are
     referenced get a 1, and those that don't need GOT entries get
     -1.  */
  if (h->root.got.offset == 2)
    {
      if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
	hsd->low = (struct elf_link_hash_entry *) h;
      h->root.dynindx = hsd->max_unref_got_dynindx++;
    }
  else if (h->root.got.offset != 1)
    h->root.dynindx = hsd->max_non_got_dynindx++;
  else
    {
      h->root.dynindx = --hsd->min_got_dynindx;
      hsd->low = (struct elf_link_hash_entry *) h;
    }

  return TRUE;
}

/* If H is a symbol that needs a global GOT entry, but has a dynamic
   symbol table index lower than any we've seen to date, record it for
   posterity.  */

static bfd_boolean
mips_elf_record_global_got_symbol (h, abfd, info, g)
     struct elf_link_hash_entry *h;
     bfd *abfd;
     struct bfd_link_info *info;
     struct mips_got_info *g;
{
  struct mips_got_entry entry, **loc;

  /* A global symbol in the GOT must also be in the dynamic symbol
     table.  */
  if (h->dynindx == -1)
    {
      switch (ELF_ST_VISIBILITY (h->other))
	{
	case STV_INTERNAL:
	case STV_HIDDEN:
	  _bfd_mips_elf_hide_symbol (info, h, TRUE);
	  break;
	}
      if (!bfd_elf32_link_record_dynamic_symbol (info, h))
	return FALSE;
    }

  entry.abfd = abfd;
  entry.symndx = -1;
  entry.d.h = (struct mips_elf_link_hash_entry *) h;

  loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
						   INSERT);

  /* If we've already marked this entry as needing GOT space, we don't
     need to do it again.  */
  if (*loc)
    return TRUE;

  *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);

  if (! *loc)
    return FALSE;

  entry.gotidx = -1;
  memcpy (*loc, &entry, sizeof entry);

  if (h->got.offset != MINUS_ONE)
    return TRUE;

  /* By setting this to a value other than -1, we are indicating that
     there needs to be a GOT entry for H.  Avoid using zero, as the
     generic ELF copy_indirect_symbol tests for <= 0.  */
  h->got.offset = 1;

  return TRUE;
}

/* Reserve space in G for a GOT entry containing the value of symbol
   SYMNDX in input bfd ABDF, plus ADDEND.  */

static bfd_boolean
mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
     bfd *abfd;
     long symndx;
     bfd_vma addend;
     struct mips_got_info *g;
{
  struct mips_got_entry entry, **loc;

  entry.abfd = abfd;
  entry.symndx = symndx;
  entry.d.addend = addend;
  loc = (struct mips_got_entry **)
    htab_find_slot (g->got_entries, &entry, INSERT);

  if (*loc)
    return TRUE;

  entry.gotidx = g->local_gotno++;

  *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);

  if (! *loc)
    return FALSE;

  memcpy (*loc, &entry, sizeof entry);

  return TRUE;
}

/* Compute the hash value of the bfd in a bfd2got hash entry.  */

static hashval_t
mips_elf_bfd2got_entry_hash (entry_)
     const PTR entry_;
{
  const struct mips_elf_bfd2got_hash *entry
    = (struct mips_elf_bfd2got_hash *)entry_;

  return entry->bfd->id;
}

/* Check whether two hash entries have the same bfd.  */

static int
mips_elf_bfd2got_entry_eq (entry1, entry2)
     const PTR entry1;
     const PTR entry2;
{
  const struct mips_elf_bfd2got_hash *e1
    = (const struct mips_elf_bfd2got_hash *)entry1;
  const struct mips_elf_bfd2got_hash *e2
    = (const struct mips_elf_bfd2got_hash *)entry2;

  return e1->bfd == e2->bfd;
}

/* In a multi-got link, determine the GOT to be used for IBDF.  G must
   be the master GOT data.  */

static struct mips_got_info *
mips_elf_got_for_ibfd (g, ibfd)
     struct mips_got_info *g;
     bfd *ibfd;
{
  struct mips_elf_bfd2got_hash e, *p;

  if (! g->bfd2got)
    return g;

  e.bfd = ibfd;
  p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
  return p ? p->g : NULL;
}

/* Create one separate got for each bfd that has entries in the global
   got, such that we can tell how many local and global entries each
   bfd requires.  */

static int
mips_elf_make_got_per_bfd (entryp, p)
     void **entryp;
     void *p;
{
  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
  struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
  htab_t bfd2got = arg->bfd2got;
  struct mips_got_info *g;
  struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
  void **bfdgotp;

  /* Find the got_info for this GOT entry's input bfd.  Create one if
     none exists.  */
  bfdgot_entry.bfd = entry->abfd;
  bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
  bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;

  if (bfdgot != NULL)
    g = bfdgot->g;
  else
    {
      bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
	(arg->obfd, sizeof (struct mips_elf_bfd2got_hash));

      if (bfdgot == NULL)
	{
	  arg->obfd = 0;
	  return 0;
	}

      *bfdgotp = bfdgot;

      bfdgot->bfd = entry->abfd;
      bfdgot->g = g = (struct mips_got_info *)
	bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
      if (g == NULL)
	{
	  arg->obfd = 0;
	  return 0;
	}

      g->global_gotsym = NULL;
      g->global_gotno = 0;
      g->local_gotno = 0;
      g->assigned_gotno = -1;
      g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
					mips_elf_multi_got_entry_eq,
					(htab_del) NULL);
      if (g->got_entries == NULL)
	{
	  arg->obfd = 0;
	  return 0;
	}

      g->bfd2got = NULL;
      g->next = NULL;
    }

  /* Insert the GOT entry in the bfd's got entry hash table.  */
  entryp = htab_find_slot (g->got_entries, entry, INSERT);
  if (*entryp != NULL)
    return 1;

  *entryp = entry;

  if (entry->symndx >= 0 || entry->d.h->forced_local)
    ++g->local_gotno;
  else
    ++g->global_gotno;

  return 1;
}

/* Attempt to merge gots of different input bfds.  Try to use as much
   as possible of the primary got, since it doesn't require explicit
   dynamic relocations, but don't use bfds that would reference global
   symbols out of the addressable range.  Failing the primary got,
   attempt to merge with the current got, or finish the current got
   and then make make the new got current.  */

static int
mips_elf_merge_gots (bfd2got_, p)
     void **bfd2got_;
     void *p;
{
  struct mips_elf_bfd2got_hash *bfd2got
    = (struct mips_elf_bfd2got_hash *)*bfd2got_;
  struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
  unsigned int lcount = bfd2got->g->local_gotno;
  unsigned int gcount = bfd2got->g->global_gotno;
  unsigned int maxcnt = arg->max_count;

  /* If we don't have a primary GOT and this is not too big, use it as
     a starting point for the primary GOT.  */
  if (! arg->primary && lcount + gcount <= maxcnt)
    {
      arg->primary = bfd2got->g;
      arg->primary_count = lcount + gcount;
    }
  /* If it looks like we can merge this bfd's entries with those of
     the primary, merge them.  The heuristics is conservative, but we
     don't have to squeeze it too hard.  */
  else if (arg->primary
	   && (arg->primary_count + lcount + gcount) <= maxcnt)
    {
      struct mips_got_info *g = bfd2got->g;
      int old_lcount = arg->primary->local_gotno;
      int old_gcount = arg->primary->global_gotno;

      bfd2got->g = arg->primary;

      htab_traverse (g->got_entries,
		     mips_elf_make_got_per_bfd,
		     arg);
      if (arg->obfd == NULL)
	return 0;

      htab_delete (g->got_entries);
      /* We don't have to worry about releasing memory of the actual
	 got entries, since they're all in the master got_entries hash
	 table anyway.  */

      BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
      BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);

      arg->primary_count = arg->primary->local_gotno
	+ arg->primary->global_gotno;
    }
  /* If we can merge with the last-created got, do it.  */
  else if (arg->current
	   && arg->current_count + lcount + gcount <= maxcnt)
    {
      struct mips_got_info *g = bfd2got->g;
      int old_lcount = arg->current->local_gotno;
      int old_gcount = arg->current->global_gotno;

      bfd2got->g = arg->current;

      htab_traverse (g->got_entries,
		     mips_elf_make_got_per_bfd,
		     arg);
      if (arg->obfd == NULL)
	return 0;

      htab_delete (g->got_entries);

      BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
      BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);

      arg->current_count = arg->current->local_gotno
	+ arg->current->global_gotno;
    }
  /* Well, we couldn't merge, so create a new GOT.  Don't check if it
     fits; if it turns out that it doesn't, we'll get relocation
     overflows anyway.  */
  else
    {
      bfd2got->g->next = arg->current;
      arg->current = bfd2got->g;

      arg->current_count = lcount + gcount;
    }

  return 1;
}

/* If passed a NULL mips_got_info in the argument, set the marker used
   to tell whether a global symbol needs a got entry (in the primary
   got) to the given VALUE.

   If passed a pointer G to a mips_got_info in the argument (it must
   not be the primary GOT), compute the offset from the beginning of
   the (primary) GOT section to the entry in G corresponding to the
   global symbol.  G's assigned_gotno must contain the index of the
   first available global GOT entry in G.  VALUE must contain the size
   of a GOT entry in bytes.  For each global GOT entry that requires a
   dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
   marked as not elligible for lazy resolution through a function
   stub.  */
static int
mips_elf_set_global_got_offset (entryp, p)
     void **entryp;
     void *p;
{
  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
  struct mips_elf_set_global_got_offset_arg *arg
    = (struct mips_elf_set_global_got_offset_arg *)p;
  struct mips_got_info *g = arg->g;

  if (entry->abfd != NULL && entry->symndx == -1
      && entry->d.h->root.dynindx != -1)
    {
      if (g)
	{
	  BFD_ASSERT (g->global_gotsym == NULL);

	  entry->gotidx = arg->value * (long) g->assigned_gotno++;
	  /* We can't do lazy update of GOT entries for
	     non-primary GOTs since the PLT entries don't use the
	     right offsets, so punt at it for now.  */
	  entry->d.h->no_fn_stub = TRUE;
	  if (arg->info->shared
	      || (elf_hash_table (arg->info)->dynamic_sections_created
		  && ((entry->d.h->root.elf_link_hash_flags
		       & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
		  && ((entry->d.h->root.elf_link_hash_flags
		       & ELF_LINK_HASH_DEF_REGULAR) == 0)))
	    ++arg->needed_relocs;
	}
      else
	entry->d.h->root.got.offset = arg->value;
    }

  return 1;
}

/* Follow indirect and warning hash entries so that each got entry
   points to the final symbol definition.  P must point to a pointer
   to the hash table we're traversing.  Since this traversal may
   modify the hash table, we set this pointer to NULL to indicate
   we've made a potentially-destructive change to the hash table, so
   the traversal must be restarted.  */
static int
mips_elf_resolve_final_got_entry (entryp, p)
     void **entryp;
     void *p;
{
  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
  htab_t got_entries = *(htab_t *)p;

  if (entry->abfd != NULL && entry->symndx == -1)
    {
      struct mips_elf_link_hash_entry *h = entry->d.h;

      while (h->root.root.type == bfd_link_hash_indirect
 	     || h->root.root.type == bfd_link_hash_warning)
	h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;

      if (entry->d.h == h)
	return 1;

      entry->d.h = h;

      /* If we can't find this entry with the new bfd hash, re-insert
	 it, and get the traversal restarted.  */
      if (! htab_find (got_entries, entry))
	{
	  htab_clear_slot (got_entries, entryp);
	  entryp = htab_find_slot (got_entries, entry, INSERT);
	  if (! *entryp)
	    *entryp = entry;
	  /* Abort the traversal, since the whole table may have
	     moved, and leave it up to the parent to restart the
	     process.  */
	  *(htab_t *)p = NULL;
	  return 0;
	}
      /* We might want to decrement the global_gotno count, but it's
	 either too early or too late for that at this point.  */
    }

  return 1;
}

/* Turn indirect got entries in a got_entries table into their final
   locations.  */
static void
mips_elf_resolve_final_got_entries (g)
     struct mips_got_info *g;
{
  htab_t got_entries;

  do
    {
      got_entries = g->got_entries;

      htab_traverse (got_entries,
		     mips_elf_resolve_final_got_entry,
		     &got_entries);
    }
  while (got_entries == NULL);
}

/* Return the offset of an input bfd IBFD's GOT from the beginning of
   the primary GOT.  */
static bfd_vma
mips_elf_adjust_gp (abfd, g, ibfd)
     bfd *abfd;
     struct mips_got_info *g;
     bfd *ibfd;
{
  if (g->bfd2got == NULL)
    return 0;

  g = mips_elf_got_for_ibfd (g, ibfd);
  if (! g)
    return 0;

  BFD_ASSERT (g->next);

  g = g->next;

  return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
}

/* Turn a single GOT that is too big for 16-bit addressing into
   a sequence of GOTs, each one 16-bit addressable.  */

static bfd_boolean
mips_elf_multi_got (abfd, info, g, got, pages)
     bfd *abfd;
     struct bfd_link_info *info;
     struct mips_got_info *g;
     asection *got;
     bfd_size_type pages;
{
  struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
  struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
  struct mips_got_info *gg;
  unsigned int assign;

  g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
				mips_elf_bfd2got_entry_eq,
				(htab_del) NULL);
  if (g->bfd2got == NULL)
    return FALSE;

  got_per_bfd_arg.bfd2got = g->bfd2got;
  got_per_bfd_arg.obfd = abfd;
  got_per_bfd_arg.info = info;

  /* Count how many GOT entries each input bfd requires, creating a
     map from bfd to got info while at that.  */
  mips_elf_resolve_final_got_entries (g);
  htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
  if (got_per_bfd_arg.obfd == NULL)
    return FALSE;

  got_per_bfd_arg.current = NULL;
  got_per_bfd_arg.primary = NULL;
  /* Taking out PAGES entries is a worst-case estimate.  We could
     compute the maximum number of pages that each separate input bfd
     uses, but it's probably not worth it.  */
  got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
				/ MIPS_ELF_GOT_SIZE (abfd))
			       - MIPS_RESERVED_GOTNO - pages);

  /* Try to merge the GOTs of input bfds together, as long as they
     don't seem to exceed the maximum GOT size, choosing one of them
     to be the primary GOT.  */
  htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
  if (got_per_bfd_arg.obfd == NULL)
    return FALSE;

  /* If we find any suitable primary GOT, create an empty one.  */
  if (got_per_bfd_arg.primary == NULL)
    {
      g->next = (struct mips_got_info *)
	bfd_alloc (abfd, sizeof (struct mips_got_info));
      if (g->next == NULL)
	return FALSE;

      g->next->global_gotsym = NULL;
      g->next->global_gotno = 0;
      g->next->local_gotno = 0;
      g->next->assigned_gotno = 0;
      g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
					      mips_elf_multi_got_entry_eq,
					      (htab_del) NULL);
      if (g->next->got_entries == NULL)
	return FALSE;
      g->next->bfd2got = NULL;
    }
  else
    g->next = got_per_bfd_arg.primary;
  g->next->next = got_per_bfd_arg.current;

  /* GG is now the master GOT, and G is the primary GOT.  */
  gg = g;
  g = g->next;

  /* Map the output bfd to the primary got.  That's what we're going
     to use for bfds that use GOT16 or GOT_PAGE relocations that we
     didn't mark in check_relocs, and we want a quick way to find it.
     We can't just use gg->next because we're going to reverse the
     list.  */
  {
    struct mips_elf_bfd2got_hash *bfdgot;
    void **bfdgotp;

    bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
      (abfd, sizeof (struct mips_elf_bfd2got_hash));

    if (bfdgot == NULL)
      return FALSE;

    bfdgot->bfd = abfd;
    bfdgot->g = g;
    bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);

    BFD_ASSERT (*bfdgotp == NULL);
    *bfdgotp = bfdgot;
  }

  /* The IRIX dynamic linker requires every symbol that is referenced
     in a dynamic relocation to be present in the primary GOT, so
     arrange for them to appear after those that are actually
     referenced.

     GNU/Linux could very well do without it, but it would slow down
     the dynamic linker, since it would have to resolve every dynamic
     symbol referenced in other GOTs more than once, without help from
     the cache.  Also, knowing that every external symbol has a GOT
     helps speed up the resolution of local symbols too, so GNU/Linux
     follows IRIX's practice.

     The number 2 is used by mips_elf_sort_hash_table_f to count
     global GOT symbols that are unreferenced in the primary GOT, with
     an initial dynamic index computed from gg->assigned_gotno, where
     the number of unreferenced global entries in the primary GOT is
     preserved.  */
  if (1)
    {
      gg->assigned_gotno = gg->global_gotno - g->global_gotno;
      g->global_gotno = gg->global_gotno;
      set_got_offset_arg.value = 2;
    }
  else
    {
      /* This could be used for dynamic linkers that don't optimize
	 symbol resolution while applying relocations so as to use
	 primary GOT entries or assuming the symbol is locally-defined.
	 With this code, we assign lower dynamic indices to global
	 symbols that are not referenced in the primary GOT, so that
	 their entries can be omitted.  */
      gg->assigned_gotno = 0;
      set_got_offset_arg.value = -1;
    }

  /* Reorder dynamic symbols as described above (which behavior
     depends on the setting of VALUE).  */
  set_got_offset_arg.g = NULL;
  htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
		 &set_got_offset_arg);
  set_got_offset_arg.value = 1;
  htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
		 &set_got_offset_arg);
  if (! mips_elf_sort_hash_table (info, 1))
    return FALSE;

  /* Now go through the GOTs assigning them offset ranges.
     [assigned_gotno, local_gotno[ will be set to the range of local
     entries in each GOT.  We can then compute the end of a GOT by
     adding local_gotno to global_gotno.  We reverse the list and make
     it circular since then we'll be able to quickly compute the
     beginning of a GOT, by computing the end of its predecessor.  To
     avoid special cases for the primary GOT, while still preserving
     assertions that are valid for both single- and multi-got links,
     we arrange for the main got struct to have the right number of
     global entries, but set its local_gotno such that the initial
     offset of the primary GOT is zero.  Remember that the primary GOT
     will become the last item in the circular linked list, so it
     points back to the master GOT.  */
  gg->local_gotno = -g->global_gotno;
  gg->global_gotno = g->global_gotno;
  assign = 0;
  gg->next = gg;

  do
    {
      struct mips_got_info *gn;

      assign += MIPS_RESERVED_GOTNO;
      g->assigned_gotno = assign;
      g->local_gotno += assign + pages;
      assign = g->local_gotno + g->global_gotno;

      /* Take g out of the direct list, and push it onto the reversed
	 list that gg points to.  */
      gn = g->next;
      g->next = gg->next;
      gg->next = g;
      g = gn;
    }
  while (g);

  got->_raw_size = (gg->next->local_gotno
		    + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);

  return TRUE;
}


/* Returns the first relocation of type r_type found, beginning with
   RELOCATION.  RELEND is one-past-the-end of the relocation table.  */

static const Elf_Internal_Rela *
mips_elf_next_relocation (abfd, r_type, relocation, relend)
     bfd *abfd ATTRIBUTE_UNUSED;
     unsigned int r_type;
     const Elf_Internal_Rela *relocation;
     const Elf_Internal_Rela *relend;
{
  /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
     immediately following.  However, for the IRIX6 ABI, the next
     relocation may be a composed relocation consisting of several
     relocations for the same address.  In that case, the R_MIPS_LO16
     relocation may occur as one of these.  We permit a similar
     extension in general, as that is useful for GCC.  */
  while (relocation < relend)
    {
      if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
	return relocation;

      ++relocation;
    }

  /* We didn't find it.  */
  bfd_set_error (bfd_error_bad_value);
  return NULL;
}

/* Return whether a relocation is against a local symbol.  */

static bfd_boolean
mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
			     check_forced)
     bfd *input_bfd;
     const Elf_Internal_Rela *relocation;
     asection **local_sections;
     bfd_boolean check_forced;
{
  unsigned long r_symndx;
  Elf_Internal_Shdr *symtab_hdr;
  struct mips_elf_link_hash_entry *h;
  size_t extsymoff;

  r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;

  if (r_symndx < extsymoff)
    return TRUE;
  if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
    return TRUE;

  if (check_forced)
    {
      /* Look up the hash table to check whether the symbol
 	 was forced local.  */
      h = (struct mips_elf_link_hash_entry *)
	elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
      /* Find the real hash-table entry for this symbol.  */
      while (h->root.root.type == bfd_link_hash_indirect
 	     || h->root.root.type == bfd_link_hash_warning)
	h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
      if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
	return TRUE;
    }

  return FALSE;
}

/* Sign-extend VALUE, which has the indicated number of BITS.  */

bfd_vma
_bfd_mips_elf_sign_extend (value, bits)
     bfd_vma value;
     int bits;
{
  if (value & ((bfd_vma) 1 << (bits - 1)))
    /* VALUE is negative.  */
    value |= ((bfd_vma) - 1) << bits;

  return value;
}

/* Return non-zero if the indicated VALUE has overflowed the maximum
   range expressable by a signed number with the indicated number of
   BITS.  */

static bfd_boolean
mips_elf_overflow_p (value, bits)
     bfd_vma value;
     int bits;
{
  bfd_signed_vma svalue = (bfd_signed_vma) value;

  if (svalue > (1 << (bits - 1)) - 1)
    /* The value is too big.  */
    return TRUE;
  else if (svalue < -(1 << (bits - 1)))
    /* The value is too small.  */
    return TRUE;

  /* All is well.  */
  return FALSE;
}

/* Calculate the %high function.  */

static bfd_vma
mips_elf_high (value)
     bfd_vma value;
{
  return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
}

/* Calculate the %higher function.  */

static bfd_vma
mips_elf_higher (value)
     bfd_vma value ATTRIBUTE_UNUSED;
{
#ifdef BFD64
  return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
#else
  abort ();
  return (bfd_vma) -1;
#endif
}

/* Calculate the %highest function.  */

static bfd_vma
mips_elf_highest (value)
     bfd_vma value ATTRIBUTE_UNUSED;
{
#ifdef BFD64
  return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
#else
  abort ();
  return (bfd_vma) -1;
#endif
}

/* Create the .compact_rel section.  */

static bfd_boolean
mips_elf_create_compact_rel_section (abfd, info)
     bfd *abfd;
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
{
  flagword flags;
  register asection *s;

  if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
    {
      flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
	       | SEC_READONLY);

      s = bfd_make_section (abfd, ".compact_rel");
      if (s == NULL
	  || ! bfd_set_section_flags (abfd, s, flags)
	  || ! bfd_set_section_alignment (abfd, s,
					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
	return FALSE;

      s->_raw_size = sizeof (Elf32_External_compact_rel);
    }

  return TRUE;
}

/* Create the .got section to hold the global offset table.  */

static bfd_boolean
mips_elf_create_got_section (abfd, info, maybe_exclude)
     bfd *abfd;
     struct bfd_link_info *info;
     bfd_boolean maybe_exclude;
{
  flagword flags;
  register asection *s;
  struct elf_link_hash_entry *h;
  struct bfd_link_hash_entry *bh;
  struct mips_got_info *g;
  bfd_size_type amt;

  /* This function may be called more than once.  */
  s = mips_elf_got_section (abfd, TRUE);
  if (s)
    {
      if (! maybe_exclude)
	s->flags &= ~SEC_EXCLUDE;
      return TRUE;
    }

  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
	   | SEC_LINKER_CREATED);

  if (maybe_exclude)
    flags |= SEC_EXCLUDE;

  s = bfd_make_section (abfd, ".got");
  if (s == NULL
      || ! bfd_set_section_flags (abfd, s, flags)
      || ! bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
    return FALSE;

  /* Define the symbol _GLOBAL_OFFSET_TABLE_.  We don't do this in the
     linker script because we don't want to define the symbol if we
     are not creating a global offset table.  */
  bh = NULL;
  if (! (_bfd_generic_link_add_one_symbol
	 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
	  (bfd_vma) 0, (const char *) NULL, FALSE,
	  get_elf_backend_data (abfd)->collect, &bh)))
    return FALSE;

  h = (struct elf_link_hash_entry *) bh;
  h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
  h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
  h->type = STT_OBJECT;

  if (info->shared
      && ! bfd_elf32_link_record_dynamic_symbol (info, h))
    return FALSE;

  amt = sizeof (struct mips_got_info);
  g = (struct mips_got_info *) bfd_alloc (abfd, amt);
  if (g == NULL)
    return FALSE;
  g->global_gotsym = NULL;
  g->local_gotno = MIPS_RESERVED_GOTNO;
  g->assigned_gotno = MIPS_RESERVED_GOTNO;
  g->bfd2got = NULL;
  g->next = NULL;
  g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
				    mips_elf_got_entry_eq,
				    (htab_del) NULL);
  if (g->got_entries == NULL)
    return FALSE;
  mips_elf_section_data (s)->u.got_info = g;
  mips_elf_section_data (s)->elf.this_hdr.sh_flags
    |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;

  return TRUE;
}

/* Returns the .msym section for ABFD, creating it if it does not
   already exist.  Returns NULL to indicate error.  */

static asection *
mips_elf_create_msym_section (abfd)
     bfd *abfd;
{
  asection *s;

  s = bfd_get_section_by_name (abfd, ".msym");
  if (!s)
    {
      s = bfd_make_section (abfd, ".msym");
      if (!s
	  || !bfd_set_section_flags (abfd, s,
				     SEC_ALLOC
				     | SEC_LOAD
				     | SEC_HAS_CONTENTS
				     | SEC_LINKER_CREATED
				     | SEC_READONLY)
	  || !bfd_set_section_alignment (abfd, s,
					 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
	return NULL;
    }

  return s;
}

/* Calculate the value produced by the RELOCATION (which comes from
   the INPUT_BFD).  The ADDEND is the addend to use for this
   RELOCATION; RELOCATION->R_ADDEND is ignored.

   The result of the relocation calculation is stored in VALUEP.
   REQUIRE_JALXP indicates whether or not the opcode used with this
   relocation must be JALX.

   This function returns bfd_reloc_continue if the caller need take no
   further action regarding this relocation, bfd_reloc_notsupported if
   something goes dramatically wrong, bfd_reloc_overflow if an
   overflow occurs, and bfd_reloc_ok to indicate success.  */

static bfd_reloc_status_type
mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
			       relocation, addend, howto, local_syms,
			       local_sections, valuep, namep,
			       require_jalxp, save_addend)
     bfd *abfd;
     bfd *input_bfd;
     asection *input_section;
     struct bfd_link_info *info;
     const Elf_Internal_Rela *relocation;
     bfd_vma addend;
     reloc_howto_type *howto;
     Elf_Internal_Sym *local_syms;
     asection **local_sections;
     bfd_vma *valuep;
     const char **namep;
     bfd_boolean *require_jalxp;
     bfd_boolean save_addend;
{
  /* The eventual value we will return.  */
  bfd_vma value;
  /* The address of the symbol against which the relocation is
     occurring.  */
  bfd_vma symbol = 0;
  /* The final GP value to be used for the relocatable, executable, or
     shared object file being produced.  */
  bfd_vma gp = MINUS_ONE;
  /* The place (section offset or address) of the storage unit being
     relocated.  */
  bfd_vma p;
  /* The value of GP used to create the relocatable object.  */
  bfd_vma gp0 = MINUS_ONE;
  /* The offset into the global offset table at which the address of
     the relocation entry symbol, adjusted by the addend, resides
     during execution.  */
  bfd_vma g = MINUS_ONE;
  /* The section in which the symbol referenced by the relocation is
     located.  */
  asection *sec = NULL;
  struct mips_elf_link_hash_entry *h = NULL;
  /* TRUE if the symbol referred to by this relocation is a local
     symbol.  */
  bfd_boolean local_p, was_local_p;
  /* TRUE if the symbol referred to by this relocation is "_gp_disp".  */
  bfd_boolean gp_disp_p = FALSE;
  Elf_Internal_Shdr *symtab_hdr;
  size_t extsymoff;
  unsigned long r_symndx;
  int r_type;
  /* TRUE if overflow occurred during the calculation of the
     relocation value.  */
  bfd_boolean overflowed_p;
  /* TRUE if this relocation refers to a MIPS16 function.  */
  bfd_boolean target_is_16_bit_code_p = FALSE;

  /* Parse the relocation.  */
  r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
  r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
  p = (input_section->output_section->vma
       + input_section->output_offset
       + relocation->r_offset);

  /* Assume that there will be no overflow.  */
  overflowed_p = FALSE;

  /* Figure out whether or not the symbol is local, and get the offset
     used in the array of hash table entries.  */
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  local_p = mips_elf_local_relocation_p (input_bfd, relocation,
					 local_sections, FALSE);
  was_local_p = local_p;
  if (! elf_bad_symtab (input_bfd))
    extsymoff = symtab_hdr->sh_info;
  else
    {
      /* The symbol table does not follow the rule that local symbols
	 must come before globals.  */
      extsymoff = 0;
    }

  /* Figure out the value of the symbol.  */
  if (local_p)
    {
      Elf_Internal_Sym *sym;

      sym = local_syms + r_symndx;
      sec = local_sections[r_symndx];

      symbol = sec->output_section->vma + sec->output_offset;
      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
	  || (sec->flags & SEC_MERGE))
	symbol += sym->st_value;
      if ((sec->flags & SEC_MERGE)
	  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
	{
	  addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
	  addend -= symbol;
	  addend += sec->output_section->vma + sec->output_offset;
	}

      /* MIPS16 text labels should be treated as odd.  */
      if (sym->st_other == STO_MIPS16)
	++symbol;

      /* Record the name of this symbol, for our caller.  */
      *namep = bfd_elf_string_from_elf_section (input_bfd,
						symtab_hdr->sh_link,
						sym->st_name);
      if (*namep == '\0')
	*namep = bfd_section_name (input_bfd, sec);

      target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
    }
  else
    {
      /* For global symbols we look up the symbol in the hash-table.  */
      h = ((struct mips_elf_link_hash_entry *)
	   elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
      /* Find the real hash-table entry for this symbol.  */
      while (h->root.root.type == bfd_link_hash_indirect
	     || h->root.root.type == bfd_link_hash_warning)
	h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;

      /* Record the name of this symbol, for our caller.  */
      *namep = h->root.root.root.string;

      /* See if this is the special _gp_disp symbol.  Note that such a
	 symbol must always be a global symbol.  */
      if (strcmp (h->root.root.root.string, "_gp_disp") == 0
	  && ! NEWABI_P (input_bfd))
	{
	  /* Relocations against _gp_disp are permitted only with
	     R_MIPS_HI16 and R_MIPS_LO16 relocations.  */
	  if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
	    return bfd_reloc_notsupported;

	  gp_disp_p = TRUE;
	}
      /* If this symbol is defined, calculate its address.  Note that
	 _gp_disp is a magic symbol, always implicitly defined by the
	 linker, so it's inappropriate to check to see whether or not
	 its defined.  */
      else if ((h->root.root.type == bfd_link_hash_defined
		|| h->root.root.type == bfd_link_hash_defweak)
	       && h->root.root.u.def.section)
	{
	  sec = h->root.root.u.def.section;
	  if (sec->output_section)
	    symbol = (h->root.root.u.def.value
		      + sec->output_section->vma
		      + sec->output_offset);
	  else
	    symbol = h->root.root.u.def.value;
	}
      else if (h->root.root.type == bfd_link_hash_undefweak)
	/* We allow relocations against undefined weak symbols, giving
	   it the value zero, so that you can undefined weak functions
	   and check to see if they exist by looking at their
	   addresses.  */
	symbol = 0;
      else if (info->shared
	       && !info->no_undefined
	       && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
	symbol = 0;
      else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
              strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
	{
	  /* If this is a dynamic link, we should have created a
	     _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
	     in in _bfd_mips_elf_create_dynamic_sections.
	     Otherwise, we should define the symbol with a value of 0.
	     FIXME: It should probably get into the symbol table
	     somehow as well.  */
	  BFD_ASSERT (! info->shared);
	  BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
	  symbol = 0;
	}
      else
	{
	  if (! ((*info->callbacks->undefined_symbol)
		 (info, h->root.root.root.string, input_bfd,
		  input_section, relocation->r_offset,
		  (!info->shared || info->no_undefined
		   || ELF_ST_VISIBILITY (h->root.other)))))
	    return bfd_reloc_undefined;
	  symbol = 0;
	}

      target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
    }

  /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
     need to redirect the call to the stub, unless we're already *in*
     a stub.  */
  if (r_type != R_MIPS16_26 && !info->relocateable
      && ((h != NULL && h->fn_stub != NULL)
	  || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
	      && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
      && !mips_elf_stub_section_p (input_bfd, input_section))
    {
      /* This is a 32- or 64-bit call to a 16-bit function.  We should
	 have already noticed that we were going to need the
	 stub.  */
      if (local_p)
	sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
      else
	{
	  BFD_ASSERT (h->need_fn_stub);
	  sec = h->fn_stub;
	}

      symbol = sec->output_section->vma + sec->output_offset;
    }
  /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
     need to redirect the call to the stub.  */
  else if (r_type == R_MIPS16_26 && !info->relocateable
	   && h != NULL
	   && (h->call_stub != NULL || h->call_fp_stub != NULL)
	   && !target_is_16_bit_code_p)
    {
      /* If both call_stub and call_fp_stub are defined, we can figure
	 out which one to use by seeing which one appears in the input
	 file.  */
      if (h->call_stub != NULL && h->call_fp_stub != NULL)
	{
	  asection *o;

	  sec = NULL;
	  for (o = input_bfd->sections; o != NULL; o = o->next)
	    {
	      if (strncmp (bfd_get_section_name (input_bfd, o),
			   CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
		{
		  sec = h->call_fp_stub;
		  break;
		}
	    }
	  if (sec == NULL)
	    sec = h->call_stub;
	}
      else if (h->call_stub != NULL)
	sec = h->call_stub;
      else
	sec = h->call_fp_stub;

      BFD_ASSERT (sec->_raw_size > 0);
      symbol = sec->output_section->vma + sec->output_offset;
    }

  /* Calls from 16-bit code to 32-bit code and vice versa require the
     special jalx instruction.  */
  *require_jalxp = (!info->relocateable
                    && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
                        || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));

  local_p = mips_elf_local_relocation_p (input_bfd, relocation,
					 local_sections, TRUE);

  /* If we haven't already determined the GOT offset, or the GP value,
     and we're going to need it, get it now.  */
  switch (r_type)
    {
    case R_MIPS_GOT_PAGE:
    case R_MIPS_GOT_OFST:
      /* If this symbol got a global GOT entry, we have to decay
	 GOT_PAGE/GOT_OFST to GOT_DISP/addend.  */
      local_p = local_p || ! h
	|| (h->root.dynindx
	    < mips_elf_get_global_gotsym_index (elf_hash_table (info)
						->dynobj));
      if (local_p || r_type == R_MIPS_GOT_OFST)
	break;
      /* Fall through.  */

    case R_MIPS_CALL16:
    case R_MIPS_GOT16:
    case R_MIPS_GOT_DISP:
    case R_MIPS_GOT_HI16:
    case R_MIPS_CALL_HI16:
    case R_MIPS_GOT_LO16:
    case R_MIPS_CALL_LO16:
      /* Find the index into the GOT where this value is located.  */
      if (!local_p)
	{
	  /* GOT_PAGE may take a non-zero addend, that is ignored in a
	     GOT_PAGE relocation that decays to GOT_DISP because the
	     symbol turns out to be global.  The addend is then added
	     as GOT_OFST.  */
	  BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
	  g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
					 input_bfd,
					 (struct elf_link_hash_entry *) h);
	  if (! elf_hash_table(info)->dynamic_sections_created
	      || (info->shared
		  && (info->symbolic || h->root.dynindx == -1)
		  && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
	    {
	      /* This is a static link or a -Bsymbolic link.  The
		 symbol is defined locally, or was forced to be local.
		 We must initialize this entry in the GOT.  */
	      bfd *tmpbfd = elf_hash_table (info)->dynobj;
	      asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
	      MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
	    }
	}
      else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
	/* There's no need to create a local GOT entry here; the
	   calculation for a local GOT16 entry does not involve G.  */
	break;
      else
	{
	  g = mips_elf_local_got_index (abfd, input_bfd,
					info, symbol + addend);
	  if (g == MINUS_ONE)
	    return bfd_reloc_outofrange;
	}

      /* Convert GOT indices to actual offsets.  */
      g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
					  abfd, input_bfd, g);
      break;

    case R_MIPS_HI16:
    case R_MIPS_LO16:
    case R_MIPS16_GPREL:
    case R_MIPS_GPREL16:
    case R_MIPS_GPREL32:
    case R_MIPS_LITERAL:
      gp0 = _bfd_get_gp_value (input_bfd);
      gp = _bfd_get_gp_value (abfd);
      if (elf_hash_table (info)->dynobj)
	gp += mips_elf_adjust_gp (abfd,
				  mips_elf_got_info
				  (elf_hash_table (info)->dynobj, NULL),
				  input_bfd);
      break;

    default:
      break;
    }

  /* Figure out what kind of relocation is being performed.  */
  switch (r_type)
    {
    case R_MIPS_NONE:
      return bfd_reloc_continue;

    case R_MIPS_16:
      value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
      overflowed_p = mips_elf_overflow_p (value, 16);
      break;

    case R_MIPS_32:
    case R_MIPS_REL32:
    case R_MIPS_64:
      if ((info->shared
	   || (elf_hash_table (info)->dynamic_sections_created
	       && h != NULL
	       && ((h->root.elf_link_hash_flags
		    & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
	       && ((h->root.elf_link_hash_flags
		    & ELF_LINK_HASH_DEF_REGULAR) == 0)))
	  && r_symndx != 0
	  && (input_section->flags & SEC_ALLOC) != 0)
	{
	  /* If we're creating a shared library, or this relocation is
	     against a symbol in a shared library, then we can't know
	     where the symbol will end up.  So, we create a relocation
	     record in the output, and leave the job up to the dynamic
	     linker.  */
	  value = addend;
	  if (!mips_elf_create_dynamic_relocation (abfd,
						   info,
						   relocation,
						   h,
						   sec,
						   symbol,
						   &value,
						   input_section))
	    return bfd_reloc_undefined;
	}
      else
	{
	  if (r_type != R_MIPS_REL32)
	    value = symbol + addend;
	  else
	    value = addend;
	}
      value &= howto->dst_mask;
      break;

    case R_MIPS_PC32:
    case R_MIPS_PC64:
    case R_MIPS_GNU_REL_LO16:
      value = symbol + addend - p;
      value &= howto->dst_mask;
      break;

    case R_MIPS_GNU_REL16_S2:
      value = symbol + _bfd_mips_elf_sign_extend (addend << 2, 18) - p;
      overflowed_p = mips_elf_overflow_p (value, 18);
      value = (value >> 2) & howto->dst_mask;
      break;

    case R_MIPS_GNU_REL_HI16:
      /* Instead of subtracting 'p' here, we should be subtracting the
	 equivalent value for the LO part of the reloc, since the value
	 here is relative to that address.  Because that's not easy to do,
	 we adjust 'addend' in _bfd_mips_elf_relocate_section().  See also
	 the comment there for more information.  */
      value = mips_elf_high (addend + symbol - p);
      value &= howto->dst_mask;
      break;

    case R_MIPS16_26:
      /* The calculation for R_MIPS16_26 is just the same as for an
	 R_MIPS_26.  It's only the storage of the relocated field into
	 the output file that's different.  That's handled in
	 mips_elf_perform_relocation.  So, we just fall through to the
	 R_MIPS_26 case here.  */
    case R_MIPS_26:
      if (local_p)
	value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
      else
	value = (_bfd_mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
      value &= howto->dst_mask;
      break;

    case R_MIPS_HI16:
      if (!gp_disp_p)
	{
	  value = mips_elf_high (addend + symbol);
	  value &= howto->dst_mask;
	}
      else
	{
	  value = mips_elf_high (addend + gp - p);
	  overflowed_p = mips_elf_overflow_p (value, 16);
	}
      break;

    case R_MIPS_LO16:
      if (!gp_disp_p)
	value = (symbol + addend) & howto->dst_mask;
      else
	{
	  value = addend + gp - p + 4;
	  /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
	     for overflow.  But, on, say, IRIX5, relocations against
	     _gp_disp are normally generated from the .cpload
	     pseudo-op.  It generates code that normally looks like
	     this:

	       lui    $gp,%hi(_gp_disp)
	       addiu  $gp,$gp,%lo(_gp_disp)
	       addu   $gp,$gp,$t9

	     Here $t9 holds the address of the function being called,
	     as required by the MIPS ELF ABI.  The R_MIPS_LO16
	     relocation can easily overflow in this situation, but the
	     R_MIPS_HI16 relocation will handle the overflow.
	     Therefore, we consider this a bug in the MIPS ABI, and do
	     not check for overflow here.  */
	}
      break;

    case R_MIPS_LITERAL:
      /* Because we don't merge literal sections, we can handle this
	 just like R_MIPS_GPREL16.  In the long run, we should merge
	 shared literals, and then we will need to additional work
	 here.  */

      /* Fall through.  */

    case R_MIPS16_GPREL:
      /* The R_MIPS16_GPREL performs the same calculation as
	 R_MIPS_GPREL16, but stores the relocated bits in a different
	 order.  We don't need to do anything special here; the
	 differences are handled in mips_elf_perform_relocation.  */
    case R_MIPS_GPREL16:
      /* Only sign-extend the addend if it was extracted from the
	 instruction.  If the addend was separate, leave it alone,
	 otherwise we may lose significant bits.  */
      if (howto->partial_inplace)
	addend = _bfd_mips_elf_sign_extend (addend, 16);
      value = symbol + addend - gp;
      /* If the symbol was local, any earlier relocatable links will
	 have adjusted its addend with the gp offset, so compensate
	 for that now.  Don't do it for symbols forced local in this
	 link, though, since they won't have had the gp offset applied
	 to them before.  */
      if (was_local_p)
	value += gp0;
      overflowed_p = mips_elf_overflow_p (value, 16);
      break;

    case R_MIPS_GOT16:
    case R_MIPS_CALL16:
      if (local_p)
	{
	  bfd_boolean forced;

	  /* The special case is when the symbol is forced to be local.  We
	     need the full address in the GOT since no R_MIPS_LO16 relocation
	     follows.  */
	  forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
						  local_sections, FALSE);
	  value = mips_elf_got16_entry (abfd, input_bfd, info,
					symbol + addend, forced);
	  if (value == MINUS_ONE)
	    return bfd_reloc_outofrange;
	  value
	    = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
					      abfd, input_bfd, value);
	  overflowed_p = mips_elf_overflow_p (value, 16);
	  break;
	}

      /* Fall through.  */

    case R_MIPS_GOT_DISP:
    got_disp:
      value = g;
      overflowed_p = mips_elf_overflow_p (value, 16);
      break;

    case R_MIPS_GPREL32:
      value = (addend + symbol + gp0 - gp);
      if (!save_addend)
	value &= howto->dst_mask;
      break;

    case R_MIPS_PC16:
      value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
      overflowed_p = mips_elf_overflow_p (value, 16);
      break;

    case R_MIPS_GOT_HI16:
    case R_MIPS_CALL_HI16:
      /* We're allowed to handle these two relocations identically.
	 The dynamic linker is allowed to handle the CALL relocations
	 differently by creating a lazy evaluation stub.  */
      value = g;
      value = mips_elf_high (value);
      value &= howto->dst_mask;
      break;

    case R_MIPS_GOT_LO16:
    case R_MIPS_CALL_LO16:
      value = g & howto->dst_mask;
      break;

    case R_MIPS_GOT_PAGE:
      /* GOT_PAGE relocations that reference non-local symbols decay
	 to GOT_DISP.  The corresponding GOT_OFST relocation decays to
	 0.  */
      if (! local_p)
	goto got_disp;
      value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
      if (value == MINUS_ONE)
	return bfd_reloc_outofrange;
      value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
					      abfd, input_bfd, value);
      overflowed_p = mips_elf_overflow_p (value, 16);
      break;

    case R_MIPS_GOT_OFST:
      if (local_p)
	mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
      else
	value = addend;
      overflowed_p = mips_elf_overflow_p (value, 16);
      break;

    case R_MIPS_SUB:
      value = symbol - addend;
      value &= howto->dst_mask;
      break;

    case R_MIPS_HIGHER:
      value = mips_elf_higher (addend + symbol);
      value &= howto->dst_mask;
      break;

    case R_MIPS_HIGHEST:
      value = mips_elf_highest (addend + symbol);
      value &= howto->dst_mask;
      break;

    case R_MIPS_SCN_DISP:
      value = symbol + addend - sec->output_offset;
      value &= howto->dst_mask;
      break;

    case R_MIPS_PJUMP:
    case R_MIPS_JALR:
      /* Both of these may be ignored.  R_MIPS_JALR is an optimization
	 hint; we could improve performance by honoring that hint.  */
      return bfd_reloc_continue;

    case R_MIPS_GNU_VTINHERIT:
    case R_MIPS_GNU_VTENTRY:
      /* We don't do anything with these at present.  */
      return bfd_reloc_continue;

    default:
      /* An unrecognized relocation type.  */
      return bfd_reloc_notsupported;
    }

  /* Store the VALUE for our caller.  */
  *valuep = value;
  return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
}

/* Obtain the field relocated by RELOCATION.  */

static bfd_vma
mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
     reloc_howto_type *howto;
     const Elf_Internal_Rela *relocation;
     bfd *input_bfd;
     bfd_byte *contents;
{
  bfd_vma x;
  bfd_byte *location = contents + relocation->r_offset;

  /* Obtain the bytes.  */
  x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);

  if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
       || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
      && bfd_little_endian (input_bfd))
    /* The two 16-bit words will be reversed on a little-endian system.
       See mips_elf_perform_relocation for more details.  */
    x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));

  return x;
}

/* It has been determined that the result of the RELOCATION is the
   VALUE.  Use HOWTO to place VALUE into the output file at the
   appropriate position.  The SECTION is the section to which the
   relocation applies.  If REQUIRE_JALX is TRUE, then the opcode used
   for the relocation must be either JAL or JALX, and it is
   unconditionally converted to JALX.

   Returns FALSE if anything goes wrong.  */

static bfd_boolean
mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
			     input_section, contents, require_jalx)
     struct bfd_link_info *info;
     reloc_howto_type *howto;
     const Elf_Internal_Rela *relocation;
     bfd_vma value;
     bfd *input_bfd;
     asection *input_section;
     bfd_byte *contents;
     bfd_boolean require_jalx;
{
  bfd_vma x;
  bfd_byte *location;
  int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);

  /* Figure out where the relocation is occurring.  */
  location = contents + relocation->r_offset;

  /* Obtain the current value.  */
  x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);

  /* Clear the field we are setting.  */
  x &= ~howto->dst_mask;

  /* If this is the R_MIPS16_26 relocation, we must store the
     value in a funny way.  */
  if (r_type == R_MIPS16_26)
    {
      /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
	 Most mips16 instructions are 16 bits, but these instructions
	 are 32 bits.

	 The format of these instructions is:

	 +--------------+--------------------------------+
	 !     JALX     ! X!   Imm 20:16  !   Imm 25:21  !
	 +--------------+--------------------------------+
	 !	  	  Immediate  15:0		    !
	 +-----------------------------------------------+

	 JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
	 Note that the immediate value in the first word is swapped.

	 When producing a relocateable object file, R_MIPS16_26 is
	 handled mostly like R_MIPS_26.  In particular, the addend is
	 stored as a straight 26-bit value in a 32-bit instruction.
	 (gas makes life simpler for itself by never adjusting a
	 R_MIPS16_26 reloc to be against a section, so the addend is
	 always zero).  However, the 32 bit instruction is stored as 2
	 16-bit values, rather than a single 32-bit value.  In a
	 big-endian file, the result is the same; in a little-endian
	 file, the two 16-bit halves of the 32 bit value are swapped.
	 This is so that a disassembler can recognize the jal
	 instruction.

	 When doing a final link, R_MIPS16_26 is treated as a 32 bit
	 instruction stored as two 16-bit values.  The addend A is the
	 contents of the targ26 field.  The calculation is the same as
	 R_MIPS_26.  When storing the calculated value, reorder the
	 immediate value as shown above, and don't forget to store the
	 value as two 16-bit values.

	 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
	 defined as

	 big-endian:
	 +--------+----------------------+
	 |        |                      |
	 |        |    targ26-16         |
	 |31    26|25                   0|
	 +--------+----------------------+

	 little-endian:
	 +----------+------+-------------+
	 |          |      |             |
	 |  sub1    |      |     sub2    |
	 |0        9|10  15|16         31|
	 +----------+--------------------+
	 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
	 ((sub1 << 16) | sub2)).

	 When producing a relocateable object file, the calculation is
	 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
	 When producing a fully linked file, the calculation is
	 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
	 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)  */

      if (!info->relocateable)
	/* Shuffle the bits according to the formula above.  */
	value = (((value & 0x1f0000) << 5)
		 | ((value & 0x3e00000) >> 5)
		 | (value & 0xffff));
    }
  else if (r_type == R_MIPS16_GPREL)
    {
      /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
	 mode.  A typical instruction will have a format like this:

	 +--------------+--------------------------------+
	 !    EXTEND    !     Imm 10:5    !   Imm 15:11  !
	 +--------------+--------------------------------+
	 !    Major     !   rx   !   ry   !   Imm  4:0   !
	 +--------------+--------------------------------+

	 EXTEND is the five bit value 11110.  Major is the instruction
	 opcode.

	 This is handled exactly like R_MIPS_GPREL16, except that the
	 addend is retrieved and stored as shown in this diagram; that
	 is, the Imm fields above replace the V-rel16 field.

         All we need to do here is shuffle the bits appropriately.  As
	 above, the two 16-bit halves must be swapped on a
	 little-endian system.  */
      value = (((value & 0x7e0) << 16)
	       | ((value & 0xf800) << 5)
	       | (value & 0x1f));
    }

  /* Set the field.  */
  x |= (value & howto->dst_mask);

  /* If required, turn JAL into JALX.  */
  if (require_jalx)
    {
      bfd_boolean ok;
      bfd_vma opcode = x >> 26;
      bfd_vma jalx_opcode;

      /* Check to see if the opcode is already JAL or JALX.  */
      if (r_type == R_MIPS16_26)
	{
	  ok = ((opcode == 0x6) || (opcode == 0x7));
	  jalx_opcode = 0x7;
	}
      else
	{
	  ok = ((opcode == 0x3) || (opcode == 0x1d));
	  jalx_opcode = 0x1d;
	}

      /* If the opcode is not JAL or JALX, there's a problem.  */
      if (!ok)
	{
	  (*_bfd_error_handler)
	    (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
	     bfd_archive_filename (input_bfd),
	     input_section->name,
	     (unsigned long) relocation->r_offset);
	  bfd_set_error (bfd_error_bad_value);
	  return FALSE;
	}

      /* Make this the JALX opcode.  */
      x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
    }

  /* Swap the high- and low-order 16 bits on little-endian systems
     when doing a MIPS16 relocation.  */
  if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
      && bfd_little_endian (input_bfd))
    x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));

  /* Put the value into the output.  */
  bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
  return TRUE;
}

/* Returns TRUE if SECTION is a MIPS16 stub section.  */

static bfd_boolean
mips_elf_stub_section_p (abfd, section)
     bfd *abfd ATTRIBUTE_UNUSED;
     asection *section;
{
  const char *name = bfd_get_section_name (abfd, section);

  return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
	  || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
	  || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
}

/* Add room for N relocations to the .rel.dyn section in ABFD.  */

static void
mips_elf_allocate_dynamic_relocations (abfd, n)
     bfd *abfd;
     unsigned int n;
{
  asection *s;

  s = mips_elf_rel_dyn_section (abfd, FALSE);
  BFD_ASSERT (s != NULL);

  if (s->_raw_size == 0)
    {
      /* Make room for a null element.  */
      s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
      ++s->reloc_count;
    }
  s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
}

/* Create a rel.dyn relocation for the dynamic linker to resolve.  REL
   is the original relocation, which is now being transformed into a
   dynamic relocation.  The ADDENDP is adjusted if necessary; the
   caller should store the result in place of the original addend.  */

static bfd_boolean
mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
				    symbol, addendp, input_section)
     bfd *output_bfd;
     struct bfd_link_info *info;
     const Elf_Internal_Rela *rel;
     struct mips_elf_link_hash_entry *h;
     asection *sec;
     bfd_vma symbol;
     bfd_vma *addendp;
     asection *input_section;
{
  Elf_Internal_Rela outrel[3];
  bfd_boolean skip;
  asection *sreloc;
  bfd *dynobj;
  int r_type;

  r_type = ELF_R_TYPE (output_bfd, rel->r_info);
  dynobj = elf_hash_table (info)->dynobj;
  sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
  BFD_ASSERT (sreloc != NULL);
  BFD_ASSERT (sreloc->contents != NULL);
  BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
	      < sreloc->_raw_size);

  skip = FALSE;
  outrel[0].r_offset =
    _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
  outrel[1].r_offset =
    _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
  outrel[2].r_offset =
    _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);

#if 0
  /* We begin by assuming that the offset for the dynamic relocation
     is the same as for the original relocation.  We'll adjust this
     later to reflect the correct output offsets.  */
  if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
    {
      outrel[1].r_offset = rel[1].r_offset;
      outrel[2].r_offset = rel[2].r_offset;
    }
  else
    {
      /* Except that in a stab section things are more complex.
	 Because we compress stab information, the offset given in the
	 relocation may not be the one we want; we must let the stabs
	 machinery tell us the offset.  */
      outrel[1].r_offset = outrel[0].r_offset;
      outrel[2].r_offset = outrel[0].r_offset;
      /* If we didn't need the relocation at all, this value will be
	 -1.  */
      if (outrel[0].r_offset == (bfd_vma) -1)
	skip = TRUE;
    }
#endif

  if (outrel[0].r_offset == (bfd_vma) -1
      || outrel[0].r_offset == (bfd_vma) -2)
    skip = TRUE;

  /* If we've decided to skip this relocation, just output an empty
     record.  Note that R_MIPS_NONE == 0, so that this call to memset
     is a way of setting R_TYPE to R_MIPS_NONE.  */
  if (skip)
    memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
  else
    {
      long indx;

      /* We must now calculate the dynamic symbol table index to use
	 in the relocation.  */
      if (h != NULL
	  && (! info->symbolic || (h->root.elf_link_hash_flags
				   & ELF_LINK_HASH_DEF_REGULAR) == 0))
	{
	  indx = h->root.dynindx;
	  /* h->root.dynindx may be -1 if this symbol was marked to
	     become local.  */
	  if (indx == -1)
	    indx = 0;
	}
      else
	{
	  if (sec != NULL && bfd_is_abs_section (sec))
	    indx = 0;
	  else if (sec == NULL || sec->owner == NULL)
	    {
	      bfd_set_error (bfd_error_bad_value);
	      return FALSE;
	    }
	  else
	    {
	      indx = elf_section_data (sec->output_section)->dynindx;
	      if (indx == 0)
		abort ();
	    }

	  /* Instead of generating a relocation using the section
	     symbol, we may as well make it a fully relative
	     relocation.  We want to avoid generating relocations to
	     local symbols because we used to generate them
	     incorrectly, without adding the original symbol value,
	     which is mandated by the ABI for section symbols.  In
	     order to give dynamic loaders and applications time to
	     phase out the incorrect use, we refrain from emitting
	     section-relative relocations.  It's not like they're
	     useful, after all.  This should be a bit more efficient
	     as well.  */
	  indx = 0;
	}

      /* If the relocation was previously an absolute relocation and
	 this symbol will not be referred to by the relocation, we must
	 adjust it by the value we give it in the dynamic symbol table.
	 Otherwise leave the job up to the dynamic linker.  */
      if (!indx && r_type != R_MIPS_REL32)
	*addendp += symbol;

      /* The relocation is always an REL32 relocation because we don't
	 know where the shared library will wind up at load-time.  */
      outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
				     R_MIPS_REL32);
      /* For strict adherence to the ABI specification, we should
	 generate a R_MIPS_64 relocation record by itself before the
	 _REL32/_64 record as well, such that the addend is read in as
	 a 64-bit value (REL32 is a 32-bit relocation, after all).
	 However, since none of the existing ELF64 MIPS dynamic
	 loaders seems to care, we don't waste space with these
	 artificial relocations.  If this turns out to not be true,
	 mips_elf_allocate_dynamic_relocation() should be tweaked so
	 as to make room for a pair of dynamic relocations per
	 invocation if ABI_64_P, and here we should generate an
	 additional relocation record with R_MIPS_64 by itself for a
	 NULL symbol before this relocation record.  */
      outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
				     ABI_64_P (output_bfd)
				     ? R_MIPS_64
				     : R_MIPS_NONE);
      outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
				     R_MIPS_NONE);

      /* Adjust the output offset of the relocation to reference the
	 correct location in the output file.  */
      outrel[0].r_offset += (input_section->output_section->vma
			     + input_section->output_offset);
      outrel[1].r_offset += (input_section->output_section->vma
			     + input_section->output_offset);
      outrel[2].r_offset += (input_section->output_section->vma
			     + input_section->output_offset);
    }

  /* Put the relocation back out.  We have to use the special
     relocation outputter in the 64-bit case since the 64-bit
     relocation format is non-standard.  */
  if (ABI_64_P (output_bfd))
    {
      (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
	(output_bfd, &outrel[0],
	 (sreloc->contents
	  + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
    }
  else
    bfd_elf32_swap_reloc_out
      (output_bfd, &outrel[0],
       (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));

  /* Record the index of the first relocation referencing H.  This
     information is later emitted in the .msym section.  */
  if (h != NULL
      && (h->min_dyn_reloc_index == 0
	  || sreloc->reloc_count < h->min_dyn_reloc_index))
    h->min_dyn_reloc_index = sreloc->reloc_count;

  /* We've now added another relocation.  */
  ++sreloc->reloc_count;

  /* Make sure the output section is writable.  The dynamic linker
     will be writing to it.  */
  elf_section_data (input_section->output_section)->this_hdr.sh_flags
    |= SHF_WRITE;

  /* On IRIX5, make an entry of compact relocation info.  */
  if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
    {
      asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
      bfd_byte *cr;

      if (scpt)
	{
	  Elf32_crinfo cptrel;

	  mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
	  cptrel.vaddr = (rel->r_offset
			  + input_section->output_section->vma
			  + input_section->output_offset);
	  if (r_type == R_MIPS_REL32)
	    mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
	  else
	    mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
	  mips_elf_set_cr_dist2to (cptrel, 0);
	  cptrel.konst = *addendp;

	  cr = (scpt->contents
		+ sizeof (Elf32_External_compact_rel));
	  bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
				     ((Elf32_External_crinfo *) cr
				      + scpt->reloc_count));
	  ++scpt->reloc_count;
	}
    }

  return TRUE;
}

/* Return the MACH for a MIPS e_flags value.  */

unsigned long
_bfd_elf_mips_mach (flags)
     flagword flags;
{
  switch (flags & EF_MIPS_MACH)
    {
    case E_MIPS_MACH_3900:
      return bfd_mach_mips3900;

    case E_MIPS_MACH_4010:
      return bfd_mach_mips4010;

    case E_MIPS_MACH_4100:
      return bfd_mach_mips4100;

    case E_MIPS_MACH_4111:
      return bfd_mach_mips4111;

    case E_MIPS_MACH_4120:
      return bfd_mach_mips4120;

    case E_MIPS_MACH_4650:
      return bfd_mach_mips4650;

    case E_MIPS_MACH_5400:
      return bfd_mach_mips5400;

    case E_MIPS_MACH_5500:
      return bfd_mach_mips5500;

    case E_MIPS_MACH_SB1:
      return bfd_mach_mips_sb1;

    default:
      switch (flags & EF_MIPS_ARCH)
	{
	default:
	case E_MIPS_ARCH_1:
	  return bfd_mach_mips3000;
	  break;

	case E_MIPS_ARCH_2:
	  return bfd_mach_mips6000;
	  break;

	case E_MIPS_ARCH_3:
	  return bfd_mach_mips4000;
	  break;

	case E_MIPS_ARCH_4:
	  return bfd_mach_mips8000;
	  break;

	case E_MIPS_ARCH_5:
	  return bfd_mach_mips5;
	  break;

	case E_MIPS_ARCH_32:
	  return bfd_mach_mipsisa32;
	  break;

	case E_MIPS_ARCH_64:
	  return bfd_mach_mipsisa64;
	  break;

	case E_MIPS_ARCH_32R2:
	  return bfd_mach_mipsisa32r2;
	  break;
	}
    }

  return 0;
}

/* Return printable name for ABI.  */

static INLINE char *
elf_mips_abi_name (abfd)
     bfd *abfd;
{
  flagword flags;

  flags = elf_elfheader (abfd)->e_flags;
  switch (flags & EF_MIPS_ABI)
    {
    case 0:
      if (ABI_N32_P (abfd))
	return "N32";
      else if (ABI_64_P (abfd))
	return "64";
      else
	return "none";
    case E_MIPS_ABI_O32:
      return "O32";
    case E_MIPS_ABI_O64:
      return "O64";
    case E_MIPS_ABI_EABI32:
      return "EABI32";
    case E_MIPS_ABI_EABI64:
      return "EABI64";
    default:
      return "unknown abi";
    }
}

/* MIPS ELF uses two common sections.  One is the usual one, and the
   other is for small objects.  All the small objects are kept
   together, and then referenced via the gp pointer, which yields
   faster assembler code.  This is what we use for the small common
   section.  This approach is copied from ecoff.c.  */
static asection mips_elf_scom_section;
static asymbol mips_elf_scom_symbol;
static asymbol *mips_elf_scom_symbol_ptr;

/* MIPS ELF also uses an acommon section, which represents an
   allocated common symbol which may be overridden by a
   definition in a shared library.  */
static asection mips_elf_acom_section;
static asymbol mips_elf_acom_symbol;
static asymbol *mips_elf_acom_symbol_ptr;

/* Handle the special MIPS section numbers that a symbol may use.
   This is used for both the 32-bit and the 64-bit ABI.  */

void
_bfd_mips_elf_symbol_processing (abfd, asym)
     bfd *abfd;
     asymbol *asym;
{
  elf_symbol_type *elfsym;

  elfsym = (elf_symbol_type *) asym;
  switch (elfsym->internal_elf_sym.st_shndx)
    {
    case SHN_MIPS_ACOMMON:
      /* This section is used in a dynamically linked executable file.
	 It is an allocated common section.  The dynamic linker can
	 either resolve these symbols to something in a shared
	 library, or it can just leave them here.  For our purposes,
	 we can consider these symbols to be in a new section.  */
      if (mips_elf_acom_section.name == NULL)
	{
	  /* Initialize the acommon section.  */
	  mips_elf_acom_section.name = ".acommon";
	  mips_elf_acom_section.flags = SEC_ALLOC;
	  mips_elf_acom_section.output_section = &mips_elf_acom_section;
	  mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
	  mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
	  mips_elf_acom_symbol.name = ".acommon";
	  mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
	  mips_elf_acom_symbol.section = &mips_elf_acom_section;
	  mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
	}
      asym->section = &mips_elf_acom_section;
      break;

    case SHN_COMMON:
      /* Common symbols less than the GP size are automatically
	 treated as SHN_MIPS_SCOMMON symbols on IRIX5.  */
      if (asym->value > elf_gp_size (abfd)
	  || IRIX_COMPAT (abfd) == ict_irix6)
	break;
      /* Fall through.  */
    case SHN_MIPS_SCOMMON:
      if (mips_elf_scom_section.name == NULL)
	{
	  /* Initialize the small common section.  */
	  mips_elf_scom_section.name = ".scommon";
	  mips_elf_scom_section.flags = SEC_IS_COMMON;
	  mips_elf_scom_section.output_section = &mips_elf_scom_section;
	  mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
	  mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
	  mips_elf_scom_symbol.name = ".scommon";
	  mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
	  mips_elf_scom_symbol.section = &mips_elf_scom_section;
	  mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
	}
      asym->section = &mips_elf_scom_section;
      asym->value = elfsym->internal_elf_sym.st_size;
      break;

    case SHN_MIPS_SUNDEFINED:
      asym->section = bfd_und_section_ptr;
      break;

#if 0 /* for SGI_COMPAT */
    case SHN_MIPS_TEXT:
      asym->section = mips_elf_text_section_ptr;
      break;

    case SHN_MIPS_DATA:
      asym->section = mips_elf_data_section_ptr;
      break;
#endif
    }
}

/* Work over a section just before writing it out.  This routine is
   used by both the 32-bit and the 64-bit ABI.  FIXME: We recognize
   sections that need the SHF_MIPS_GPREL flag by name; there has to be
   a better way.  */

bfd_boolean
_bfd_mips_elf_section_processing (abfd, hdr)
     bfd *abfd;
     Elf_Internal_Shdr *hdr;
{
  if (hdr->sh_type == SHT_MIPS_REGINFO
      && hdr->sh_size > 0)
    {
      bfd_byte buf[4];

      BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
      BFD_ASSERT (hdr->contents == NULL);

      if (bfd_seek (abfd,
		    hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
		    SEEK_SET) != 0)
	return FALSE;
      H_PUT_32 (abfd, elf_gp (abfd), buf);
      if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
	return FALSE;
    }

  if (hdr->sh_type == SHT_MIPS_OPTIONS
      && hdr->bfd_section != NULL
      && mips_elf_section_data (hdr->bfd_section) != NULL
      && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
    {
      bfd_byte *contents, *l, *lend;

      /* We stored the section contents in the tdata field in the
	 set_section_contents routine.  We save the section contents
	 so that we don't have to read them again.
	 At this point we know that elf_gp is set, so we can look
	 through the section contents to see if there is an
	 ODK_REGINFO structure.  */

      contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
      l = contents;
      lend = contents + hdr->sh_size;
      while (l + sizeof (Elf_External_Options) <= lend)
	{
	  Elf_Internal_Options intopt;

	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
					&intopt);
	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
	    {
	      bfd_byte buf[8];

	      if (bfd_seek (abfd,
			    (hdr->sh_offset
			     + (l - contents)
			     + sizeof (Elf_External_Options)
			     + (sizeof (Elf64_External_RegInfo) - 8)),
			     SEEK_SET) != 0)
		return FALSE;
	      H_PUT_64 (abfd, elf_gp (abfd), buf);
	      if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
		return FALSE;
	    }
	  else if (intopt.kind == ODK_REGINFO)
	    {
	      bfd_byte buf[4];

	      if (bfd_seek (abfd,
			    (hdr->sh_offset
			     + (l - contents)
			     + sizeof (Elf_External_Options)
			     + (sizeof (Elf32_External_RegInfo) - 4)),
			    SEEK_SET) != 0)
		return FALSE;
	      H_PUT_32 (abfd, elf_gp (abfd), buf);
	      if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
		return FALSE;
	    }
	  l += intopt.size;
	}
    }

  if (hdr->bfd_section != NULL)
    {
      const char *name = bfd_get_section_name (abfd, hdr->bfd_section);

      if (strcmp (name, ".sdata") == 0
	  || strcmp (name, ".lit8") == 0
	  || strcmp (name, ".lit4") == 0)
	{
	  hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
	  hdr->sh_type = SHT_PROGBITS;
	}
      else if (strcmp (name, ".sbss") == 0)
	{
	  hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
	  hdr->sh_type = SHT_NOBITS;
	}
      else if (strcmp (name, ".srdata") == 0)
	{
	  hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
	  hdr->sh_type = SHT_PROGBITS;
	}
      else if (strcmp (name, ".compact_rel") == 0)
	{
	  hdr->sh_flags = 0;
	  hdr->sh_type = SHT_PROGBITS;
	}
      else if (strcmp (name, ".rtproc") == 0)
	{
	  if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
	    {
	      unsigned int adjust;

	      adjust = hdr->sh_size % hdr->sh_addralign;
	      if (adjust != 0)
		hdr->sh_size += hdr->sh_addralign - adjust;
	    }
	}
    }

  return TRUE;
}

/* Handle a MIPS specific section when reading an object file.  This
   is called when elfcode.h finds a section with an unknown type.
   This routine supports both the 32-bit and 64-bit ELF ABI.

   FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
   how to.  */

bfd_boolean
_bfd_mips_elf_section_from_shdr (abfd, hdr, name)
     bfd *abfd;
     Elf_Internal_Shdr *hdr;
     const char *name;
{
  flagword flags = 0;

  /* There ought to be a place to keep ELF backend specific flags, but
     at the moment there isn't one.  We just keep track of the
     sections by their name, instead.  Fortunately, the ABI gives
     suggested names for all the MIPS specific sections, so we will
     probably get away with this.  */
  switch (hdr->sh_type)
    {
    case SHT_MIPS_LIBLIST:
      if (strcmp (name, ".liblist") != 0)
	return FALSE;
      break;
    case SHT_MIPS_MSYM:
      if (strcmp (name, ".msym") != 0)
	return FALSE;
      break;
    case SHT_MIPS_CONFLICT:
      if (strcmp (name, ".conflict") != 0)
	return FALSE;
      break;
    case SHT_MIPS_GPTAB:
      if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
	return FALSE;
      break;
    case SHT_MIPS_UCODE:
      if (strcmp (name, ".ucode") != 0)
	return FALSE;
      break;
    case SHT_MIPS_DEBUG:
      if (strcmp (name, ".mdebug") != 0)
	return FALSE;
      flags = SEC_DEBUGGING;
      break;
    case SHT_MIPS_REGINFO:
      if (strcmp (name, ".reginfo") != 0
	  || hdr->sh_size != sizeof (Elf32_External_RegInfo))
	return FALSE;
      flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
      break;
    case SHT_MIPS_IFACE:
      if (strcmp (name, ".MIPS.interfaces") != 0)
	return FALSE;
      break;
    case SHT_MIPS_CONTENT:
      if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
	return FALSE;
      break;
    case SHT_MIPS_OPTIONS:
      if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
	return FALSE;
      break;
    case SHT_MIPS_DWARF:
      if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
	return FALSE;
      break;
    case SHT_MIPS_SYMBOL_LIB:
      if (strcmp (name, ".MIPS.symlib") != 0)
	return FALSE;
      break;
    case SHT_MIPS_EVENTS:
      if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
	  && strncmp (name, ".MIPS.post_rel",
		      sizeof ".MIPS.post_rel" - 1) != 0)
	return FALSE;
      break;
    default:
      return FALSE;
    }

  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
    return FALSE;

  if (flags)
    {
      if (! bfd_set_section_flags (abfd, hdr->bfd_section,
				   (bfd_get_section_flags (abfd,
							   hdr->bfd_section)
				    | flags)))
	return FALSE;
    }

  /* FIXME: We should record sh_info for a .gptab section.  */

  /* For a .reginfo section, set the gp value in the tdata information
     from the contents of this section.  We need the gp value while
     processing relocs, so we just get it now.  The .reginfo section
     is not used in the 64-bit MIPS ELF ABI.  */
  if (hdr->sh_type == SHT_MIPS_REGINFO)
    {
      Elf32_External_RegInfo ext;
      Elf32_RegInfo s;

      if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
				      (file_ptr) 0,
				      (bfd_size_type) sizeof ext))
	return FALSE;
      bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
      elf_gp (abfd) = s.ri_gp_value;
    }

  /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
     set the gp value based on what we find.  We may see both
     SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
     they should agree.  */
  if (hdr->sh_type == SHT_MIPS_OPTIONS)
    {
      bfd_byte *contents, *l, *lend;

      contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
      if (contents == NULL)
	return FALSE;
      if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
				      (file_ptr) 0, hdr->sh_size))
	{
	  free (contents);
	  return FALSE;
	}
      l = contents;
      lend = contents + hdr->sh_size;
      while (l + sizeof (Elf_External_Options) <= lend)
	{
	  Elf_Internal_Options intopt;

	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
					&intopt);
	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
	    {
	      Elf64_Internal_RegInfo intreg;

	      bfd_mips_elf64_swap_reginfo_in
		(abfd,
		 ((Elf64_External_RegInfo *)
		  (l + sizeof (Elf_External_Options))),
		 &intreg);
	      elf_gp (abfd) = intreg.ri_gp_value;
	    }
	  else if (intopt.kind == ODK_REGINFO)
	    {
	      Elf32_RegInfo intreg;

	      bfd_mips_elf32_swap_reginfo_in
		(abfd,
		 ((Elf32_External_RegInfo *)
		  (l + sizeof (Elf_External_Options))),
		 &intreg);
	      elf_gp (abfd) = intreg.ri_gp_value;
	    }
	  l += intopt.size;
	}
      free (contents);
    }

  return TRUE;
}

/* Set the correct type for a MIPS ELF section.  We do this by the
   section name, which is a hack, but ought to work.  This routine is
   used by both the 32-bit and the 64-bit ABI.  */

bfd_boolean
_bfd_mips_elf_fake_sections (abfd, hdr, sec)
     bfd *abfd;
     Elf_Internal_Shdr *hdr;
     asection *sec;
{
  register const char *name;

  name = bfd_get_section_name (abfd, sec);

  if (strcmp (name, ".liblist") == 0)
    {
      hdr->sh_type = SHT_MIPS_LIBLIST;
      hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
      /* The sh_link field is set in final_write_processing.  */
    }
  else if (strcmp (name, ".conflict") == 0)
    hdr->sh_type = SHT_MIPS_CONFLICT;
  else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
    {
      hdr->sh_type = SHT_MIPS_GPTAB;
      hdr->sh_entsize = sizeof (Elf32_External_gptab);
      /* The sh_info field is set in final_write_processing.  */
    }
  else if (strcmp (name, ".ucode") == 0)
    hdr->sh_type = SHT_MIPS_UCODE;
  else if (strcmp (name, ".mdebug") == 0)
    {
      hdr->sh_type = SHT_MIPS_DEBUG;
      /* In a shared object on IRIX 5.3, the .mdebug section has an
         entsize of 0.  FIXME: Does this matter?  */
      if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
	hdr->sh_entsize = 0;
      else
	hdr->sh_entsize = 1;
    }
  else if (strcmp (name, ".reginfo") == 0)
    {
      hdr->sh_type = SHT_MIPS_REGINFO;
      /* In a shared object on IRIX 5.3, the .reginfo section has an
         entsize of 0x18.  FIXME: Does this matter?  */
      if (SGI_COMPAT (abfd))
	{
	  if ((abfd->flags & DYNAMIC) != 0)
	    hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
	  else
	    hdr->sh_entsize = 1;
	}
      else
	hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
    }
  else if (SGI_COMPAT (abfd)
	   && (strcmp (name, ".hash") == 0
	       || strcmp (name, ".dynamic") == 0
	       || strcmp (name, ".dynstr") == 0))
    {
      if (SGI_COMPAT (abfd))
	hdr->sh_entsize = 0;
#if 0
      /* This isn't how the IRIX6 linker behaves.  */
      hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
#endif
    }
  else if (strcmp (name, ".got") == 0
	   || strcmp (name, ".srdata") == 0
	   || strcmp (name, ".sdata") == 0
	   || strcmp (name, ".sbss") == 0
	   || strcmp (name, ".lit4") == 0
	   || strcmp (name, ".lit8") == 0)
    hdr->sh_flags |= SHF_MIPS_GPREL;
  else if (strcmp (name, ".MIPS.interfaces") == 0)
    {
      hdr->sh_type = SHT_MIPS_IFACE;
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
    }
  else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
    {
      hdr->sh_type = SHT_MIPS_CONTENT;
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
      /* The sh_info field is set in final_write_processing.  */
    }
  else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
    {
      hdr->sh_type = SHT_MIPS_OPTIONS;
      hdr->sh_entsize = 1;
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
    }
  else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
    hdr->sh_type = SHT_MIPS_DWARF;
  else if (strcmp (name, ".MIPS.symlib") == 0)
    {
      hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
      /* The sh_link and sh_info fields are set in
         final_write_processing.  */
    }
  else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
	   || strncmp (name, ".MIPS.post_rel",
		       sizeof ".MIPS.post_rel" - 1) == 0)
    {
      hdr->sh_type = SHT_MIPS_EVENTS;
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
      /* The sh_link field is set in final_write_processing.  */
    }
  else if (strcmp (name, ".msym") == 0)
    {
      hdr->sh_type = SHT_MIPS_MSYM;
      hdr->sh_flags |= SHF_ALLOC;
      hdr->sh_entsize = 8;
    }

  /* The generic elf_fake_sections will set up REL_HDR using the
     default kind of relocations.  But, we may actually need both
     kinds of relocations, so we set up the second header here.

     This is not necessary for the O32 ABI since that only uses Elf32_Rel
     relocations (cf. System V ABI, MIPS RISC Processor Supplement,
     3rd Edition, p. 4-17).  It breaks the IRIX 5/6 32-bit ld, since one
     of the resulting empty .rela.<section> sections starts with
     sh_offset == object size, and ld doesn't allow that.  While the check
     is arguably bogus for empty or SHT_NOBITS sections, it can easily be
     avoided by not emitting those useless sections in the first place.  */
  if (! SGI_COMPAT (abfd) && ! NEWABI_P(abfd)
      && (sec->flags & SEC_RELOC) != 0)
    {
      struct bfd_elf_section_data *esd;
      bfd_size_type amt = sizeof (Elf_Internal_Shdr);

      esd = elf_section_data (sec);
      BFD_ASSERT (esd->rel_hdr2 == NULL);
      esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
      if (!esd->rel_hdr2)
	return FALSE;
      _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec, !sec->use_rela_p);
    }

  return TRUE;
}

/* Given a BFD section, try to locate the corresponding ELF section
   index.  This is used by both the 32-bit and the 64-bit ABI.
   Actually, it's not clear to me that the 64-bit ABI supports these,
   but for non-PIC objects we will certainly want support for at least
   the .scommon section.  */

bfd_boolean
_bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
     bfd *abfd ATTRIBUTE_UNUSED;
     asection *sec;
     int *retval;
{
  if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
    {
      *retval = SHN_MIPS_SCOMMON;
      return TRUE;
    }
  if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
    {
      *retval = SHN_MIPS_ACOMMON;
      return TRUE;
    }
  return FALSE;
}

/* Hook called by the linker routine which adds symbols from an object
   file.  We must handle the special MIPS section numbers here.  */

bfd_boolean
_bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
     bfd *abfd;
     struct bfd_link_info *info;
     const Elf_Internal_Sym *sym;
     const char **namep;
     flagword *flagsp ATTRIBUTE_UNUSED;
     asection **secp;
     bfd_vma *valp;
{
  if (SGI_COMPAT (abfd)
      && (abfd->flags & DYNAMIC) != 0
      && strcmp (*namep, "_rld_new_interface") == 0)
    {
      /* Skip IRIX5 rld entry name.  */
      *namep = NULL;
      return TRUE;
    }

  switch (sym->st_shndx)
    {
    case SHN_COMMON:
      /* Common symbols less than the GP size are automatically
	 treated as SHN_MIPS_SCOMMON symbols.  */
      if (sym->st_size > elf_gp_size (abfd)
	  || IRIX_COMPAT (abfd) == ict_irix6)
	break;
      /* Fall through.  */
    case SHN_MIPS_SCOMMON:
      *secp = bfd_make_section_old_way (abfd, ".scommon");
      (*secp)->flags |= SEC_IS_COMMON;
      *valp = sym->st_size;
      break;

    case SHN_MIPS_TEXT:
      /* This section is used in a shared object.  */
      if (elf_tdata (abfd)->elf_text_section == NULL)
	{
	  asymbol *elf_text_symbol;
	  asection *elf_text_section;
	  bfd_size_type amt = sizeof (asection);

	  elf_text_section = bfd_zalloc (abfd, amt);
	  if (elf_text_section == NULL)
	    return FALSE;

	  amt = sizeof (asymbol);
	  elf_text_symbol = bfd_zalloc (abfd, amt);
	  if (elf_text_symbol == NULL)
	    return FALSE;

	  /* Initialize the section.  */

	  elf_tdata (abfd)->elf_text_section = elf_text_section;
	  elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;

	  elf_text_section->symbol = elf_text_symbol;
	  elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;

	  elf_text_section->name = ".text";
	  elf_text_section->flags = SEC_NO_FLAGS;
	  elf_text_section->output_section = NULL;
	  elf_text_section->owner = abfd;
	  elf_text_symbol->name = ".text";
	  elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
	  elf_text_symbol->section = elf_text_section;
	}
      /* This code used to do *secp = bfd_und_section_ptr if
         info->shared.  I don't know why, and that doesn't make sense,
         so I took it out.  */
      *secp = elf_tdata (abfd)->elf_text_section;
      break;

    case SHN_MIPS_ACOMMON:
      /* Fall through. XXX Can we treat this as allocated data?  */
    case SHN_MIPS_DATA:
      /* This section is used in a shared object.  */
      if (elf_tdata (abfd)->elf_data_section == NULL)
	{
	  asymbol *elf_data_symbol;
	  asection *elf_data_section;
	  bfd_size_type amt = sizeof (asection);

	  elf_data_section = bfd_zalloc (abfd, amt);
	  if (elf_data_section == NULL)
	    return FALSE;

	  amt = sizeof (asymbol);
	  elf_data_symbol = bfd_zalloc (abfd, amt);
	  if (elf_data_symbol == NULL)
	    return FALSE;

	  /* Initialize the section.  */

	  elf_tdata (abfd)->elf_data_section = elf_data_section;
	  elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;

	  elf_data_section->symbol = elf_data_symbol;
	  elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;

	  elf_data_section->name = ".data";
	  elf_data_section->flags = SEC_NO_FLAGS;
	  elf_data_section->output_section = NULL;
	  elf_data_section->owner = abfd;
	  elf_data_symbol->name = ".data";
	  elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
	  elf_data_symbol->section = elf_data_section;
	}
      /* This code used to do *secp = bfd_und_section_ptr if
         info->shared.  I don't know why, and that doesn't make sense,
         so I took it out.  */
      *secp = elf_tdata (abfd)->elf_data_section;
      break;

    case SHN_MIPS_SUNDEFINED:
      *secp = bfd_und_section_ptr;
      break;
    }

  if (SGI_COMPAT (abfd)
      && ! info->shared
      && info->hash->creator == abfd->xvec
      && strcmp (*namep, "__rld_obj_head") == 0)
    {
      struct elf_link_hash_entry *h;
      struct bfd_link_hash_entry *bh;

      /* Mark __rld_obj_head as dynamic.  */
      bh = NULL;
      if (! (_bfd_generic_link_add_one_symbol
	     (info, abfd, *namep, BSF_GLOBAL, *secp,
	      (bfd_vma) *valp, (const char *) NULL, FALSE,
	      get_elf_backend_data (abfd)->collect, &bh)))
	return FALSE;

      h = (struct elf_link_hash_entry *) bh;
      h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
      h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
      h->type = STT_OBJECT;

      if (! bfd_elf32_link_record_dynamic_symbol (info, h))
	return FALSE;

      mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
    }

  /* If this is a mips16 text symbol, add 1 to the value to make it
     odd.  This will cause something like .word SYM to come up with
     the right value when it is loaded into the PC.  */
  if (sym->st_other == STO_MIPS16)
    ++*valp;

  return TRUE;
}

/* This hook function is called before the linker writes out a global
   symbol.  We mark symbols as small common if appropriate.  This is
   also where we undo the increment of the value for a mips16 symbol.  */

bfd_boolean
_bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
     bfd *abfd ATTRIBUTE_UNUSED;
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
     const char *name ATTRIBUTE_UNUSED;
     Elf_Internal_Sym *sym;
     asection *input_sec;
{
  /* If we see a common symbol, which implies a relocatable link, then
     if a symbol was small common in an input file, mark it as small
     common in the output file.  */
  if (sym->st_shndx == SHN_COMMON
      && strcmp (input_sec->name, ".scommon") == 0)
    sym->st_shndx = SHN_MIPS_SCOMMON;

  if (sym->st_other == STO_MIPS16
      && (sym->st_value & 1) != 0)
    --sym->st_value;

  return TRUE;
}

/* Functions for the dynamic linker.  */

/* Create dynamic sections when linking against a dynamic object.  */

bfd_boolean
_bfd_mips_elf_create_dynamic_sections (abfd, info)
     bfd *abfd;
     struct bfd_link_info *info;
{
  struct elf_link_hash_entry *h;
  struct bfd_link_hash_entry *bh;
  flagword flags;
  register asection *s;
  const char * const *namep;

  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
	   | SEC_LINKER_CREATED | SEC_READONLY);

  /* Mips ABI requests the .dynamic section to be read only.  */
  s = bfd_get_section_by_name (abfd, ".dynamic");
  if (s != NULL)
    {
      if (! bfd_set_section_flags (abfd, s, flags))
	return FALSE;
    }

  /* We need to create .got section.  */
  if (! mips_elf_create_got_section (abfd, info, FALSE))
    return FALSE;

  if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
    return FALSE;

  /* Create the .msym section on IRIX6.  It is used by the dynamic
     linker to speed up dynamic relocations, and to avoid computing
     the ELF hash for symbols.  */
  if (IRIX_COMPAT (abfd) == ict_irix6
      && !mips_elf_create_msym_section (abfd))
    return FALSE;

  /* Create .stub section.  */
  if (bfd_get_section_by_name (abfd,
			       MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
    {
      s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
      if (s == NULL
	  || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
	  || ! bfd_set_section_alignment (abfd, s,
					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
	return FALSE;
    }

  if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
      && !info->shared
      && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
    {
      s = bfd_make_section (abfd, ".rld_map");
      if (s == NULL
	  || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
	  || ! bfd_set_section_alignment (abfd, s,
					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
	return FALSE;
    }

  /* On IRIX5, we adjust add some additional symbols and change the
     alignments of several sections.  There is no ABI documentation
     indicating that this is necessary on IRIX6, nor any evidence that
     the linker takes such action.  */
  if (IRIX_COMPAT (abfd) == ict_irix5)
    {
      for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
	{
	  bh = NULL;
	  if (! (_bfd_generic_link_add_one_symbol
		 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
		  (bfd_vma) 0, (const char *) NULL, FALSE,
		  get_elf_backend_data (abfd)->collect, &bh)))
	    return FALSE;

	  h = (struct elf_link_hash_entry *) bh;
	  h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
	  h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
	  h->type = STT_SECTION;

	  if (! bfd_elf32_link_record_dynamic_symbol (info, h))
	    return FALSE;
	}

      /* We need to create a .compact_rel section.  */
      if (SGI_COMPAT (abfd))
	{
	  if (!mips_elf_create_compact_rel_section (abfd, info))
	    return FALSE;
	}

      /* Change alignments of some sections.  */
      s = bfd_get_section_by_name (abfd, ".hash");
      if (s != NULL)
	bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
      s = bfd_get_section_by_name (abfd, ".dynsym");
      if (s != NULL)
	bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
      s = bfd_get_section_by_name (abfd, ".dynstr");
      if (s != NULL)
	bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
      s = bfd_get_section_by_name (abfd, ".reginfo");
      if (s != NULL)
	bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
      s = bfd_get_section_by_name (abfd, ".dynamic");
      if (s != NULL)
	bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
    }

  if (!info->shared)
    {
      const char *name;

      name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
      bh = NULL;
      if (!(_bfd_generic_link_add_one_symbol
	    (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
	     (bfd_vma) 0, (const char *) NULL, FALSE,
	     get_elf_backend_data (abfd)->collect, &bh)))
	return FALSE;

      h = (struct elf_link_hash_entry *) bh;
      h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
      h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
      h->type = STT_SECTION;

      if (! bfd_elf32_link_record_dynamic_symbol (info, h))
	return FALSE;

      if (! mips_elf_hash_table (info)->use_rld_obj_head)
	{
	  /* __rld_map is a four byte word located in the .data section
	     and is filled in by the rtld to contain a pointer to
	     the _r_debug structure. Its symbol value will be set in
	     _bfd_mips_elf_finish_dynamic_symbol.  */
	  s = bfd_get_section_by_name (abfd, ".rld_map");
	  BFD_ASSERT (s != NULL);

	  name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
	  bh = NULL;
	  if (!(_bfd_generic_link_add_one_symbol
		(info, abfd, name, BSF_GLOBAL, s,
		 (bfd_vma) 0, (const char *) NULL, FALSE,
		 get_elf_backend_data (abfd)->collect, &bh)))
	    return FALSE;

	  h = (struct elf_link_hash_entry *) bh;
	  h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
	  h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
	  h->type = STT_OBJECT;

	  if (! bfd_elf32_link_record_dynamic_symbol (info, h))
	    return FALSE;
	}
    }

  return TRUE;
}

/* Look through the relocs for a section during the first phase, and
   allocate space in the global offset table.  */

bfd_boolean
_bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
     bfd *abfd;
     struct bfd_link_info *info;
     asection *sec;
     const Elf_Internal_Rela *relocs;
{
  const char *name;
  bfd *dynobj;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  struct mips_got_info *g;
  size_t extsymoff;
  const Elf_Internal_Rela *rel;
  const Elf_Internal_Rela *rel_end;
  asection *sgot;
  asection *sreloc;
  struct elf_backend_data *bed;

  if (info->relocateable)
    return TRUE;

  dynobj = elf_hash_table (info)->dynobj;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (abfd);
  extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;

  /* Check for the mips16 stub sections.  */

  name = bfd_get_section_name (abfd, sec);
  if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
    {
      unsigned long r_symndx;

      /* Look at the relocation information to figure out which symbol
         this is for.  */

      r_symndx = ELF_R_SYM (abfd, relocs->r_info);

      if (r_symndx < extsymoff
	  || sym_hashes[r_symndx - extsymoff] == NULL)
	{
	  asection *o;

	  /* This stub is for a local symbol.  This stub will only be
             needed if there is some relocation in this BFD, other
             than a 16 bit function call, which refers to this symbol.  */
	  for (o = abfd->sections; o != NULL; o = o->next)
	    {
	      Elf_Internal_Rela *sec_relocs;
	      const Elf_Internal_Rela *r, *rend;

	      /* We can ignore stub sections when looking for relocs.  */
	      if ((o->flags & SEC_RELOC) == 0
		  || o->reloc_count == 0
		  || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
			      sizeof FN_STUB - 1) == 0
		  || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
			      sizeof CALL_STUB - 1) == 0
		  || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
			      sizeof CALL_FP_STUB - 1) == 0)
		continue;

	      sec_relocs
		= _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
					     (Elf_Internal_Rela *) NULL,
					     info->keep_memory);
	      if (sec_relocs == NULL)
		return FALSE;

	      rend = sec_relocs + o->reloc_count;
	      for (r = sec_relocs; r < rend; r++)
		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
		    && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
		  break;

	      if (elf_section_data (o)->relocs != sec_relocs)
		free (sec_relocs);

	      if (r < rend)
		break;
	    }

	  if (o == NULL)
	    {
	      /* There is no non-call reloc for this stub, so we do
                 not need it.  Since this function is called before
                 the linker maps input sections to output sections, we
                 can easily discard it by setting the SEC_EXCLUDE
                 flag.  */
	      sec->flags |= SEC_EXCLUDE;
	      return TRUE;
	    }

	  /* Record this stub in an array of local symbol stubs for
             this BFD.  */
	  if (elf_tdata (abfd)->local_stubs == NULL)
	    {
	      unsigned long symcount;
	      asection **n;
	      bfd_size_type amt;

	      if (elf_bad_symtab (abfd))
		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
	      else
		symcount = symtab_hdr->sh_info;
	      amt = symcount * sizeof (asection *);
	      n = (asection **) bfd_zalloc (abfd, amt);
	      if (n == NULL)
		return FALSE;
	      elf_tdata (abfd)->local_stubs = n;
	    }

	  elf_tdata (abfd)->local_stubs[r_symndx] = sec;

	  /* We don't need to set mips16_stubs_seen in this case.
             That flag is used to see whether we need to look through
             the global symbol table for stubs.  We don't need to set
             it here, because we just have a local stub.  */
	}
      else
	{
	  struct mips_elf_link_hash_entry *h;

	  h = ((struct mips_elf_link_hash_entry *)
	       sym_hashes[r_symndx - extsymoff]);

	  /* H is the symbol this stub is for.  */

	  h->fn_stub = sec;
	  mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
	}
    }
  else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
	   || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
    {
      unsigned long r_symndx;
      struct mips_elf_link_hash_entry *h;
      asection **loc;

      /* Look at the relocation information to figure out which symbol
         this is for.  */

      r_symndx = ELF_R_SYM (abfd, relocs->r_info);

      if (r_symndx < extsymoff
	  || sym_hashes[r_symndx - extsymoff] == NULL)
	{
	  /* This stub was actually built for a static symbol defined
	     in the same file.  We assume that all static symbols in
	     mips16 code are themselves mips16, so we can simply
	     discard this stub.  Since this function is called before
	     the linker maps input sections to output sections, we can
	     easily discard it by setting the SEC_EXCLUDE flag.  */
	  sec->flags |= SEC_EXCLUDE;
	  return TRUE;
	}

      h = ((struct mips_elf_link_hash_entry *)
	   sym_hashes[r_symndx - extsymoff]);

      /* H is the symbol this stub is for.  */

      if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
	loc = &h->call_fp_stub;
      else
	loc = &h->call_stub;

      /* If we already have an appropriate stub for this function, we
	 don't need another one, so we can discard this one.  Since
	 this function is called before the linker maps input sections
	 to output sections, we can easily discard it by setting the
	 SEC_EXCLUDE flag.  We can also discard this section if we
	 happen to already know that this is a mips16 function; it is
	 not necessary to check this here, as it is checked later, but
	 it is slightly faster to check now.  */
      if (*loc != NULL || h->root.other == STO_MIPS16)
	{
	  sec->flags |= SEC_EXCLUDE;
	  return TRUE;
	}

      *loc = sec;
      mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
    }

  if (dynobj == NULL)
    {
      sgot = NULL;
      g = NULL;
    }
  else
    {
      sgot = mips_elf_got_section (dynobj, FALSE);
      if (sgot == NULL)
	g = NULL;
      else
	{
	  BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
	  g = mips_elf_section_data (sgot)->u.got_info;
	  BFD_ASSERT (g != NULL);
	}
    }

  sreloc = NULL;
  bed = get_elf_backend_data (abfd);
  rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
  for (rel = relocs; rel < rel_end; ++rel)
    {
      unsigned long r_symndx;
      unsigned int r_type;
      struct elf_link_hash_entry *h;

      r_symndx = ELF_R_SYM (abfd, rel->r_info);
      r_type = ELF_R_TYPE (abfd, rel->r_info);

      if (r_symndx < extsymoff)
	h = NULL;
      else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
	{
	  (*_bfd_error_handler)
	    (_("%s: Malformed reloc detected for section %s"),
	     bfd_archive_filename (abfd), name);
	  bfd_set_error (bfd_error_bad_value);
	  return FALSE;
	}
      else
	{
	  h = sym_hashes[r_symndx - extsymoff];

	  /* This may be an indirect symbol created because of a version.  */
	  if (h != NULL)
	    {
	      while (h->root.type == bfd_link_hash_indirect)
		h = (struct elf_link_hash_entry *) h->root.u.i.link;
	    }
	}

      /* Some relocs require a global offset table.  */
      if (dynobj == NULL || sgot == NULL)
	{
	  switch (r_type)
	    {
	    case R_MIPS_GOT16:
	    case R_MIPS_CALL16:
	    case R_MIPS_CALL_HI16:
	    case R_MIPS_CALL_LO16:
	    case R_MIPS_GOT_HI16:
	    case R_MIPS_GOT_LO16:
	    case R_MIPS_GOT_PAGE:
	    case R_MIPS_GOT_OFST:
	    case R_MIPS_GOT_DISP:
	      if (dynobj == NULL)
		elf_hash_table (info)->dynobj = dynobj = abfd;
	      if (! mips_elf_create_got_section (dynobj, info, FALSE))
		return FALSE;
	      g = mips_elf_got_info (dynobj, &sgot);
	      break;

	    case R_MIPS_32:
	    case R_MIPS_REL32:
	    case R_MIPS_64:
	      if (dynobj == NULL
		  && (info->shared || h != NULL)
		  && (sec->flags & SEC_ALLOC) != 0)
		elf_hash_table (info)->dynobj = dynobj = abfd;
	      break;

	    default:
	      break;
	    }
	}

      if (!h && (r_type == R_MIPS_CALL_LO16
		 || r_type == R_MIPS_GOT_LO16
		 || r_type == R_MIPS_GOT_DISP))
	{
	  /* We may need a local GOT entry for this relocation.  We
	     don't count R_MIPS_GOT_PAGE because we can estimate the
	     maximum number of pages needed by looking at the size of
	     the segment.  Similar comments apply to R_MIPS_GOT16 and
	     R_MIPS_CALL16.  We don't count R_MIPS_GOT_HI16, or
	     R_MIPS_CALL_HI16 because these are always followed by an
	     R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.  */
	  if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
						  rel->r_addend, g))
	    return FALSE;
	}

      switch (r_type)
	{
	case R_MIPS_CALL16:
	  if (h == NULL)
	    {
	      (*_bfd_error_handler)
		(_("%s: CALL16 reloc at 0x%lx not against global symbol"),
		 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
	      bfd_set_error (bfd_error_bad_value);
	      return FALSE;
	    }
	  /* Fall through.  */

	case R_MIPS_CALL_HI16:
	case R_MIPS_CALL_LO16:
	  if (h != NULL)
	    {
	      /* This symbol requires a global offset table entry.  */
	      if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
		return FALSE;

	      /* We need a stub, not a plt entry for the undefined
		 function.  But we record it as if it needs plt.  See
		 elf_adjust_dynamic_symbol in elflink.h.  */
	      h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
	      h->type = STT_FUNC;
	    }
	  break;

	case R_MIPS_GOT_PAGE:
	  /* If this is a global, overridable symbol, GOT_PAGE will
	     decay to GOT_DISP, so we'll need a GOT entry for it.  */
	  if (h == NULL)
	    break;
	  else
	    {
	      struct mips_elf_link_hash_entry *hmips =
		(struct mips_elf_link_hash_entry *) h;

	      while (hmips->root.root.type == bfd_link_hash_indirect
		     || hmips->root.root.type == bfd_link_hash_warning)
		hmips = (struct mips_elf_link_hash_entry *)
		  hmips->root.root.u.i.link;

	      if ((hmips->root.root.type == bfd_link_hash_defined
		   || hmips->root.root.type == bfd_link_hash_defweak)
		  && hmips->root.root.u.def.section
		  && ! (info->shared && ! info->symbolic
			&& ! (hmips->root.elf_link_hash_flags
			      & ELF_LINK_FORCED_LOCAL))
		  /* If we've encountered any other relocation
		     referencing the symbol, we'll have marked it as
		     dynamic, and, even though we might be able to get
		     rid of the GOT entry should we know for sure all
		     previous relocations were GOT_PAGE ones, at this
		     point we can't tell, so just keep using the
		     symbol as dynamic.  This is very important in the
		     multi-got case, since we don't decide whether to
		     decay GOT_PAGE to GOT_DISP on a per-GOT basis: if
		     the symbol is dynamic, we'll need a GOT entry for
		     every GOT in which the symbol is referenced with
		     a GOT_PAGE relocation.  */
		  && hmips->root.dynindx == -1)
		break;
	    }
	  /* Fall through.  */

	case R_MIPS_GOT16:
	case R_MIPS_GOT_HI16:
	case R_MIPS_GOT_LO16:
	case R_MIPS_GOT_DISP:
	  /* This symbol requires a global offset table entry.  */
	  if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
	    return FALSE;
	  break;

	case R_MIPS_32:
	case R_MIPS_REL32:
	case R_MIPS_64:
	  if ((info->shared || h != NULL)
	      && (sec->flags & SEC_ALLOC) != 0)
	    {
	      if (sreloc == NULL)
		{
		  sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
		  if (sreloc == NULL)
		    return FALSE;
		}
#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
	      if (info->shared)
		{
		  /* When creating a shared object, we must copy these
		     reloc types into the output file as R_MIPS_REL32
		     relocs.  We make room for this reloc in the
		     .rel.dyn reloc section.  */
		  mips_elf_allocate_dynamic_relocations (dynobj, 1);
		  if ((sec->flags & MIPS_READONLY_SECTION)
		      == MIPS_READONLY_SECTION)
		    /* We tell the dynamic linker that there are
		       relocations against the text segment.  */
		    info->flags |= DF_TEXTREL;
		}
	      else
		{
		  struct mips_elf_link_hash_entry *hmips;

		  /* We only need to copy this reloc if the symbol is
                     defined in a dynamic object.  */
		  hmips = (struct mips_elf_link_hash_entry *) h;
		  ++hmips->possibly_dynamic_relocs;
		  if ((sec->flags & MIPS_READONLY_SECTION)
		      == MIPS_READONLY_SECTION)
		    /* We need it to tell the dynamic linker if there
		       are relocations against the text segment.  */
		    hmips->readonly_reloc = TRUE;
		}

	      /* Even though we don't directly need a GOT entry for
		 this symbol, a symbol must have a dynamic symbol
		 table index greater that DT_MIPS_GOTSYM if there are
		 dynamic relocations against it.  */
	      if (h != NULL)
		{
		  if (dynobj == NULL)
		    elf_hash_table (info)->dynobj = dynobj = abfd;
		  if (! mips_elf_create_got_section (dynobj, info, TRUE))
		    return FALSE;
		  g = mips_elf_got_info (dynobj, &sgot);
		  if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
		    return FALSE;
		}
	    }

	  if (SGI_COMPAT (abfd))
	    mips_elf_hash_table (info)->compact_rel_size +=
	      sizeof (Elf32_External_crinfo);
	  break;

	case R_MIPS_26:
	case R_MIPS_GPREL16:
	case R_MIPS_LITERAL:
	case R_MIPS_GPREL32:
	  if (SGI_COMPAT (abfd))
	    mips_elf_hash_table (info)->compact_rel_size +=
	      sizeof (Elf32_External_crinfo);
	  break;

	  /* This relocation describes the C++ object vtable hierarchy.
	     Reconstruct it for later use during GC.  */
	case R_MIPS_GNU_VTINHERIT:
	  if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
	    return FALSE;
	  break;

	  /* This relocation describes which C++ vtable entries are actually
	     used.  Record for later use during GC.  */
	case R_MIPS_GNU_VTENTRY:
	  if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
	    return FALSE;
	  break;

	default:
	  break;
	}

      /* We must not create a stub for a symbol that has relocations
         related to taking the function's address.  */
      switch (r_type)
	{
	default:
	  if (h != NULL)
	    {
	      struct mips_elf_link_hash_entry *mh;

	      mh = (struct mips_elf_link_hash_entry *) h;
	      mh->no_fn_stub = TRUE;
	    }
	  break;
	case R_MIPS_CALL16:
	case R_MIPS_CALL_HI16:
	case R_MIPS_CALL_LO16:
	  break;
	}

      /* If this reloc is not a 16 bit call, and it has a global
         symbol, then we will need the fn_stub if there is one.
         References from a stub section do not count.  */
      if (h != NULL
	  && r_type != R_MIPS16_26
	  && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
		      sizeof FN_STUB - 1) != 0
	  && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
		      sizeof CALL_STUB - 1) != 0
	  && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
		      sizeof CALL_FP_STUB - 1) != 0)
	{
	  struct mips_elf_link_hash_entry *mh;

	  mh = (struct mips_elf_link_hash_entry *) h;
	  mh->need_fn_stub = TRUE;
	}
    }

  return TRUE;
}

bfd_boolean
_bfd_mips_relax_section (abfd, sec, link_info, again)
     bfd *abfd;
     asection *sec;
     struct bfd_link_info *link_info;
     bfd_boolean *again;
{
  Elf_Internal_Rela *internal_relocs;
  Elf_Internal_Rela *irel, *irelend;
  Elf_Internal_Shdr *symtab_hdr;
  bfd_byte *contents = NULL;
  bfd_byte *free_contents = NULL;
  size_t extsymoff;
  bfd_boolean changed_contents = FALSE;
  bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
  Elf_Internal_Sym *isymbuf = NULL;

  /* We are not currently changing any sizes, so only one pass.  */
  *again = FALSE;

  if (link_info->relocateable)
    return TRUE;

  internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
					       (Elf_Internal_Rela *) NULL,
					       link_info->keep_memory);
  if (internal_relocs == NULL)
    return TRUE;

  irelend = internal_relocs + sec->reloc_count
    * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;

  for (irel = internal_relocs; irel < irelend; irel++)
    {
      bfd_vma symval;
      bfd_signed_vma sym_offset;
      unsigned int r_type;
      unsigned long r_symndx;
      asection *sym_sec;
      unsigned long instruction;

      /* Turn jalr into bgezal, and jr into beq, if they're marked
	 with a JALR relocation, that indicate where they jump to.
	 This saves some pipeline bubbles.  */
      r_type = ELF_R_TYPE (abfd, irel->r_info);
      if (r_type != R_MIPS_JALR)
	continue;

      r_symndx = ELF_R_SYM (abfd, irel->r_info);
      /* Compute the address of the jump target.  */
      if (r_symndx >= extsymoff)
	{
	  struct mips_elf_link_hash_entry *h
	    = ((struct mips_elf_link_hash_entry *)
	       elf_sym_hashes (abfd) [r_symndx - extsymoff]);

	  while (h->root.root.type == bfd_link_hash_indirect
		 || h->root.root.type == bfd_link_hash_warning)
	    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;

	  /* If a symbol is undefined, or if it may be overridden,
	     skip it.  */
	  if (! ((h->root.root.type == bfd_link_hash_defined
		  || h->root.root.type == bfd_link_hash_defweak)
		 && h->root.root.u.def.section)
	      || (link_info->shared && ! link_info->symbolic
		  && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
	    continue;

	  sym_sec = h->root.root.u.def.section;
	  if (sym_sec->output_section)
	    symval = (h->root.root.u.def.value
		      + sym_sec->output_section->vma
		      + sym_sec->output_offset);
	  else
	    symval = h->root.root.u.def.value;
	}
      else
	{
	  Elf_Internal_Sym *isym;

	  /* Read this BFD's symbols if we haven't done so already.  */
	  if (isymbuf == NULL && symtab_hdr->sh_info != 0)
	    {
	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
	      if (isymbuf == NULL)
		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
						symtab_hdr->sh_info, 0,
						NULL, NULL, NULL);
	      if (isymbuf == NULL)
		goto relax_return;
	    }

	  isym = isymbuf + r_symndx;
	  if (isym->st_shndx == SHN_UNDEF)
	    continue;
	  else if (isym->st_shndx == SHN_ABS)
	    sym_sec = bfd_abs_section_ptr;
	  else if (isym->st_shndx == SHN_COMMON)
	    sym_sec = bfd_com_section_ptr;
	  else
	    sym_sec
	      = bfd_section_from_elf_index (abfd, isym->st_shndx);
	  symval = isym->st_value
	    + sym_sec->output_section->vma
	    + sym_sec->output_offset;
	}

      /* Compute branch offset, from delay slot of the jump to the
	 branch target.  */
      sym_offset = (symval + irel->r_addend)
	- (sec_start + irel->r_offset + 4);

      /* Branch offset must be properly aligned.  */
      if ((sym_offset & 3) != 0)
	continue;

      sym_offset >>= 2;

      /* Check that it's in range.  */
      if (sym_offset < -0x8000 || sym_offset >= 0x8000)
	continue;

      /* Get the section contents if we haven't done so already.  */
      if (contents == NULL)
	{
	  /* Get cached copy if it exists.  */
	  if (elf_section_data (sec)->this_hdr.contents != NULL)
	    contents = elf_section_data (sec)->this_hdr.contents;
	  else
	    {
	      contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
	      if (contents == NULL)
		goto relax_return;

	      free_contents = contents;
	      if (! bfd_get_section_contents (abfd, sec, contents,
					      (file_ptr) 0, sec->_raw_size))
		goto relax_return;
	    }
	}

      instruction = bfd_get_32 (abfd, contents + irel->r_offset);

      /* If it was jalr <reg>, turn it into bgezal $zero, <target>.  */
      if ((instruction & 0xfc1fffff) == 0x0000f809)
	instruction = 0x04110000;
      /* If it was jr <reg>, turn it into b <target>.  */
      else if ((instruction & 0xfc1fffff) == 0x00000008)
	instruction = 0x10000000;
      else
	continue;

      instruction |= (sym_offset & 0xffff);
      bfd_put_32 (abfd, instruction, contents + irel->r_offset);
      changed_contents = TRUE;
    }

  if (contents != NULL
      && elf_section_data (sec)->this_hdr.contents != contents)
    {
      if (!changed_contents && !link_info->keep_memory)
        free (contents);
      else
        {
          /* Cache the section contents for elf_link_input_bfd.  */
          elf_section_data (sec)->this_hdr.contents = contents;
        }
    }
  return TRUE;

 relax_return:
  if (free_contents != NULL)
    free (free_contents);
  return FALSE;
}

/* Adjust a symbol defined by a dynamic object and referenced by a
   regular object.  The current definition is in some section of the
   dynamic object, but we're not including those sections.  We have to
   change the definition to something the rest of the link can
   understand.  */

bfd_boolean
_bfd_mips_elf_adjust_dynamic_symbol (info, h)
     struct bfd_link_info *info;
     struct elf_link_hash_entry *h;
{
  bfd *dynobj;
  struct mips_elf_link_hash_entry *hmips;
  asection *s;

  dynobj = elf_hash_table (info)->dynobj;

  /* Make sure we know what is going on here.  */
  BFD_ASSERT (dynobj != NULL
	      && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
		  || h->weakdef != NULL
		  || ((h->elf_link_hash_flags
		       & ELF_LINK_HASH_DEF_DYNAMIC) != 0
		      && (h->elf_link_hash_flags
			  & ELF_LINK_HASH_REF_REGULAR) != 0
		      && (h->elf_link_hash_flags
			  & ELF_LINK_HASH_DEF_REGULAR) == 0)));

  /* If this symbol is defined in a dynamic object, we need to copy
     any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
     file.  */
  hmips = (struct mips_elf_link_hash_entry *) h;
  if (! info->relocateable
      && hmips->possibly_dynamic_relocs != 0
      && (h->root.type == bfd_link_hash_defweak
	  || (h->elf_link_hash_flags
	      & ELF_LINK_HASH_DEF_REGULAR) == 0))
    {
      mips_elf_allocate_dynamic_relocations (dynobj,
					     hmips->possibly_dynamic_relocs);
      if (hmips->readonly_reloc)
	/* We tell the dynamic linker that there are relocations
	   against the text segment.  */
	info->flags |= DF_TEXTREL;
    }

  /* For a function, create a stub, if allowed.  */
  if (! hmips->no_fn_stub
      && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
    {
      if (! elf_hash_table (info)->dynamic_sections_created)
	return TRUE;

      /* If this symbol is not defined in a regular file, then set
	 the symbol to the stub location.  This is required to make
	 function pointers compare as equal between the normal
	 executable and the shared library.  */
      if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
	{
	  /* We need .stub section.  */
	  s = bfd_get_section_by_name (dynobj,
				       MIPS_ELF_STUB_SECTION_NAME (dynobj));
	  BFD_ASSERT (s != NULL);

	  h->root.u.def.section = s;
	  h->root.u.def.value = s->_raw_size;

	  /* XXX Write this stub address somewhere.  */
	  h->plt.offset = s->_raw_size;

	  /* Make room for this stub code.  */
	  s->_raw_size += MIPS_FUNCTION_STUB_SIZE;

	  /* The last half word of the stub will be filled with the index
	     of this symbol in .dynsym section.  */
	  return TRUE;
	}
    }
  else if ((h->type == STT_FUNC)
	   && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
    {
      /* This will set the entry for this symbol in the GOT to 0, and
         the dynamic linker will take care of this.  */
      h->root.u.def.value = 0;
      return TRUE;
    }

  /* If this is a weak symbol, and there is a real definition, the
     processor independent code will have arranged for us to see the
     real definition first, and we can just use the same value.  */
  if (h->weakdef != NULL)
    {
      BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
		  || h->weakdef->root.type == bfd_link_hash_defweak);
      h->root.u.def.section = h->weakdef->root.u.def.section;
      h->root.u.def.value = h->weakdef->root.u.def.value;
      return TRUE;
    }

  /* This is a reference to a symbol defined by a dynamic object which
     is not a function.  */

  return TRUE;
}

/* This function is called after all the input files have been read,
   and the input sections have been assigned to output sections.  We
   check for any mips16 stub sections that we can discard.  */

bfd_boolean
_bfd_mips_elf_always_size_sections (output_bfd, info)
     bfd *output_bfd;
     struct bfd_link_info *info;
{
  asection *ri;

  bfd *dynobj;
  asection *s;
  struct mips_got_info *g;
  int i;
  bfd_size_type loadable_size = 0;
  bfd_size_type local_gotno;
  bfd *sub;

  /* The .reginfo section has a fixed size.  */
  ri = bfd_get_section_by_name (output_bfd, ".reginfo");
  if (ri != NULL)
    bfd_set_section_size (output_bfd, ri,
			  (bfd_size_type) sizeof (Elf32_External_RegInfo));

  if (! (info->relocateable
	 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
    mips_elf_link_hash_traverse (mips_elf_hash_table (info),
				 mips_elf_check_mips16_stubs,
				 (PTR) NULL);

  dynobj = elf_hash_table (info)->dynobj;
  if (dynobj == NULL)
    /* Relocatable links don't have it.  */
    return TRUE;

  g = mips_elf_got_info (dynobj, &s);
  if (s == NULL)
    return TRUE;

  /* Calculate the total loadable size of the output.  That
     will give us the maximum number of GOT_PAGE entries
     required.  */
  for (sub = info->input_bfds; sub; sub = sub->link_next)
    {
      asection *subsection;

      for (subsection = sub->sections;
	   subsection;
	   subsection = subsection->next)
	{
	  if ((subsection->flags & SEC_ALLOC) == 0)
	    continue;
	  loadable_size += ((subsection->_raw_size + 0xf)
			    &~ (bfd_size_type) 0xf);
	}
    }

  /* There has to be a global GOT entry for every symbol with
     a dynamic symbol table index of DT_MIPS_GOTSYM or
     higher.  Therefore, it make sense to put those symbols
     that need GOT entries at the end of the symbol table.  We
     do that here.  */
  if (! mips_elf_sort_hash_table (info, 1))
    return FALSE;

  if (g->global_gotsym != NULL)
    i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
  else
    /* If there are no global symbols, or none requiring
       relocations, then GLOBAL_GOTSYM will be NULL.  */
    i = 0;

  /* In the worst case, we'll get one stub per dynamic symbol, plus
     one to account for the dummy entry at the end required by IRIX
     rld.  */
  loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);

  /* Assume there are two loadable segments consisting of
     contiguous sections.  Is 5 enough?  */
  local_gotno = (loadable_size >> 16) + 5;

  g->local_gotno += local_gotno;
  s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);

  g->global_gotno = i;
  s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);

  if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
      && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
    return FALSE;

  return TRUE;
}

/* Set the sizes of the dynamic sections.  */

bfd_boolean
_bfd_mips_elf_size_dynamic_sections (output_bfd, info)
     bfd *output_bfd;
     struct bfd_link_info *info;
{
  bfd *dynobj;
  asection *s;
  bfd_boolean reltext;

  dynobj = elf_hash_table (info)->dynobj;
  BFD_ASSERT (dynobj != NULL);

  if (elf_hash_table (info)->dynamic_sections_created)
    {
      /* Set the contents of the .interp section to the interpreter.  */
      if (! info->shared)
	{
	  s = bfd_get_section_by_name (dynobj, ".interp");
	  BFD_ASSERT (s != NULL);
	  s->_raw_size
	    = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
	  s->contents
	    = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
	}
    }

  /* The check_relocs and adjust_dynamic_symbol entry points have
     determined the sizes of the various dynamic sections.  Allocate
     memory for them.  */
  reltext = FALSE;
  for (s = dynobj->sections; s != NULL; s = s->next)
    {
      const char *name;
      bfd_boolean strip;

      /* It's OK to base decisions on the section name, because none
	 of the dynobj section names depend upon the input files.  */
      name = bfd_get_section_name (dynobj, s);

      if ((s->flags & SEC_LINKER_CREATED) == 0)
	continue;

      strip = FALSE;

      if (strncmp (name, ".rel", 4) == 0)
	{
	  if (s->_raw_size == 0)
	    {
	      /* We only strip the section if the output section name
                 has the same name.  Otherwise, there might be several
                 input sections for this output section.  FIXME: This
                 code is probably not needed these days anyhow, since
                 the linker now does not create empty output sections.  */
	      if (s->output_section != NULL
		  && strcmp (name,
			     bfd_get_section_name (s->output_section->owner,
						   s->output_section)) == 0)
		strip = TRUE;
	    }
	  else
	    {
	      const char *outname;
	      asection *target;

	      /* If this relocation section applies to a read only
                 section, then we probably need a DT_TEXTREL entry.
                 If the relocation section is .rel.dyn, we always
                 assert a DT_TEXTREL entry rather than testing whether
                 there exists a relocation to a read only section or
                 not.  */
	      outname = bfd_get_section_name (output_bfd,
					      s->output_section);
	      target = bfd_get_section_by_name (output_bfd, outname + 4);
	      if ((target != NULL
		   && (target->flags & SEC_READONLY) != 0
		   && (target->flags & SEC_ALLOC) != 0)
		  || strcmp (outname, ".rel.dyn") == 0)
		reltext = TRUE;

	      /* We use the reloc_count field as a counter if we need
		 to copy relocs into the output file.  */
	      if (strcmp (name, ".rel.dyn") != 0)
		s->reloc_count = 0;

	      /* If combreloc is enabled, elf_link_sort_relocs() will
		 sort relocations, but in a different way than we do,
		 and before we're done creating relocations.  Also, it
		 will move them around between input sections'
		 relocation's contents, so our sorting would be
		 broken, so don't let it run.  */
	      info->combreloc = 0;
	    }
	}
      else if (strncmp (name, ".got", 4) == 0)
	{
	  /* _bfd_mips_elf_always_size_sections() has already done
	     most of the work, but some symbols may have been mapped
	     to versions that we must now resolve in the got_entries
	     hash tables.  */
	  struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
	  struct mips_got_info *g = gg;
	  struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
	  unsigned int needed_relocs = 0;

	  if (gg->next)
	    {
	      set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
	      set_got_offset_arg.info = info;

	      mips_elf_resolve_final_got_entries (gg);
	      for (g = gg->next; g && g->next != gg; g = g->next)
		{
		  unsigned int save_assign;

		  mips_elf_resolve_final_got_entries (g);

		  /* Assign offsets to global GOT entries.  */
		  save_assign = g->assigned_gotno;
		  g->assigned_gotno = g->local_gotno;
		  set_got_offset_arg.g = g;
		  set_got_offset_arg.needed_relocs = 0;
		  htab_traverse (g->got_entries,
				 mips_elf_set_global_got_offset,
				 &set_got_offset_arg);
		  needed_relocs += set_got_offset_arg.needed_relocs;
		  BFD_ASSERT (g->assigned_gotno - g->local_gotno
			      <= g->global_gotno);

		  g->assigned_gotno = save_assign;
		  if (info->shared)
		    {
		      needed_relocs += g->local_gotno - g->assigned_gotno;
		      BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
				  + g->next->global_gotno
				  + MIPS_RESERVED_GOTNO);
		    }
		}

	      if (needed_relocs)
		mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
	    }
	}
      else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
	{
	  /* IRIX rld assumes that the function stub isn't at the end
	     of .text section. So put a dummy. XXX  */
	  s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
	}
      else if (! info->shared
	       && ! mips_elf_hash_table (info)->use_rld_obj_head
	       && strncmp (name, ".rld_map", 8) == 0)
	{
	  /* We add a room for __rld_map. It will be filled in by the
	     rtld to contain a pointer to the _r_debug structure.  */
	  s->_raw_size += 4;
	}
      else if (SGI_COMPAT (output_bfd)
	       && strncmp (name, ".compact_rel", 12) == 0)
	s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
      else if (strcmp (name, ".msym") == 0)
	s->_raw_size = (sizeof (Elf32_External_Msym)
			* (elf_hash_table (info)->dynsymcount
			   + bfd_count_sections (output_bfd)));
      else if (strncmp (name, ".init", 5) != 0)
	{
	  /* It's not one of our sections, so don't allocate space.  */
	  continue;
	}

      if (strip)
	{
	  _bfd_strip_section_from_output (info, s);
	  continue;
	}

      /* Allocate memory for the section contents.  */
      s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
      if (s->contents == NULL && s->_raw_size != 0)
	{
	  bfd_set_error (bfd_error_no_memory);
	  return FALSE;
	}
    }

  if (elf_hash_table (info)->dynamic_sections_created)
    {
      /* Add some entries to the .dynamic section.  We fill in the
	 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
	 must add the entries now so that we get the correct size for
	 the .dynamic section.  The DT_DEBUG entry is filled in by the
	 dynamic linker and used by the debugger.  */
      if (! info->shared)
	{
	  /* SGI object has the equivalence of DT_DEBUG in the
	     DT_MIPS_RLD_MAP entry.  */
	  if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
	    return FALSE;
	  if (!SGI_COMPAT (output_bfd))
	    {
	      if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
		return FALSE;
	    }
	}
      else
	{
	  /* Shared libraries on traditional mips have DT_DEBUG.  */
	  if (!SGI_COMPAT (output_bfd))
	    {
	      if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
		return FALSE;
	    }
	}

      if (reltext && SGI_COMPAT (output_bfd))
	info->flags |= DF_TEXTREL;

      if ((info->flags & DF_TEXTREL) != 0)
	{
	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
	    return FALSE;
	}

      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
	return FALSE;

      if (mips_elf_rel_dyn_section (dynobj, FALSE))
	{
	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
	    return FALSE;

	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
	    return FALSE;

	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
	    return FALSE;
	}

      if (SGI_COMPAT (output_bfd))
	{
	  if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
	    return FALSE;
	}

      if (SGI_COMPAT (output_bfd))
	{
	  if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
	    return FALSE;
	}

      if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
	{
	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
	    return FALSE;

	  s = bfd_get_section_by_name (dynobj, ".liblist");
	  BFD_ASSERT (s != NULL);

	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
	    return FALSE;
	}

      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
	return FALSE;

      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
	return FALSE;

#if 0
      /* Time stamps in executable files are a bad idea.  */
      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
	return FALSE;
#endif

#if 0 /* FIXME  */
      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
	return FALSE;
#endif

#if 0 /* FIXME  */
      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
	return FALSE;
#endif

      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
	return FALSE;

      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
	return FALSE;

      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
	return FALSE;

      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
	return FALSE;

      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
	return FALSE;

      if (IRIX_COMPAT (dynobj) == ict_irix5
	  && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
	return FALSE;

      if (IRIX_COMPAT (dynobj) == ict_irix6
	  && (bfd_get_section_by_name
	      (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
	return FALSE;

      if (bfd_get_section_by_name (dynobj, ".msym")
	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
	return FALSE;
    }

  return TRUE;
}

/* Relocate a MIPS ELF section.  */

bfd_boolean
_bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
				contents, relocs, local_syms, local_sections)
     bfd *output_bfd;
     struct bfd_link_info *info;
     bfd *input_bfd;
     asection *input_section;
     bfd_byte *contents;
     Elf_Internal_Rela *relocs;
     Elf_Internal_Sym *local_syms;
     asection **local_sections;
{
  Elf_Internal_Rela *rel;
  const Elf_Internal_Rela *relend;
  bfd_vma addend = 0;
  bfd_boolean use_saved_addend_p = FALSE;
  struct elf_backend_data *bed;

  bed = get_elf_backend_data (output_bfd);
  relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
  for (rel = relocs; rel < relend; ++rel)
    {
      const char *name;
      bfd_vma value;
      reloc_howto_type *howto;
      bfd_boolean require_jalx;
      /* TRUE if the relocation is a RELA relocation, rather than a
         REL relocation.  */
      bfd_boolean rela_relocation_p = TRUE;
      unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
      const char * msg = (const char *) NULL;

      /* Find the relocation howto for this relocation.  */
      if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
	{
	  /* Some 32-bit code uses R_MIPS_64.  In particular, people use
	     64-bit code, but make sure all their addresses are in the
	     lowermost or uppermost 32-bit section of the 64-bit address
	     space.  Thus, when they use an R_MIPS_64 they mean what is
	     usually meant by R_MIPS_32, with the exception that the
	     stored value is sign-extended to 64 bits.  */
	  howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);

	  /* On big-endian systems, we need to lie about the position
	     of the reloc.  */
	  if (bfd_big_endian (input_bfd))
	    rel->r_offset += 4;
	}
      else
	/* NewABI defaults to RELA relocations.  */
	howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
					 NEWABI_P (input_bfd)
					 && (MIPS_RELOC_RELA_P
					     (input_bfd, input_section,
					      rel - relocs)));

      if (!use_saved_addend_p)
	{
	  Elf_Internal_Shdr *rel_hdr;

	  /* If these relocations were originally of the REL variety,
	     we must pull the addend out of the field that will be
	     relocated.  Otherwise, we simply use the contents of the
	     RELA relocation.  To determine which flavor or relocation
	     this is, we depend on the fact that the INPUT_SECTION's
	     REL_HDR is read before its REL_HDR2.  */
	  rel_hdr = &elf_section_data (input_section)->rel_hdr;
	  if ((size_t) (rel - relocs)
	      >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
	    rel_hdr = elf_section_data (input_section)->rel_hdr2;
	  if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
	    {
	      /* Note that this is a REL relocation.  */
	      rela_relocation_p = FALSE;

	      /* Get the addend, which is stored in the input file.  */
	      addend = mips_elf_obtain_contents (howto, rel, input_bfd,
						 contents);
	      addend &= howto->src_mask;
	      addend <<= howto->rightshift;

	      /* For some kinds of relocations, the ADDEND is a
		 combination of the addend stored in two different
		 relocations.   */
	      if (r_type == R_MIPS_HI16
		  || r_type == R_MIPS_GNU_REL_HI16
		  || (r_type == R_MIPS_GOT16
		      && mips_elf_local_relocation_p (input_bfd, rel,
						      local_sections, FALSE)))
		{
		  bfd_vma l;
		  const Elf_Internal_Rela *lo16_relocation;
		  reloc_howto_type *lo16_howto;
		  unsigned int lo;

		  /* The combined value is the sum of the HI16 addend,
		     left-shifted by sixteen bits, and the LO16
		     addend, sign extended.  (Usually, the code does
		     a `lui' of the HI16 value, and then an `addiu' of
		     the LO16 value.)

		     Scan ahead to find a matching LO16 relocation.  */
		  if (r_type == R_MIPS_GNU_REL_HI16)
		    lo = R_MIPS_GNU_REL_LO16;
		  else
		    lo = R_MIPS_LO16;
		  lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
							      rel, relend);
		  if (lo16_relocation == NULL)
		    return FALSE;

		  /* Obtain the addend kept there.  */
		  lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
		  l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
						input_bfd, contents);
		  l &= lo16_howto->src_mask;
		  l <<= lo16_howto->rightshift;
		  l = _bfd_mips_elf_sign_extend (l, 16);

		  addend <<= 16;

		  /* Compute the combined addend.  */
		  addend += l;

		  /* If PC-relative, subtract the difference between the
		     address of the LO part of the reloc and the address of
		     the HI part.  The relocation is relative to the LO
		     part, but mips_elf_calculate_relocation() doesn't
		     know its address or the difference from the HI part, so
		     we subtract that difference here.  See also the
		     comment in mips_elf_calculate_relocation().  */
		  if (r_type == R_MIPS_GNU_REL_HI16)
		    addend -= (lo16_relocation->r_offset - rel->r_offset);
		}
	      else if (r_type == R_MIPS16_GPREL)
		{
		  /* The addend is scrambled in the object file.  See
		     mips_elf_perform_relocation for details on the
		     format.  */
		  addend = (((addend & 0x1f0000) >> 5)
			    | ((addend & 0x7e00000) >> 16)
			    | (addend & 0x1f));
		}
	    }
	  else
	    addend = rel->r_addend;
	}

      if (info->relocateable)
	{
	  Elf_Internal_Sym *sym;
	  unsigned long r_symndx;

	  if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
	      && bfd_big_endian (input_bfd))
	    rel->r_offset -= 4;

	  /* Since we're just relocating, all we need to do is copy
	     the relocations back out to the object file, unless
	     they're against a section symbol, in which case we need
	     to adjust by the section offset, or unless they're GP
	     relative in which case we need to adjust by the amount
	     that we're adjusting GP in this relocateable object.  */

	  if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
					     FALSE))
	    /* There's nothing to do for non-local relocations.  */
	    continue;

	  if (r_type == R_MIPS16_GPREL
	      || r_type == R_MIPS_GPREL16
	      || r_type == R_MIPS_GPREL32
	      || r_type == R_MIPS_LITERAL)
	    addend -= (_bfd_get_gp_value (output_bfd)
		       - _bfd_get_gp_value (input_bfd));

	  r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
	  sym = local_syms + r_symndx;
	  if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
	    /* Adjust the addend appropriately.  */
	    addend += local_sections[r_symndx]->output_offset;

	  if (howto->partial_inplace)
	    {
	      /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
		 then we only want to write out the high-order 16 bits.
		 The subsequent R_MIPS_LO16 will handle the low-order bits.
	       */
	      if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
		  || r_type == R_MIPS_GNU_REL_HI16)
		addend = mips_elf_high (addend);
	      else if (r_type == R_MIPS_HIGHER)
		addend = mips_elf_higher (addend);
	      else if (r_type == R_MIPS_HIGHEST)
		addend = mips_elf_highest (addend);
	    }

	  if (rela_relocation_p)
	    /* If this is a RELA relocation, just update the addend.
	       We have to cast away constness for REL.  */
	    rel->r_addend = addend;
	  else
	    {
	      /* Otherwise, we have to write the value back out.  Note
		 that we use the source mask, rather than the
		 destination mask because the place to which we are
		 writing will be source of the addend in the final
		 link.  */
	      addend >>= howto->rightshift;
	      addend &= howto->src_mask;

	      if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
		/* See the comment above about using R_MIPS_64 in the 32-bit
		   ABI.  Here, we need to update the addend.  It would be
		   possible to get away with just using the R_MIPS_32 reloc
		   but for endianness.  */
		{
		  bfd_vma sign_bits;
		  bfd_vma low_bits;
		  bfd_vma high_bits;

		  if (addend & ((bfd_vma) 1 << 31))
#ifdef BFD64
		    sign_bits = ((bfd_vma) 1 << 32) - 1;
#else
		    sign_bits = -1;
#endif
		  else
		    sign_bits = 0;

		  /* If we don't know that we have a 64-bit type,
		     do two separate stores.  */
		  if (bfd_big_endian (input_bfd))
		    {
		      /* Store the sign-bits (which are most significant)
			 first.  */
		      low_bits = sign_bits;
		      high_bits = addend;
		    }
		  else
		    {
		      low_bits = addend;
		      high_bits = sign_bits;
		    }
		  bfd_put_32 (input_bfd, low_bits,
			      contents + rel->r_offset);
		  bfd_put_32 (input_bfd, high_bits,
			      contents + rel->r_offset + 4);
		  continue;
		}

	      if (! mips_elf_perform_relocation (info, howto, rel, addend,
						 input_bfd, input_section,
						 contents, FALSE))
		return FALSE;
	    }

	  /* Go on to the next relocation.  */
	  continue;
	}

      /* In the N32 and 64-bit ABIs there may be multiple consecutive
	 relocations for the same offset.  In that case we are
	 supposed to treat the output of each relocation as the addend
	 for the next.  */
      if (rel + 1 < relend
	  && rel->r_offset == rel[1].r_offset
	  && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
	use_saved_addend_p = TRUE;
      else
	use_saved_addend_p = FALSE;

      addend >>= howto->rightshift;

      /* Figure out what value we are supposed to relocate.  */
      switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
					     input_section, info, rel,
					     addend, howto, local_syms,
					     local_sections, &value,
					     &name, &require_jalx,
					     use_saved_addend_p))
	{
	case bfd_reloc_continue:
	  /* There's nothing to do.  */
	  continue;

	case bfd_reloc_undefined:
	  /* mips_elf_calculate_relocation already called the
	     undefined_symbol callback.  There's no real point in
	     trying to perform the relocation at this point, so we
	     just skip ahead to the next relocation.  */
	  continue;

	case bfd_reloc_notsupported:
	  msg = _("internal error: unsupported relocation error");
	  info->callbacks->warning
	    (info, msg, name, input_bfd, input_section, rel->r_offset);
	  return FALSE;

	case bfd_reloc_overflow:
	  if (use_saved_addend_p)
	    /* Ignore overflow until we reach the last relocation for
	       a given location.  */
	    ;
	  else
	    {
	      BFD_ASSERT (name != NULL);
	      if (! ((*info->callbacks->reloc_overflow)
		     (info, name, howto->name, (bfd_vma) 0,
		      input_bfd, input_section, rel->r_offset)))
		return FALSE;
	    }
	  break;

	case bfd_reloc_ok:
	  break;

	default:
	  abort ();
	  break;
	}

      /* If we've got another relocation for the address, keep going
	 until we reach the last one.  */
      if (use_saved_addend_p)
	{
	  addend = value;
	  continue;
	}

      if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
	/* See the comment above about using R_MIPS_64 in the 32-bit
	   ABI.  Until now, we've been using the HOWTO for R_MIPS_32;
	   that calculated the right value.  Now, however, we
	   sign-extend the 32-bit result to 64-bits, and store it as a
	   64-bit value.  We are especially generous here in that we
	   go to extreme lengths to support this usage on systems with
	   only a 32-bit VMA.  */
	{
	  bfd_vma sign_bits;
	  bfd_vma low_bits;
	  bfd_vma high_bits;

	  if (value & ((bfd_vma) 1 << 31))
#ifdef BFD64
	    sign_bits = ((bfd_vma) 1 << 32) - 1;
#else
	    sign_bits = -1;
#endif
	  else
	    sign_bits = 0;

	  /* If we don't know that we have a 64-bit type,
	     do two separate stores.  */
	  if (bfd_big_endian (input_bfd))
	    {
	      /* Undo what we did above.  */
	      rel->r_offset -= 4;
	      /* Store the sign-bits (which are most significant)
		 first.  */
	      low_bits = sign_bits;
	      high_bits = value;
	    }
	  else
	    {
	      low_bits = value;
	      high_bits = sign_bits;
	    }
	  bfd_put_32 (input_bfd, low_bits,
		      contents + rel->r_offset);
	  bfd_put_32 (input_bfd, high_bits,
		      contents + rel->r_offset + 4);
	  continue;
	}

      /* Actually perform the relocation.  */
      if (! mips_elf_perform_relocation (info, howto, rel, value,
					 input_bfd, input_section,
					 contents, require_jalx))
	return FALSE;
    }

  return TRUE;
}

/* If NAME is one of the special IRIX6 symbols defined by the linker,
   adjust it appropriately now.  */

static void
mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
     bfd *abfd ATTRIBUTE_UNUSED;
     const char *name;
     Elf_Internal_Sym *sym;
{
  /* The linker script takes care of providing names and values for
     these, but we must place them into the right sections.  */
  static const char* const text_section_symbols[] = {
    "_ftext",
    "_etext",
    "__dso_displacement",
    "__elf_header",
    "__program_header_table",
    NULL
  };

  static const char* const data_section_symbols[] = {
    "_fdata",
    "_edata",
    "_end",
    "_fbss",
    NULL
  };

  const char* const *p;
  int i;

  for (i = 0; i < 2; ++i)
    for (p = (i == 0) ? text_section_symbols : data_section_symbols;
	 *p;
	 ++p)
      if (strcmp (*p, name) == 0)
	{
	  /* All of these symbols are given type STT_SECTION by the
	     IRIX6 linker.  */
	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);

	  /* The IRIX linker puts these symbols in special sections.  */
	  if (i == 0)
	    sym->st_shndx = SHN_MIPS_TEXT;
	  else
	    sym->st_shndx = SHN_MIPS_DATA;

	  break;
	}
}

/* Finish up dynamic symbol handling.  We set the contents of various
   dynamic sections here.  */

bfd_boolean
_bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
     bfd *output_bfd;
     struct bfd_link_info *info;
     struct elf_link_hash_entry *h;
     Elf_Internal_Sym *sym;
{
  bfd *dynobj;
  bfd_vma gval;
  asection *sgot;
  asection *smsym;
  struct mips_got_info *g, *gg;
  const char *name;
  struct mips_elf_link_hash_entry *mh;

  dynobj = elf_hash_table (info)->dynobj;
  gval = sym->st_value;
  mh = (struct mips_elf_link_hash_entry *) h;

  if (h->plt.offset != (bfd_vma) -1)
    {
      asection *s;
      bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];

      /* This symbol has a stub.  Set it up.  */

      BFD_ASSERT (h->dynindx != -1);

      s = bfd_get_section_by_name (dynobj,
				   MIPS_ELF_STUB_SECTION_NAME (dynobj));
      BFD_ASSERT (s != NULL);

      /* FIXME: Can h->dynindex be more than 64K?  */
      if (h->dynindx & 0xffff0000)
	return FALSE;

      /* Fill the stub.  */
      bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
      bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
      bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
      bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);

      BFD_ASSERT (h->plt.offset <= s->_raw_size);
      memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);

      /* Mark the symbol as undefined.  plt.offset != -1 occurs
	 only for the referenced symbol.  */
      sym->st_shndx = SHN_UNDEF;

      /* The run-time linker uses the st_value field of the symbol
	 to reset the global offset table entry for this external
	 to its stub address when unlinking a shared object.  */
      gval = s->output_section->vma + s->output_offset + h->plt.offset;
      sym->st_value = gval;
    }

  BFD_ASSERT (h->dynindx != -1
	      || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);

  sgot = mips_elf_got_section (dynobj, FALSE);
  BFD_ASSERT (sgot != NULL);
  BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
  g = mips_elf_section_data (sgot)->u.got_info;
  BFD_ASSERT (g != NULL);

  /* Run through the global symbol table, creating GOT entries for all
     the symbols that need them.  */
  if (g->global_gotsym != NULL
      && h->dynindx >= g->global_gotsym->dynindx)
    {
      bfd_vma offset;
      bfd_vma value;

      if (sym->st_value)
	value = sym->st_value;
      else
	{
	  /* For an entity defined in a shared object, this will be
	     NULL.  (For functions in shared objects for
	     which we have created stubs, ST_VALUE will be non-NULL.
	     That's because such the functions are now no longer defined
	     in a shared object.)  */

	  if ((info->shared && h->root.type == bfd_link_hash_undefined)
	      || h->root.type == bfd_link_hash_undefweak)
	    value = 0;
	  else
	    value = h->root.u.def.value;
	}
      offset = mips_elf_global_got_index (dynobj, output_bfd, h);
      MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
    }

  if (g->next && h->dynindx != -1)
    {
      struct mips_got_entry e, *p;
      bfd_vma offset;
      bfd_vma value;
      Elf_Internal_Rela rel[3];
      bfd_vma addend = 0;

      gg = g;

      e.abfd = output_bfd;
      e.symndx = -1;
      e.d.h = (struct mips_elf_link_hash_entry *)h;

      if (info->shared
	  || h->root.type == bfd_link_hash_undefined
	  || h->root.type == bfd_link_hash_undefweak)
	value = 0;
      else if (sym->st_value)
	value = sym->st_value;
      else
	value = h->root.u.def.value;

      memset (rel, 0, sizeof (rel));
      rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);

      for (g = g->next; g->next != gg; g = g->next)
	{
	  if (g->got_entries
	      && (p = (struct mips_got_entry *) htab_find (g->got_entries,
							   &e)))
	    {
	      offset = p->gotidx;
	      rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;

	      MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);

	      if ((info->shared
		   || (elf_hash_table (info)->dynamic_sections_created
		       && p->d.h != NULL
		       && ((p->d.h->root.elf_link_hash_flags
			    & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
		       && ((p->d.h->root.elf_link_hash_flags
			    & ELF_LINK_HASH_DEF_REGULAR) == 0)))
		  && ! (mips_elf_create_dynamic_relocation
			(output_bfd, info, rel,
			 e.d.h, NULL, value, &addend, sgot)))
		return FALSE;
	      BFD_ASSERT (addend == 0);
	    }
	}
    }

  /* Create a .msym entry, if appropriate.  */
  smsym = bfd_get_section_by_name (dynobj, ".msym");
  if (smsym)
    {
      Elf32_Internal_Msym msym;

      msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
      /* It is undocumented what the `1' indicates, but IRIX6 uses
	 this value.  */
      msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
      bfd_mips_elf_swap_msym_out
	(dynobj, &msym,
	 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
    }

  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
  name = h->root.root.string;
  if (strcmp (name, "_DYNAMIC") == 0
      || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
    sym->st_shndx = SHN_ABS;
  else if (strcmp (name, "_DYNAMIC_LINK") == 0
	   || strcmp (name, "_DYNAMIC_LINKING") == 0)
    {
      sym->st_shndx = SHN_ABS;
      sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
      sym->st_value = 1;
    }
  else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
    {
      sym->st_shndx = SHN_ABS;
      sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
      sym->st_value = elf_gp (output_bfd);
    }
  else if (SGI_COMPAT (output_bfd))
    {
      if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
	  || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
	{
	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
	  sym->st_other = STO_PROTECTED;
	  sym->st_value = 0;
	  sym->st_shndx = SHN_MIPS_DATA;
	}
      else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
	{
	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
	  sym->st_other = STO_PROTECTED;
	  sym->st_value = mips_elf_hash_table (info)->procedure_count;
	  sym->st_shndx = SHN_ABS;
	}
      else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
	{
	  if (h->type == STT_FUNC)
	    sym->st_shndx = SHN_MIPS_TEXT;
	  else if (h->type == STT_OBJECT)
	    sym->st_shndx = SHN_MIPS_DATA;
	}
    }

  /* Handle the IRIX6-specific symbols.  */
  if (IRIX_COMPAT (output_bfd) == ict_irix6)
    mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);

  if (! info->shared)
    {
      if (! mips_elf_hash_table (info)->use_rld_obj_head
	  && (strcmp (name, "__rld_map") == 0
	      || strcmp (name, "__RLD_MAP") == 0))
	{
	  asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
	  BFD_ASSERT (s != NULL);
	  sym->st_value = s->output_section->vma + s->output_offset;
	  bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
	  if (mips_elf_hash_table (info)->rld_value == 0)
	    mips_elf_hash_table (info)->rld_value = sym->st_value;
	}
      else if (mips_elf_hash_table (info)->use_rld_obj_head
	       && strcmp (name, "__rld_obj_head") == 0)
	{
	  /* IRIX6 does not use a .rld_map section.  */
	  if (IRIX_COMPAT (output_bfd) == ict_irix5
              || IRIX_COMPAT (output_bfd) == ict_none)
	    BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
			!= NULL);
	  mips_elf_hash_table (info)->rld_value = sym->st_value;
	}
    }

  /* If this is a mips16 symbol, force the value to be even.  */
  if (sym->st_other == STO_MIPS16
      && (sym->st_value & 1) != 0)
    --sym->st_value;

  return TRUE;
}

/* Finish up the dynamic sections.  */

bfd_boolean
_bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
     bfd *output_bfd;
     struct bfd_link_info *info;
{
  bfd *dynobj;
  asection *sdyn;
  asection *sgot;
  struct mips_got_info *gg, *g;

  dynobj = elf_hash_table (info)->dynobj;

  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");

  sgot = mips_elf_got_section (dynobj, FALSE);
  if (sgot == NULL)
    gg = g = NULL;
  else
    {
      BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
      gg = mips_elf_section_data (sgot)->u.got_info;
      BFD_ASSERT (gg != NULL);
      g = mips_elf_got_for_ibfd (gg, output_bfd);
      BFD_ASSERT (g != NULL);
    }

  if (elf_hash_table (info)->dynamic_sections_created)
    {
      bfd_byte *b;

      BFD_ASSERT (sdyn != NULL);
      BFD_ASSERT (g != NULL);

      for (b = sdyn->contents;
	   b < sdyn->contents + sdyn->_raw_size;
	   b += MIPS_ELF_DYN_SIZE (dynobj))
	{
	  Elf_Internal_Dyn dyn;
	  const char *name;
	  size_t elemsize;
	  asection *s;
	  bfd_boolean swap_out_p;

	  /* Read in the current dynamic entry.  */
	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);

	  /* Assume that we're going to modify it and write it out.  */
	  swap_out_p = TRUE;

	  switch (dyn.d_tag)
	    {
	    case DT_RELENT:
	      s = mips_elf_rel_dyn_section (dynobj, FALSE);
	      BFD_ASSERT (s != NULL);
	      dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
	      break;

	    case DT_STRSZ:
	      /* Rewrite DT_STRSZ.  */
	      dyn.d_un.d_val =
		_bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
	      break;

	    case DT_PLTGOT:
	      name = ".got";
	      goto get_vma;
	    case DT_MIPS_CONFLICT:
	      name = ".conflict";
	      goto get_vma;
	    case DT_MIPS_LIBLIST:
	      name = ".liblist";
	    get_vma:
	      s = bfd_get_section_by_name (output_bfd, name);
	      BFD_ASSERT (s != NULL);
	      dyn.d_un.d_ptr = s->vma;
	      break;

	    case DT_MIPS_RLD_VERSION:
	      dyn.d_un.d_val = 1; /* XXX */
	      break;

	    case DT_MIPS_FLAGS:
	      dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
	      break;

	    case DT_MIPS_CONFLICTNO:
	      name = ".conflict";
	      elemsize = sizeof (Elf32_Conflict);
	      goto set_elemno;

	    case DT_MIPS_LIBLISTNO:
	      name = ".liblist";
	      elemsize = sizeof (Elf32_Lib);
	    set_elemno:
	      s = bfd_get_section_by_name (output_bfd, name);
	      if (s != NULL)
		{
		  if (s->_cooked_size != 0)
		    dyn.d_un.d_val = s->_cooked_size / elemsize;
		  else
		    dyn.d_un.d_val = s->_raw_size / elemsize;
		}
	      else
		dyn.d_un.d_val = 0;
	      break;

	    case DT_MIPS_TIME_STAMP:
	      time ((time_t *) &dyn.d_un.d_val);
	      break;

	    case DT_MIPS_ICHECKSUM:
	      /* XXX FIXME: */
	      swap_out_p = FALSE;
	      break;

	    case DT_MIPS_IVERSION:
	      /* XXX FIXME: */
	      swap_out_p = FALSE;
	      break;

	    case DT_MIPS_BASE_ADDRESS:
	      s = output_bfd->sections;
	      BFD_ASSERT (s != NULL);
	      dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
	      break;

	    case DT_MIPS_LOCAL_GOTNO:
	      dyn.d_un.d_val = g->local_gotno;
	      break;

	    case DT_MIPS_UNREFEXTNO:
	      /* The index into the dynamic symbol table which is the
		 entry of the first external symbol that is not
		 referenced within the same object.  */
	      dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
	      break;

	    case DT_MIPS_GOTSYM:
	      if (gg->global_gotsym)
		{
		  dyn.d_un.d_val = gg->global_gotsym->dynindx;
		  break;
		}
	      /* In case if we don't have global got symbols we default
		 to setting DT_MIPS_GOTSYM to the same value as
		 DT_MIPS_SYMTABNO, so we just fall through.  */

	    case DT_MIPS_SYMTABNO:
	      name = ".dynsym";
	      elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
	      s = bfd_get_section_by_name (output_bfd, name);
	      BFD_ASSERT (s != NULL);

	      if (s->_cooked_size != 0)
		dyn.d_un.d_val = s->_cooked_size / elemsize;
	      else
		dyn.d_un.d_val = s->_raw_size / elemsize;
	      break;

	    case DT_MIPS_HIPAGENO:
	      dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
	      break;

	    case DT_MIPS_RLD_MAP:
	      dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
	      break;

	    case DT_MIPS_OPTIONS:
	      s = (bfd_get_section_by_name
		   (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
	      dyn.d_un.d_ptr = s->vma;
	      break;

	    case DT_MIPS_MSYM:
	      s = (bfd_get_section_by_name (output_bfd, ".msym"));
	      dyn.d_un.d_ptr = s->vma;
	      break;

	    default:
	      swap_out_p = FALSE;
	      break;
	    }

	  if (swap_out_p)
	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
	      (dynobj, &dyn, b);
	}
    }

  /* The first entry of the global offset table will be filled at
     runtime. The second entry will be used by some runtime loaders.
     This isn't the case of IRIX rld.  */
  if (sgot != NULL && sgot->_raw_size > 0)
    {
      MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
      MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
			 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
    }

  if (sgot != NULL)
    elf_section_data (sgot->output_section)->this_hdr.sh_entsize
      = MIPS_ELF_GOT_SIZE (output_bfd);

  /* Generate dynamic relocations for the non-primary gots.  */
  if (gg != NULL && gg->next)
    {
      Elf_Internal_Rela rel[3];
      bfd_vma addend = 0;

      memset (rel, 0, sizeof (rel));
      rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);

      for (g = gg->next; g->next != gg; g = g->next)
	{
	  bfd_vma index = g->next->local_gotno + g->next->global_gotno;

	  MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
			     + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
	  MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
			     + index++ * MIPS_ELF_GOT_SIZE (output_bfd));

	  if (! info->shared)
	    continue;

	  while (index < g->assigned_gotno)
	    {
	      rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
		= index++ * MIPS_ELF_GOT_SIZE (output_bfd);
	      if (!(mips_elf_create_dynamic_relocation
		    (output_bfd, info, rel, NULL,
		     bfd_abs_section_ptr,
		     0, &addend, sgot)))
		return FALSE;
	      BFD_ASSERT (addend == 0);
	    }
	}
    }

  {
    asection *smsym;
    asection *s;
    Elf32_compact_rel cpt;

    /* ??? The section symbols for the output sections were set up in
       _bfd_elf_final_link.  SGI sets the STT_NOTYPE attribute for these
       symbols.  Should we do so?  */

    smsym = bfd_get_section_by_name (dynobj, ".msym");
    if (smsym != NULL)
      {
	Elf32_Internal_Msym msym;

	msym.ms_hash_value = 0;
	msym.ms_info = ELF32_MS_INFO (0, 1);

	for (s = output_bfd->sections; s != NULL; s = s->next)
	  {
	    long dynindx = elf_section_data (s)->dynindx;

	    bfd_mips_elf_swap_msym_out
	      (output_bfd, &msym,
	       (((Elf32_External_Msym *) smsym->contents)
		+ dynindx));
	  }
      }

    if (SGI_COMPAT (output_bfd))
      {
	/* Write .compact_rel section out.  */
	s = bfd_get_section_by_name (dynobj, ".compact_rel");
	if (s != NULL)
	  {
	    cpt.id1 = 1;
	    cpt.num = s->reloc_count;
	    cpt.id2 = 2;
	    cpt.offset = (s->output_section->filepos
			  + sizeof (Elf32_External_compact_rel));
	    cpt.reserved0 = 0;
	    cpt.reserved1 = 0;
	    bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
					    ((Elf32_External_compact_rel *)
					     s->contents));

	    /* Clean up a dummy stub function entry in .text.  */
	    s = bfd_get_section_by_name (dynobj,
					 MIPS_ELF_STUB_SECTION_NAME (dynobj));
	    if (s != NULL)
	      {
		file_ptr dummy_offset;

		BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
		dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
		memset (s->contents + dummy_offset, 0,
			MIPS_FUNCTION_STUB_SIZE);
	      }
	  }
      }

    /* We need to sort the entries of the dynamic relocation section.  */

    s = mips_elf_rel_dyn_section (dynobj, FALSE);

    if (s != NULL
	&& s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
      {
	reldyn_sorting_bfd = output_bfd;

	if (ABI_64_P (output_bfd))
	  qsort ((Elf64_External_Rel *) s->contents + 1,
		 (size_t) s->reloc_count - 1,
		 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
	else
	  qsort ((Elf32_External_Rel *) s->contents + 1,
		 (size_t) s->reloc_count - 1,
		 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
      }
  }

  return TRUE;
}


/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags.  */

static void
mips_set_isa_flags (abfd)
     bfd *abfd;
{
  flagword val;

  switch (bfd_get_mach (abfd))
    {
    default:
    case bfd_mach_mips3000:
      val = E_MIPS_ARCH_1;
      break;

    case bfd_mach_mips3900:
      val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
      break;

    case bfd_mach_mips6000:
      val = E_MIPS_ARCH_2;
      break;

    case bfd_mach_mips4000:
    case bfd_mach_mips4300:
    case bfd_mach_mips4400:
    case bfd_mach_mips4600:
      val = E_MIPS_ARCH_3;
      break;

    case bfd_mach_mips4010:
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
      break;

    case bfd_mach_mips4100:
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
      break;

    case bfd_mach_mips4111:
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
      break;

    case bfd_mach_mips4120:
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
      break;

    case bfd_mach_mips4650:
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
      break;

    case bfd_mach_mips5400:
      val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
      break;

    case bfd_mach_mips5500:
      val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
      break;

    case bfd_mach_mips5000:
    case bfd_mach_mips8000:
    case bfd_mach_mips10000:
    case bfd_mach_mips12000:
      val = E_MIPS_ARCH_4;
      break;

    case bfd_mach_mips5:
      val = E_MIPS_ARCH_5;
      break;

    case bfd_mach_mips_sb1:
      val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
      break;

    case bfd_mach_mipsisa32:
      val = E_MIPS_ARCH_32;
      break;

    case bfd_mach_mipsisa64:
      val = E_MIPS_ARCH_64;
      break;

    case bfd_mach_mipsisa32r2:
      val = E_MIPS_ARCH_32R2;
      break;
    }
  elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
  elf_elfheader (abfd)->e_flags |= val;

}


/* The final processing done just before writing out a MIPS ELF object
   file.  This gets the MIPS architecture right based on the machine
   number.  This is used by both the 32-bit and the 64-bit ABI.  */

void
_bfd_mips_elf_final_write_processing (abfd, linker)
     bfd *abfd;
     bfd_boolean linker ATTRIBUTE_UNUSED;
{
  unsigned int i;
  Elf_Internal_Shdr **hdrpp;
  const char *name;
  asection *sec;

  /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
     is nonzero.  This is for compatibility with old objects, which used
     a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH.  */
  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
    mips_set_isa_flags (abfd);

  /* Set the sh_info field for .gptab sections and other appropriate
     info for each special section.  */
  for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
       i < elf_numsections (abfd);
       i++, hdrpp++)
    {
      switch ((*hdrpp)->sh_type)
	{
	case SHT_MIPS_MSYM:
	case SHT_MIPS_LIBLIST:
	  sec = bfd_get_section_by_name (abfd, ".dynstr");
	  if (sec != NULL)
	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
	  break;

	case SHT_MIPS_GPTAB:
	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
	  BFD_ASSERT (name != NULL
		      && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
	  sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
	  BFD_ASSERT (sec != NULL);
	  (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
	  break;

	case SHT_MIPS_CONTENT:
	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
	  BFD_ASSERT (name != NULL
		      && strncmp (name, ".MIPS.content",
				  sizeof ".MIPS.content" - 1) == 0);
	  sec = bfd_get_section_by_name (abfd,
					 name + sizeof ".MIPS.content" - 1);
	  BFD_ASSERT (sec != NULL);
	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
	  break;

	case SHT_MIPS_SYMBOL_LIB:
	  sec = bfd_get_section_by_name (abfd, ".dynsym");
	  if (sec != NULL)
	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
	  sec = bfd_get_section_by_name (abfd, ".liblist");
	  if (sec != NULL)
	    (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
	  break;

	case SHT_MIPS_EVENTS:
	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
	  BFD_ASSERT (name != NULL);
	  if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
	    sec = bfd_get_section_by_name (abfd,
					   name + sizeof ".MIPS.events" - 1);
	  else
	    {
	      BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
				   sizeof ".MIPS.post_rel" - 1) == 0);
	      sec = bfd_get_section_by_name (abfd,
					     (name
					      + sizeof ".MIPS.post_rel" - 1));
	    }
	  BFD_ASSERT (sec != NULL);
	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
	  break;

	}
    }
}

/* When creating an IRIX5 executable, we need REGINFO and RTPROC
   segments.  */

int
_bfd_mips_elf_additional_program_headers (abfd)
     bfd *abfd;
{
  asection *s;
  int ret = 0;

  /* See if we need a PT_MIPS_REGINFO segment.  */
  s = bfd_get_section_by_name (abfd, ".reginfo");
  if (s && (s->flags & SEC_LOAD))
    ++ret;

  /* See if we need a PT_MIPS_OPTIONS segment.  */
  if (IRIX_COMPAT (abfd) == ict_irix6
      && bfd_get_section_by_name (abfd,
				  MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
    ++ret;

  /* See if we need a PT_MIPS_RTPROC segment.  */
  if (IRIX_COMPAT (abfd) == ict_irix5
      && bfd_get_section_by_name (abfd, ".dynamic")
      && bfd_get_section_by_name (abfd, ".mdebug"))
    ++ret;

  return ret;
}

/* Modify the segment map for an IRIX5 executable.  */

bfd_boolean
_bfd_mips_elf_modify_segment_map (abfd)
     bfd *abfd;
{
  asection *s;
  struct elf_segment_map *m, **pm;
  bfd_size_type amt;

  /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
     segment.  */
  s = bfd_get_section_by_name (abfd, ".reginfo");
  if (s != NULL && (s->flags & SEC_LOAD) != 0)
    {
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
	if (m->p_type == PT_MIPS_REGINFO)
	  break;
      if (m == NULL)
	{
	  amt = sizeof *m;
	  m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
	  if (m == NULL)
	    return FALSE;

	  m->p_type = PT_MIPS_REGINFO;
	  m->count = 1;
	  m->sections[0] = s;

	  /* We want to put it after the PHDR and INTERP segments.  */
	  pm = &elf_tdata (abfd)->segment_map;
	  while (*pm != NULL
		 && ((*pm)->p_type == PT_PHDR
		     || (*pm)->p_type == PT_INTERP))
	    pm = &(*pm)->next;

	  m->next = *pm;
	  *pm = m;
	}
    }

  /* For IRIX 6, we don't have .mdebug sections, nor does anything but
     .dynamic end up in PT_DYNAMIC.  However, we do have to insert a
     PT_OPTIONS segment immediately following the program header
     table.  */
  if (NEWABI_P (abfd)
      /* On non-IRIX6 new abi, we'll have already created a segment
	 for this section, so don't create another.  I'm not sure this
	 is not also the case for IRIX 6, but I can't test it right
	 now.  */
      && IRIX_COMPAT (abfd) == ict_irix6)
    {
      for (s = abfd->sections; s; s = s->next)
	if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
	  break;

      if (s)
	{
	  struct elf_segment_map *options_segment;

	  /* Usually, there's a program header table.  But, sometimes
	     there's not (like when running the `ld' testsuite).  So,
	     if there's no program header table, we just put the
	     options segment at the end.  */
	  for (pm = &elf_tdata (abfd)->segment_map;
	       *pm != NULL;
	       pm = &(*pm)->next)
	    if ((*pm)->p_type == PT_PHDR)
	      break;

	  amt = sizeof (struct elf_segment_map);
	  options_segment = bfd_zalloc (abfd, amt);
	  options_segment->next = *pm;
	  options_segment->p_type = PT_MIPS_OPTIONS;
	  options_segment->p_flags = PF_R;
	  options_segment->p_flags_valid = TRUE;
	  options_segment->count = 1;
	  options_segment->sections[0] = s;
	  *pm = options_segment;
	}
    }
  else
    {
      if (IRIX_COMPAT (abfd) == ict_irix5)
	{
	  /* If there are .dynamic and .mdebug sections, we make a room
	     for the RTPROC header.  FIXME: Rewrite without section names.  */
	  if (bfd_get_section_by_name (abfd, ".interp") == NULL
	      && bfd_get_section_by_name (abfd, ".dynamic") != NULL
	      && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
	    {
	      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
		if (m->p_type == PT_MIPS_RTPROC)
		  break;
	      if (m == NULL)
		{
		  amt = sizeof *m;
		  m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
		  if (m == NULL)
		    return FALSE;

		  m->p_type = PT_MIPS_RTPROC;

		  s = bfd_get_section_by_name (abfd, ".rtproc");
		  if (s == NULL)
		    {
		      m->count = 0;
		      m->p_flags = 0;
		      m->p_flags_valid = 1;
		    }
		  else
		    {
		      m->count = 1;
		      m->sections[0] = s;
		    }

		  /* We want to put it after the DYNAMIC segment.  */
		  pm = &elf_tdata (abfd)->segment_map;
		  while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
		    pm = &(*pm)->next;
		  if (*pm != NULL)
		    pm = &(*pm)->next;

		  m->next = *pm;
		  *pm = m;
		}
	    }
	}
      /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
	 .dynstr, .dynsym, and .hash sections, and everything in
	 between.  */
      for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
	   pm = &(*pm)->next)
	if ((*pm)->p_type == PT_DYNAMIC)
	  break;
      m = *pm;
      if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
	{
	  /* For a normal mips executable the permissions for the PT_DYNAMIC
	     segment are read, write and execute. We do that here since
	     the code in elf.c sets only the read permission. This matters
	     sometimes for the dynamic linker.  */
	  if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
	    {
	      m->p_flags = PF_R | PF_W | PF_X;
	      m->p_flags_valid = 1;
	    }
	}
      if (m != NULL
	  && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
	{
	  static const char *sec_names[] =
	  {
	    ".dynamic", ".dynstr", ".dynsym", ".hash"
	  };
	  bfd_vma low, high;
	  unsigned int i, c;
	  struct elf_segment_map *n;

	  low = 0xffffffff;
	  high = 0;
	  for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
	    {
	      s = bfd_get_section_by_name (abfd, sec_names[i]);
	      if (s != NULL && (s->flags & SEC_LOAD) != 0)
		{
		  bfd_size_type sz;

		  if (low > s->vma)
		    low = s->vma;
		  sz = s->_cooked_size;
		  if (sz == 0)
		    sz = s->_raw_size;
		  if (high < s->vma + sz)
		    high = s->vma + sz;
		}
	    }

	  c = 0;
	  for (s = abfd->sections; s != NULL; s = s->next)
	    if ((s->flags & SEC_LOAD) != 0
		&& s->vma >= low
		&& ((s->vma
		     + (s->_cooked_size !=
			0 ? s->_cooked_size : s->_raw_size)) <= high))
	      ++c;

	  amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
	  n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
	  if (n == NULL)
	    return FALSE;
	  *n = *m;
	  n->count = c;

	  i = 0;
	  for (s = abfd->sections; s != NULL; s = s->next)
	    {
	      if ((s->flags & SEC_LOAD) != 0
		  && s->vma >= low
		  && ((s->vma
		       + (s->_cooked_size != 0 ?
			  s->_cooked_size : s->_raw_size)) <= high))
		{
		  n->sections[i] = s;
		  ++i;
		}
	    }

	  *pm = n;
	}
    }

  return TRUE;
}

/* Return the section that should be marked against GC for a given
   relocation.  */

asection *
_bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
     asection *sec;
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
     Elf_Internal_Rela *rel;
     struct elf_link_hash_entry *h;
     Elf_Internal_Sym *sym;
{
  /* ??? Do mips16 stub sections need to be handled special?  */

  if (h != NULL)
    {
      switch (ELF_R_TYPE (sec->owner, rel->r_info))
	{
	case R_MIPS_GNU_VTINHERIT:
	case R_MIPS_GNU_VTENTRY:
	  break;

	default:
	  switch (h->root.type)
	    {
	    case bfd_link_hash_defined:
	    case bfd_link_hash_defweak:
	      return h->root.u.def.section;

	    case bfd_link_hash_common:
	      return h->root.u.c.p->section;

	    default:
	      break;
	    }
	}
    }
  else
    return bfd_section_from_elf_index (sec->owner, sym->st_shndx);

  return NULL;
}

/* Update the got entry reference counts for the section being removed.  */

bfd_boolean
_bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
     bfd *abfd ATTRIBUTE_UNUSED;
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
     asection *sec ATTRIBUTE_UNUSED;
     const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
{
#if 0
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  bfd_signed_vma *local_got_refcounts;
  const Elf_Internal_Rela *rel, *relend;
  unsigned long r_symndx;
  struct elf_link_hash_entry *h;

  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (abfd);
  local_got_refcounts = elf_local_got_refcounts (abfd);

  relend = relocs + sec->reloc_count;
  for (rel = relocs; rel < relend; rel++)
    switch (ELF_R_TYPE (abfd, rel->r_info))
      {
      case R_MIPS_GOT16:
      case R_MIPS_CALL16:
      case R_MIPS_CALL_HI16:
      case R_MIPS_CALL_LO16:
      case R_MIPS_GOT_HI16:
      case R_MIPS_GOT_LO16:
      case R_MIPS_GOT_DISP:
      case R_MIPS_GOT_PAGE:
      case R_MIPS_GOT_OFST:
	/* ??? It would seem that the existing MIPS code does no sort
	   of reference counting or whatnot on its GOT and PLT entries,
	   so it is not possible to garbage collect them at this time.  */
	break;

      default:
	break;
      }
#endif

  return TRUE;
}

/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
   hiding the old indirect symbol.  Process additional relocation
   information.  Also called for weakdefs, in which case we just let
   _bfd_elf_link_hash_copy_indirect copy the flags for us.  */

void
_bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
     struct elf_backend_data *bed;
     struct elf_link_hash_entry *dir, *ind;
{
  struct mips_elf_link_hash_entry *dirmips, *indmips;

  _bfd_elf_link_hash_copy_indirect (bed, dir, ind);

  if (ind->root.type != bfd_link_hash_indirect)
    return;

  dirmips = (struct mips_elf_link_hash_entry *) dir;
  indmips = (struct mips_elf_link_hash_entry *) ind;
  dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
  if (indmips->readonly_reloc)
    dirmips->readonly_reloc = TRUE;
  if (dirmips->min_dyn_reloc_index == 0
      || (indmips->min_dyn_reloc_index != 0
	  && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
    dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
  if (indmips->no_fn_stub)
    dirmips->no_fn_stub = TRUE;
}

void
_bfd_mips_elf_hide_symbol (info, entry, force_local)
     struct bfd_link_info *info;
     struct elf_link_hash_entry *entry;
     bfd_boolean force_local;
{
  bfd *dynobj;
  asection *got;
  struct mips_got_info *g;
  struct mips_elf_link_hash_entry *h;

  h = (struct mips_elf_link_hash_entry *) entry;
  if (h->forced_local)
    return;
  h->forced_local = force_local;

  dynobj = elf_hash_table (info)->dynobj;
  if (dynobj != NULL && force_local)
    {
      got = mips_elf_got_section (dynobj, FALSE);
      g = mips_elf_section_data (got)->u.got_info;

      if (g->next)
	{
	  struct mips_got_entry e;
	  struct mips_got_info *gg = g;

	  /* Since we're turning what used to be a global symbol into a
	     local one, bump up the number of local entries of each GOT
	     that had an entry for it.  This will automatically decrease
	     the number of global entries, since global_gotno is actually
	     the upper limit of global entries.  */
	  e.abfd = dynobj;
	  e.symndx = -1;
	  e.d.h = h;

	  for (g = g->next; g != gg; g = g->next)
	    if (htab_find (g->got_entries, &e))
	      {
		BFD_ASSERT (g->global_gotno > 0);
		g->local_gotno++;
		g->global_gotno--;
	      }

	  /* If this was a global symbol forced into the primary GOT, we
	     no longer need an entry for it.  We can't release the entry
	     at this point, but we must at least stop counting it as one
	     of the symbols that required a forced got entry.  */
	  if (h->root.got.offset == 2)
	    {
	      BFD_ASSERT (gg->assigned_gotno > 0);
	      gg->assigned_gotno--;
	    }
	}
      else if (g->global_gotno == 0 && g->global_gotsym == NULL)
	/* If we haven't got through GOT allocation yet, just bump up the
	   number of local entries, as this symbol won't be counted as
	   global.  */
	g->local_gotno++;
      else if (h->root.got.offset == 1)
	{
	  /* If we're past non-multi-GOT allocation and this symbol had
	     been marked for a global got entry, give it a local entry
	     instead.  */
	  BFD_ASSERT (g->global_gotno > 0);
	  g->local_gotno++;
	  g->global_gotno--;
	}
    }

  _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
}

#define PDR_SIZE 32

bfd_boolean
_bfd_mips_elf_discard_info (abfd, cookie, info)
     bfd *abfd;
     struct elf_reloc_cookie *cookie;
     struct bfd_link_info *info;
{
  asection *o;
  bfd_boolean ret = FALSE;
  unsigned char *tdata;
  size_t i, skip;

  o = bfd_get_section_by_name (abfd, ".pdr");
  if (! o)
    return FALSE;
  if (o->_raw_size == 0)
    return FALSE;
  if (o->_raw_size % PDR_SIZE != 0)
    return FALSE;
  if (o->output_section != NULL
      && bfd_is_abs_section (o->output_section))
    return FALSE;

  tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
  if (! tdata)
    return FALSE;

  cookie->rels = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
					    (Elf_Internal_Rela *) NULL,
					    info->keep_memory);
  if (!cookie->rels)
    {
      free (tdata);
      return FALSE;
    }

  cookie->rel = cookie->rels;
  cookie->relend = cookie->rels + o->reloc_count;

  for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++)
    {
      if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
	{
	  tdata[i] = 1;
	  skip ++;
	}
    }

  if (skip != 0)
    {
      mips_elf_section_data (o)->u.tdata = tdata;
      o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
      ret = TRUE;
    }
  else
    free (tdata);

  if (! info->keep_memory)
    free (cookie->rels);

  return ret;
}

bfd_boolean
_bfd_mips_elf_ignore_discarded_relocs (sec)
     asection *sec;
{
  if (strcmp (sec->name, ".pdr") == 0)
    return TRUE;
  return FALSE;
}

bfd_boolean
_bfd_mips_elf_write_section (output_bfd, sec, contents)
     bfd *output_bfd;
     asection *sec;
     bfd_byte *contents;
{
  bfd_byte *to, *from, *end;
  int i;

  if (strcmp (sec->name, ".pdr") != 0)
    return FALSE;

  if (mips_elf_section_data (sec)->u.tdata == NULL)
    return FALSE;

  to = contents;
  end = contents + sec->_raw_size;
  for (from = contents, i = 0;
       from < end;
       from += PDR_SIZE, i++)
    {
      if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
	continue;
      if (to != from)
	memcpy (to, from, PDR_SIZE);
      to += PDR_SIZE;
    }
  bfd_set_section_contents (output_bfd, sec->output_section, contents,
			    (file_ptr) sec->output_offset,
			    sec->_cooked_size);
  return TRUE;
}

/* MIPS ELF uses a special find_nearest_line routine in order the
   handle the ECOFF debugging information.  */

struct mips_elf_find_line
{
  struct ecoff_debug_info d;
  struct ecoff_find_line i;
};

bfd_boolean
_bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
				 functionname_ptr, line_ptr)
     bfd *abfd;
     asection *section;
     asymbol **symbols;
     bfd_vma offset;
     const char **filename_ptr;
     const char **functionname_ptr;
     unsigned int *line_ptr;
{
  asection *msec;

  if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
				     filename_ptr, functionname_ptr,
				     line_ptr))
    return TRUE;

  if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
				     filename_ptr, functionname_ptr,
				     line_ptr,
				     (unsigned) (ABI_64_P (abfd) ? 8 : 0),
				     &elf_tdata (abfd)->dwarf2_find_line_info))
    return TRUE;

  msec = bfd_get_section_by_name (abfd, ".mdebug");
  if (msec != NULL)
    {
      flagword origflags;
      struct mips_elf_find_line *fi;
      const struct ecoff_debug_swap * const swap =
	get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;

      /* If we are called during a link, mips_elf_final_link may have
	 cleared the SEC_HAS_CONTENTS field.  We force it back on here
	 if appropriate (which it normally will be).  */
      origflags = msec->flags;
      if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
	msec->flags |= SEC_HAS_CONTENTS;

      fi = elf_tdata (abfd)->find_line_info;
      if (fi == NULL)
	{
	  bfd_size_type external_fdr_size;
	  char *fraw_src;
	  char *fraw_end;
	  struct fdr *fdr_ptr;
	  bfd_size_type amt = sizeof (struct mips_elf_find_line);

	  fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
	  if (fi == NULL)
	    {
	      msec->flags = origflags;
	      return FALSE;
	    }

	  if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
	    {
	      msec->flags = origflags;
	      return FALSE;
	    }

	  /* Swap in the FDR information.  */
	  amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
	  fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
	  if (fi->d.fdr == NULL)
	    {
	      msec->flags = origflags;
	      return FALSE;
	    }
	  external_fdr_size = swap->external_fdr_size;
	  fdr_ptr = fi->d.fdr;
	  fraw_src = (char *) fi->d.external_fdr;
	  fraw_end = (fraw_src
		      + fi->d.symbolic_header.ifdMax * external_fdr_size);
	  for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
	    (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);

	  elf_tdata (abfd)->find_line_info = fi;

	  /* Note that we don't bother to ever free this information.
             find_nearest_line is either called all the time, as in
             objdump -l, so the information should be saved, or it is
             rarely called, as in ld error messages, so the memory
             wasted is unimportant.  Still, it would probably be a
             good idea for free_cached_info to throw it away.  */
	}

      if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
				  &fi->i, filename_ptr, functionname_ptr,
				  line_ptr))
	{
	  msec->flags = origflags;
	  return TRUE;
	}

      msec->flags = origflags;
    }

  /* Fall back on the generic ELF find_nearest_line routine.  */

  return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
				     filename_ptr, functionname_ptr,
				     line_ptr);
}

/* When are writing out the .options or .MIPS.options section,
   remember the bytes we are writing out, so that we can install the
   GP value in the section_processing routine.  */

bfd_boolean
_bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
     bfd *abfd;
     sec_ptr section;
     PTR location;
     file_ptr offset;
     bfd_size_type count;
{
  if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
    {
      bfd_byte *c;

      if (elf_section_data (section) == NULL)
	{
	  bfd_size_type amt = sizeof (struct bfd_elf_section_data);
	  section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
	  if (elf_section_data (section) == NULL)
	    return FALSE;
	}
      c = mips_elf_section_data (section)->u.tdata;
      if (c == NULL)
	{
	  bfd_size_type size;

	  if (section->_cooked_size != 0)
	    size = section->_cooked_size;
	  else
	    size = section->_raw_size;
	  c = (bfd_byte *) bfd_zalloc (abfd, size);
	  if (c == NULL)
	    return FALSE;
	  mips_elf_section_data (section)->u.tdata = c;
	}

      memcpy (c + offset, location, (size_t) count);
    }

  return _bfd_elf_set_section_contents (abfd, section, location, offset,
					count);
}

/* This is almost identical to bfd_generic_get_... except that some
   MIPS relocations need to be handled specially.  Sigh.  */

bfd_byte *
_bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
					      data, relocateable, symbols)
     bfd *abfd;
     struct bfd_link_info *link_info;
     struct bfd_link_order *link_order;
     bfd_byte *data;
     bfd_boolean relocateable;
     asymbol **symbols;
{
  /* Get enough memory to hold the stuff */
  bfd *input_bfd = link_order->u.indirect.section->owner;
  asection *input_section = link_order->u.indirect.section;

  long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
  arelent **reloc_vector = NULL;
  long reloc_count;

  if (reloc_size < 0)
    goto error_return;

  reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
  if (reloc_vector == NULL && reloc_size != 0)
    goto error_return;

  /* read in the section */
  if (!bfd_get_section_contents (input_bfd,
				 input_section,
				 (PTR) data,
				 (file_ptr) 0,
				 input_section->_raw_size))
    goto error_return;

  /* We're not relaxing the section, so just copy the size info */
  input_section->_cooked_size = input_section->_raw_size;
  input_section->reloc_done = TRUE;

  reloc_count = bfd_canonicalize_reloc (input_bfd,
					input_section,
					reloc_vector,
					symbols);
  if (reloc_count < 0)
    goto error_return;

  if (reloc_count > 0)
    {
      arelent **parent;
      /* for mips */
      int gp_found;
      bfd_vma gp = 0x12345678;	/* initialize just to shut gcc up */

      {
	struct bfd_hash_entry *h;
	struct bfd_link_hash_entry *lh;
	/* Skip all this stuff if we aren't mixing formats.  */
	if (abfd && input_bfd
	    && abfd->xvec == input_bfd->xvec)
	  lh = 0;
	else
	  {
	    h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
	    lh = (struct bfd_link_hash_entry *) h;
	  }
      lookup:
	if (lh)
	  {
	    switch (lh->type)
	      {
	      case bfd_link_hash_undefined:
	      case bfd_link_hash_undefweak:
	      case bfd_link_hash_common:
		gp_found = 0;
		break;
	      case bfd_link_hash_defined:
	      case bfd_link_hash_defweak:
		gp_found = 1;
		gp = lh->u.def.value;
		break;
	      case bfd_link_hash_indirect:
	      case bfd_link_hash_warning:
		lh = lh->u.i.link;
		/* @@FIXME  ignoring warning for now */
		goto lookup;
	      case bfd_link_hash_new:
	      default:
		abort ();
	      }
	  }
	else
	  gp_found = 0;
      }
      /* end mips */
      for (parent = reloc_vector; *parent != (arelent *) NULL;
	   parent++)
	{
	  char *error_message = (char *) NULL;
	  bfd_reloc_status_type r;

	  /* Specific to MIPS: Deal with relocation types that require
	     knowing the gp of the output bfd.  */
	  asymbol *sym = *(*parent)->sym_ptr_ptr;
	  if (bfd_is_abs_section (sym->section) && abfd)
	    {
	      /* The special_function wouldn't get called anyway.  */
	    }
	  else if (!gp_found)
	    {
	      /* The gp isn't there; let the special function code
		 fall over on its own.  */
	    }
	  else if ((*parent)->howto->special_function
		   == _bfd_mips_elf32_gprel16_reloc)
	    {
	      /* bypass special_function call */
	      r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
						 input_section, relocateable,
						 (PTR) data, gp);
	      goto skip_bfd_perform_relocation;
	    }
	  /* end mips specific stuff */

	  r = bfd_perform_relocation (input_bfd,
				      *parent,
				      (PTR) data,
				      input_section,
				      relocateable ? abfd : (bfd *) NULL,
				      &error_message);
	skip_bfd_perform_relocation:

	  if (relocateable)
	    {
	      asection *os = input_section->output_section;

	      /* A partial link, so keep the relocs */
	      os->orelocation[os->reloc_count] = *parent;
	      os->reloc_count++;
	    }

	  if (r != bfd_reloc_ok)
	    {
	      switch (r)
		{
		case bfd_reloc_undefined:
		  if (!((*link_info->callbacks->undefined_symbol)
			(link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
			 input_bfd, input_section, (*parent)->address,
			 TRUE)))
		    goto error_return;
		  break;
		case bfd_reloc_dangerous:
		  BFD_ASSERT (error_message != (char *) NULL);
		  if (!((*link_info->callbacks->reloc_dangerous)
			(link_info, error_message, input_bfd, input_section,
			 (*parent)->address)))
		    goto error_return;
		  break;
		case bfd_reloc_overflow:
		  if (!((*link_info->callbacks->reloc_overflow)
			(link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
			 (*parent)->howto->name, (*parent)->addend,
			 input_bfd, input_section, (*parent)->address)))
		    goto error_return;
		  break;
		case bfd_reloc_outofrange:
		default:
		  abort ();
		  break;
		}

	    }
	}
    }
  if (reloc_vector != NULL)
    free (reloc_vector);
  return data;

error_return:
  if (reloc_vector != NULL)
    free (reloc_vector);
  return NULL;
}

/* Create a MIPS ELF linker hash table.  */

struct bfd_link_hash_table *
_bfd_mips_elf_link_hash_table_create (abfd)
     bfd *abfd;
{
  struct mips_elf_link_hash_table *ret;
  bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);

  ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
  if (ret == (struct mips_elf_link_hash_table *) NULL)
    return NULL;

  if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
				       mips_elf_link_hash_newfunc))
    {
      free (ret);
      return NULL;
    }

#if 0
  /* We no longer use this.  */
  for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
    ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
#endif
  ret->procedure_count = 0;
  ret->compact_rel_size = 0;
  ret->use_rld_obj_head = FALSE;
  ret->rld_value = 0;
  ret->mips16_stubs_seen = FALSE;

  return &ret->root.root;
}

/* We need to use a special link routine to handle the .reginfo and
   the .mdebug sections.  We need to merge all instances of these
   sections together, not write them all out sequentially.  */

bfd_boolean
_bfd_mips_elf_final_link (abfd, info)
     bfd *abfd;
     struct bfd_link_info *info;
{
  asection **secpp;
  asection *o;
  struct bfd_link_order *p;
  asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
  asection *rtproc_sec;
  Elf32_RegInfo reginfo;
  struct ecoff_debug_info debug;
  const struct ecoff_debug_swap *swap
    = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
  HDRR *symhdr = &debug.symbolic_header;
  PTR mdebug_handle = NULL;
  asection *s;
  EXTR esym;
  unsigned int i;
  bfd_size_type amt;

  static const char * const secname[] =
  {
    ".text", ".init", ".fini", ".data",
    ".rodata", ".sdata", ".sbss", ".bss"
  };
  static const int sc[] =
  {
    scText, scInit, scFini, scData,
    scRData, scSData, scSBss, scBss
  };

  /* We'd carefully arranged the dynamic symbol indices, and then the
     generic size_dynamic_sections renumbered them out from under us.
     Rather than trying somehow to prevent the renumbering, just do
     the sort again.  */
  if (elf_hash_table (info)->dynamic_sections_created)
    {
      bfd *dynobj;
      asection *got;
      struct mips_got_info *g;

      /* When we resort, we must tell mips_elf_sort_hash_table what
	 the lowest index it may use is.  That's the number of section
	 symbols we're going to add.  The generic ELF linker only
	 adds these symbols when building a shared object.  Note that
	 we count the sections after (possibly) removing the .options
	 section above.  */
      if (! mips_elf_sort_hash_table (info, (info->shared
					     ? bfd_count_sections (abfd) + 1
					     : 1)))
	return FALSE;

      /* Make sure we didn't grow the global .got region.  */
      dynobj = elf_hash_table (info)->dynobj;
      got = mips_elf_got_section (dynobj, FALSE);
      g = mips_elf_section_data (got)->u.got_info;

      if (g->global_gotsym != NULL)
	BFD_ASSERT ((elf_hash_table (info)->dynsymcount
		     - g->global_gotsym->dynindx)
		    <= g->global_gotno);
    }

#if 0
  /* We want to set the GP value for ld -r.  */
  /* On IRIX5, we omit the .options section.  On IRIX6, however, we
     include it, even though we don't process it quite right.  (Some
     entries are supposed to be merged.)  Empirically, we seem to be
     better off including it then not.  */
  if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
    for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
      {
	if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
	  {
	    for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
	      if (p->type == bfd_indirect_link_order)
		p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
	    (*secpp)->link_order_head = NULL;
	    bfd_section_list_remove (abfd, secpp);
	    --abfd->section_count;

	    break;
	  }
      }

  /* We include .MIPS.options, even though we don't process it quite right.
     (Some entries are supposed to be merged.)  At IRIX6 empirically we seem
     to be better off including it than not.  */
  for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
    {
      if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
	{
	  for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
	    if (p->type == bfd_indirect_link_order)
	      p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
	  (*secpp)->link_order_head = NULL;
	  bfd_section_list_remove (abfd, secpp);
	  --abfd->section_count;

	  break;
	}
    }
#endif

  /* Get a value for the GP register.  */
  if (elf_gp (abfd) == 0)
    {
      struct bfd_link_hash_entry *h;

      h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
      if (h != (struct bfd_link_hash_entry *) NULL
	  && h->type == bfd_link_hash_defined)
	elf_gp (abfd) = (h->u.def.value
			 + h->u.def.section->output_section->vma
			 + h->u.def.section->output_offset);
      else if (info->relocateable)
	{
	  bfd_vma lo = MINUS_ONE;

	  /* Find the GP-relative section with the lowest offset.  */
	  for (o = abfd->sections; o != (asection *) NULL; o = o->next)
	    if (o->vma < lo
		&& (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
	      lo = o->vma;

	  /* And calculate GP relative to that.  */
	  elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
	}
      else
	{
	  /* If the relocate_section function needs to do a reloc
	     involving the GP value, it should make a reloc_dangerous
	     callback to warn that GP is not defined.  */
	}
    }

  /* Go through the sections and collect the .reginfo and .mdebug
     information.  */
  reginfo_sec = NULL;
  mdebug_sec = NULL;
  gptab_data_sec = NULL;
  gptab_bss_sec = NULL;
  for (o = abfd->sections; o != (asection *) NULL; o = o->next)
    {
      if (strcmp (o->name, ".reginfo") == 0)
	{
	  memset (&reginfo, 0, sizeof reginfo);

	  /* We have found the .reginfo section in the output file.
	     Look through all the link_orders comprising it and merge
	     the information together.  */
	  for (p = o->link_order_head;
	       p != (struct bfd_link_order *) NULL;
	       p = p->next)
	    {
	      asection *input_section;
	      bfd *input_bfd;
	      Elf32_External_RegInfo ext;
	      Elf32_RegInfo sub;

	      if (p->type != bfd_indirect_link_order)
		{
		  if (p->type == bfd_data_link_order)
		    continue;
		  abort ();
		}

	      input_section = p->u.indirect.section;
	      input_bfd = input_section->owner;

	      /* The linker emulation code has probably clobbered the
                 size to be zero bytes.  */
	      if (input_section->_raw_size == 0)
		input_section->_raw_size = sizeof (Elf32_External_RegInfo);

	      if (! bfd_get_section_contents (input_bfd, input_section,
					      (PTR) &ext,
					      (file_ptr) 0,
					      (bfd_size_type) sizeof ext))
		return FALSE;

	      bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);

	      reginfo.ri_gprmask |= sub.ri_gprmask;
	      reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
	      reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
	      reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
	      reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];

	      /* ri_gp_value is set by the function
		 mips_elf32_section_processing when the section is
		 finally written out.  */

	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
		 elf_link_input_bfd ignores this section.  */
	      input_section->flags &= ~SEC_HAS_CONTENTS;
	    }

	  /* Size has been set in _bfd_mips_elf_always_size_sections.  */
	  BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));

	  /* Skip this section later on (I don't think this currently
	     matters, but someday it might).  */
	  o->link_order_head = (struct bfd_link_order *) NULL;

	  reginfo_sec = o;
	}

      if (strcmp (o->name, ".mdebug") == 0)
	{
	  struct extsym_info einfo;
	  bfd_vma last;

	  /* We have found the .mdebug section in the output file.
	     Look through all the link_orders comprising it and merge
	     the information together.  */
	  symhdr->magic = swap->sym_magic;
	  /* FIXME: What should the version stamp be?  */
	  symhdr->vstamp = 0;
	  symhdr->ilineMax = 0;
	  symhdr->cbLine = 0;
	  symhdr->idnMax = 0;
	  symhdr->ipdMax = 0;
	  symhdr->isymMax = 0;
	  symhdr->ioptMax = 0;
	  symhdr->iauxMax = 0;
	  symhdr->issMax = 0;
	  symhdr->issExtMax = 0;
	  symhdr->ifdMax = 0;
	  symhdr->crfd = 0;
	  symhdr->iextMax = 0;

	  /* We accumulate the debugging information itself in the
	     debug_info structure.  */
	  debug.line = NULL;
	  debug.external_dnr = NULL;
	  debug.external_pdr = NULL;
	  debug.external_sym = NULL;
	  debug.external_opt = NULL;
	  debug.external_aux = NULL;
	  debug.ss = NULL;
	  debug.ssext = debug.ssext_end = NULL;
	  debug.external_fdr = NULL;
	  debug.external_rfd = NULL;
	  debug.external_ext = debug.external_ext_end = NULL;

	  mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
	  if (mdebug_handle == (PTR) NULL)
	    return FALSE;

	  esym.jmptbl = 0;
	  esym.cobol_main = 0;
	  esym.weakext = 0;
	  esym.reserved = 0;
	  esym.ifd = ifdNil;
	  esym.asym.iss = issNil;
	  esym.asym.st = stLocal;
	  esym.asym.reserved = 0;
	  esym.asym.index = indexNil;
	  last = 0;
	  for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
	    {
	      esym.asym.sc = sc[i];
	      s = bfd_get_section_by_name (abfd, secname[i]);
	      if (s != NULL)
		{
		  esym.asym.value = s->vma;
		  last = s->vma + s->_raw_size;
		}
	      else
		esym.asym.value = last;
	      if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
						 secname[i], &esym))
		return FALSE;
	    }

	  for (p = o->link_order_head;
	       p != (struct bfd_link_order *) NULL;
	       p = p->next)
	    {
	      asection *input_section;
	      bfd *input_bfd;
	      const struct ecoff_debug_swap *input_swap;
	      struct ecoff_debug_info input_debug;
	      char *eraw_src;
	      char *eraw_end;

	      if (p->type != bfd_indirect_link_order)
		{
		  if (p->type == bfd_data_link_order)
		    continue;
		  abort ();
		}

	      input_section = p->u.indirect.section;
	      input_bfd = input_section->owner;

	      if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
		  || (get_elf_backend_data (input_bfd)
		      ->elf_backend_ecoff_debug_swap) == NULL)
		{
		  /* I don't know what a non MIPS ELF bfd would be
		     doing with a .mdebug section, but I don't really
		     want to deal with it.  */
		  continue;
		}

	      input_swap = (get_elf_backend_data (input_bfd)
			    ->elf_backend_ecoff_debug_swap);

	      BFD_ASSERT (p->size == input_section->_raw_size);

	      /* The ECOFF linking code expects that we have already
		 read in the debugging information and set up an
		 ecoff_debug_info structure, so we do that now.  */
	      if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
						   &input_debug))
		return FALSE;

	      if (! (bfd_ecoff_debug_accumulate
		     (mdebug_handle, abfd, &debug, swap, input_bfd,
		      &input_debug, input_swap, info)))
		return FALSE;

	      /* Loop through the external symbols.  For each one with
		 interesting information, try to find the symbol in
		 the linker global hash table and save the information
		 for the output external symbols.  */
	      eraw_src = input_debug.external_ext;
	      eraw_end = (eraw_src
			  + (input_debug.symbolic_header.iextMax
			     * input_swap->external_ext_size));
	      for (;
		   eraw_src < eraw_end;
		   eraw_src += input_swap->external_ext_size)
		{
		  EXTR ext;
		  const char *name;
		  struct mips_elf_link_hash_entry *h;

		  (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
		  if (ext.asym.sc == scNil
		      || ext.asym.sc == scUndefined
		      || ext.asym.sc == scSUndefined)
		    continue;

		  name = input_debug.ssext + ext.asym.iss;
		  h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
						 name, FALSE, FALSE, TRUE);
		  if (h == NULL || h->esym.ifd != -2)
		    continue;

		  if (ext.ifd != -1)
		    {
		      BFD_ASSERT (ext.ifd
				  < input_debug.symbolic_header.ifdMax);
		      ext.ifd = input_debug.ifdmap[ext.ifd];
		    }

		  h->esym = ext;
		}

	      /* Free up the information we just read.  */
	      free (input_debug.line);
	      free (input_debug.external_dnr);
	      free (input_debug.external_pdr);
	      free (input_debug.external_sym);
	      free (input_debug.external_opt);
	      free (input_debug.external_aux);
	      free (input_debug.ss);
	      free (input_debug.ssext);
	      free (input_debug.external_fdr);
	      free (input_debug.external_rfd);
	      free (input_debug.external_ext);

	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
		 elf_link_input_bfd ignores this section.  */
	      input_section->flags &= ~SEC_HAS_CONTENTS;
	    }

	  if (SGI_COMPAT (abfd) && info->shared)
	    {
	      /* Create .rtproc section.  */
	      rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
	      if (rtproc_sec == NULL)
		{
		  flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
				    | SEC_LINKER_CREATED | SEC_READONLY);

		  rtproc_sec = bfd_make_section (abfd, ".rtproc");
		  if (rtproc_sec == NULL
		      || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
		      || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
		    return FALSE;
		}

	      if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
						     info, rtproc_sec,
						     &debug))
		return FALSE;
	    }

	  /* Build the external symbol information.  */
	  einfo.abfd = abfd;
	  einfo.info = info;
	  einfo.debug = &debug;
	  einfo.swap = swap;
	  einfo.failed = FALSE;
	  mips_elf_link_hash_traverse (mips_elf_hash_table (info),
				       mips_elf_output_extsym,
				       (PTR) &einfo);
	  if (einfo.failed)
	    return FALSE;

	  /* Set the size of the .mdebug section.  */
	  o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);

	  /* Skip this section later on (I don't think this currently
	     matters, but someday it might).  */
	  o->link_order_head = (struct bfd_link_order *) NULL;

	  mdebug_sec = o;
	}

      if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
	{
	  const char *subname;
	  unsigned int c;
	  Elf32_gptab *tab;
	  Elf32_External_gptab *ext_tab;
	  unsigned int j;

	  /* The .gptab.sdata and .gptab.sbss sections hold
	     information describing how the small data area would
	     change depending upon the -G switch.  These sections
	     not used in executables files.  */
	  if (! info->relocateable)
	    {
	      for (p = o->link_order_head;
		   p != (struct bfd_link_order *) NULL;
		   p = p->next)
		{
		  asection *input_section;

		  if (p->type != bfd_indirect_link_order)
		    {
		      if (p->type == bfd_data_link_order)
			continue;
		      abort ();
		    }

		  input_section = p->u.indirect.section;

		  /* Hack: reset the SEC_HAS_CONTENTS flag so that
		     elf_link_input_bfd ignores this section.  */
		  input_section->flags &= ~SEC_HAS_CONTENTS;
		}

	      /* Skip this section later on (I don't think this
		 currently matters, but someday it might).  */
	      o->link_order_head = (struct bfd_link_order *) NULL;

	      /* Really remove the section.  */
	      for (secpp = &abfd->sections;
		   *secpp != o;
		   secpp = &(*secpp)->next)
		;
	      bfd_section_list_remove (abfd, secpp);
	      --abfd->section_count;

	      continue;
	    }

	  /* There is one gptab for initialized data, and one for
	     uninitialized data.  */
	  if (strcmp (o->name, ".gptab.sdata") == 0)
	    gptab_data_sec = o;
	  else if (strcmp (o->name, ".gptab.sbss") == 0)
	    gptab_bss_sec = o;
	  else
	    {
	      (*_bfd_error_handler)
		(_("%s: illegal section name `%s'"),
		 bfd_get_filename (abfd), o->name);
	      bfd_set_error (bfd_error_nonrepresentable_section);
	      return FALSE;
	    }

	  /* The linker script always combines .gptab.data and
	     .gptab.sdata into .gptab.sdata, and likewise for
	     .gptab.bss and .gptab.sbss.  It is possible that there is
	     no .sdata or .sbss section in the output file, in which
	     case we must change the name of the output section.  */
	  subname = o->name + sizeof ".gptab" - 1;
	  if (bfd_get_section_by_name (abfd, subname) == NULL)
	    {
	      if (o == gptab_data_sec)
		o->name = ".gptab.data";
	      else
		o->name = ".gptab.bss";
	      subname = o->name + sizeof ".gptab" - 1;
	      BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
	    }

	  /* Set up the first entry.  */
	  c = 1;
	  amt = c * sizeof (Elf32_gptab);
	  tab = (Elf32_gptab *) bfd_malloc (amt);
	  if (tab == NULL)
	    return FALSE;
	  tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
	  tab[0].gt_header.gt_unused = 0;

	  /* Combine the input sections.  */
	  for (p = o->link_order_head;
	       p != (struct bfd_link_order *) NULL;
	       p = p->next)
	    {
	      asection *input_section;
	      bfd *input_bfd;
	      bfd_size_type size;
	      unsigned long last;
	      bfd_size_type gpentry;

	      if (p->type != bfd_indirect_link_order)
		{
		  if (p->type == bfd_data_link_order)
		    continue;
		  abort ();
		}

	      input_section = p->u.indirect.section;
	      input_bfd = input_section->owner;

	      /* Combine the gptab entries for this input section one
		 by one.  We know that the input gptab entries are
		 sorted by ascending -G value.  */
	      size = bfd_section_size (input_bfd, input_section);
	      last = 0;
	      for (gpentry = sizeof (Elf32_External_gptab);
		   gpentry < size;
		   gpentry += sizeof (Elf32_External_gptab))
		{
		  Elf32_External_gptab ext_gptab;
		  Elf32_gptab int_gptab;
		  unsigned long val;
		  unsigned long add;
		  bfd_boolean exact;
		  unsigned int look;

		  if (! (bfd_get_section_contents
			 (input_bfd, input_section, (PTR) &ext_gptab,
			  (file_ptr) gpentry,
			  (bfd_size_type) sizeof (Elf32_External_gptab))))
		    {
		      free (tab);
		      return FALSE;
		    }

		  bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
						&int_gptab);
		  val = int_gptab.gt_entry.gt_g_value;
		  add = int_gptab.gt_entry.gt_bytes - last;

		  exact = FALSE;
		  for (look = 1; look < c; look++)
		    {
		      if (tab[look].gt_entry.gt_g_value >= val)
			tab[look].gt_entry.gt_bytes += add;

		      if (tab[look].gt_entry.gt_g_value == val)
			exact = TRUE;
		    }

		  if (! exact)
		    {
		      Elf32_gptab *new_tab;
		      unsigned int max;

		      /* We need a new table entry.  */
		      amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
		      new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
		      if (new_tab == NULL)
			{
			  free (tab);
			  return FALSE;
			}
		      tab = new_tab;
		      tab[c].gt_entry.gt_g_value = val;
		      tab[c].gt_entry.gt_bytes = add;

		      /* Merge in the size for the next smallest -G
			 value, since that will be implied by this new
			 value.  */
		      max = 0;
		      for (look = 1; look < c; look++)
			{
			  if (tab[look].gt_entry.gt_g_value < val
			      && (max == 0
				  || (tab[look].gt_entry.gt_g_value
				      > tab[max].gt_entry.gt_g_value)))
			    max = look;
			}
		      if (max != 0)
			tab[c].gt_entry.gt_bytes +=
			  tab[max].gt_entry.gt_bytes;

		      ++c;
		    }

		  last = int_gptab.gt_entry.gt_bytes;
		}

	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
		 elf_link_input_bfd ignores this section.  */
	      input_section->flags &= ~SEC_HAS_CONTENTS;
	    }

	  /* The table must be sorted by -G value.  */
	  if (c > 2)
	    qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);

	  /* Swap out the table.  */
	  amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
	  ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
	  if (ext_tab == NULL)
	    {
	      free (tab);
	      return FALSE;
	    }

	  for (j = 0; j < c; j++)
	    bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
	  free (tab);

	  o->_raw_size = c * sizeof (Elf32_External_gptab);
	  o->contents = (bfd_byte *) ext_tab;

	  /* Skip this section later on (I don't think this currently
	     matters, but someday it might).  */
	  o->link_order_head = (struct bfd_link_order *) NULL;
	}
    }

  /* Invoke the regular ELF backend linker to do all the work.  */
  if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
    return FALSE;

  /* Now write out the computed sections.  */

  if (reginfo_sec != (asection *) NULL)
    {
      Elf32_External_RegInfo ext;

      bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
      if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
				      (file_ptr) 0,
				      (bfd_size_type) sizeof ext))
	return FALSE;
    }

  if (mdebug_sec != (asection *) NULL)
    {
      BFD_ASSERT (abfd->output_has_begun);
      if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
					       swap, info,
					       mdebug_sec->filepos))
	return FALSE;

      bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
    }

  if (gptab_data_sec != (asection *) NULL)
    {
      if (! bfd_set_section_contents (abfd, gptab_data_sec,
				      gptab_data_sec->contents,
				      (file_ptr) 0,
				      gptab_data_sec->_raw_size))
	return FALSE;
    }

  if (gptab_bss_sec != (asection *) NULL)
    {
      if (! bfd_set_section_contents (abfd, gptab_bss_sec,
				      gptab_bss_sec->contents,
				      (file_ptr) 0,
				      gptab_bss_sec->_raw_size))
	return FALSE;
    }

  if (SGI_COMPAT (abfd))
    {
      rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
      if (rtproc_sec != NULL)
	{
	  if (! bfd_set_section_contents (abfd, rtproc_sec,
					  rtproc_sec->contents,
					  (file_ptr) 0,
					  rtproc_sec->_raw_size))
	    return FALSE;
	}
    }

  return TRUE;
}

/* Structure for saying that BFD machine EXTENSION extends BASE.  */

struct mips_mach_extension {
  unsigned long extension, base;
};


/* An array describing how BFD machines relate to one another.  The entries
   are ordered topologically with MIPS I extensions listed last.  */

static const struct mips_mach_extension mips_mach_extensions[] = {
  /* MIPS64 extensions.  */
  { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },

  /* MIPS V extensions.  */
  { bfd_mach_mipsisa64, bfd_mach_mips5 },

  /* R10000 extensions.  */
  { bfd_mach_mips12000, bfd_mach_mips10000 },

  /* R5000 extensions.  Note: the vr5500 ISA is an extension of the core
     vr5400 ISA, but doesn't include the multimedia stuff.  It seems
     better to allow vr5400 and vr5500 code to be merged anyway, since
     many libraries will just use the core ISA.  Perhaps we could add
     some sort of ASE flag if this ever proves a problem.  */
  { bfd_mach_mips5500, bfd_mach_mips5400 },
  { bfd_mach_mips5400, bfd_mach_mips5000 },

  /* MIPS IV extensions.  */
  { bfd_mach_mips5, bfd_mach_mips8000 },
  { bfd_mach_mips10000, bfd_mach_mips8000 },
  { bfd_mach_mips5000, bfd_mach_mips8000 },

  /* VR4100 extensions.  */
  { bfd_mach_mips4120, bfd_mach_mips4100 },
  { bfd_mach_mips4111, bfd_mach_mips4100 },

  /* MIPS III extensions.  */
  { bfd_mach_mips8000, bfd_mach_mips4000 },
  { bfd_mach_mips4650, bfd_mach_mips4000 },
  { bfd_mach_mips4600, bfd_mach_mips4000 },
  { bfd_mach_mips4400, bfd_mach_mips4000 },
  { bfd_mach_mips4300, bfd_mach_mips4000 },
  { bfd_mach_mips4100, bfd_mach_mips4000 },
  { bfd_mach_mips4010, bfd_mach_mips4000 },

  /* MIPS32 extensions.  */
  { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },

  /* MIPS II extensions.  */
  { bfd_mach_mips4000, bfd_mach_mips6000 },
  { bfd_mach_mipsisa32, bfd_mach_mips6000 },

  /* MIPS I extensions.  */
  { bfd_mach_mips6000, bfd_mach_mips3000 },
  { bfd_mach_mips3900, bfd_mach_mips3000 }
};


/* Return true if bfd machine EXTENSION is an extension of machine BASE.  */

static bfd_boolean
mips_mach_extends_p (base, extension)
     unsigned long base, extension;
{
  size_t i;

  for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
    if (extension == mips_mach_extensions[i].extension)
      extension = mips_mach_extensions[i].base;

  return extension == base;
}


/* Return true if the given ELF header flags describe a 32-bit binary.  */

static bfd_boolean
mips_32bit_flags_p (flags)
     flagword flags;
{
  return ((flags & EF_MIPS_32BITMODE) != 0
	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
}


/* Merge backend specific data from an object file to the output
   object file when linking.  */

bfd_boolean
_bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
     bfd *ibfd;
     bfd *obfd;
{
  flagword old_flags;
  flagword new_flags;
  bfd_boolean ok;
  bfd_boolean null_input_bfd = TRUE;
  asection *sec;

  /* Check if we have the same endianess */
  if (! _bfd_generic_verify_endian_match (ibfd, obfd))
    {
      (*_bfd_error_handler)
	(_("%s: endianness incompatible with that of the selected emulation"),
	 bfd_archive_filename (ibfd));
      return FALSE;
    }

  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
    return TRUE;

  if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
    {
      (*_bfd_error_handler)
	(_("%s: ABI is incompatible with that of the selected emulation"),
	 bfd_archive_filename (ibfd));
      return FALSE;
    }

  new_flags = elf_elfheader (ibfd)->e_flags;
  elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
  old_flags = elf_elfheader (obfd)->e_flags;

  if (! elf_flags_init (obfd))
    {
      elf_flags_init (obfd) = TRUE;
      elf_elfheader (obfd)->e_flags = new_flags;
      elf_elfheader (obfd)->e_ident[EI_CLASS]
	= elf_elfheader (ibfd)->e_ident[EI_CLASS];

      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
	  && bfd_get_arch_info (obfd)->the_default)
	{
	  if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
				   bfd_get_mach (ibfd)))
	    return FALSE;
	}

      return TRUE;
    }

  /* Check flag compatibility.  */

  new_flags &= ~EF_MIPS_NOREORDER;
  old_flags &= ~EF_MIPS_NOREORDER;

  /* Some IRIX 6 BSD-compatibility objects have this bit set.  It
     doesn't seem to matter.  */
  new_flags &= ~EF_MIPS_XGOT;
  old_flags &= ~EF_MIPS_XGOT;

  if (new_flags == old_flags)
    return TRUE;

  /* Check to see if the input BFD actually contains any sections.
     If not, its flags may not have been initialised either, but it cannot
     actually cause any incompatibility.  */
  for (sec = ibfd->sections; sec != NULL; sec = sec->next)
    {
      /* Ignore synthetic sections and empty .text, .data and .bss sections
	  which are automatically generated by gas.  */
      if (strcmp (sec->name, ".reginfo")
	  && strcmp (sec->name, ".mdebug")
	  && ((!strcmp (sec->name, ".text")
	       || !strcmp (sec->name, ".data")
	       || !strcmp (sec->name, ".bss"))
	      && sec->_raw_size != 0))
	{
	  null_input_bfd = FALSE;
	  break;
	}
    }
  if (null_input_bfd)
    return TRUE;

  ok = TRUE;

  if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
      != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
    {
      (*_bfd_error_handler)
	(_("%s: warning: linking PIC files with non-PIC files"),
	 bfd_archive_filename (ibfd));
      ok = TRUE;
    }

  if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
    elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
  if (! (new_flags & EF_MIPS_PIC))
    elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;

  new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
  old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);

  /* Compare the ISAs.  */
  if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
    {
      (*_bfd_error_handler)
	(_("%s: linking 32-bit code with 64-bit code"),
	 bfd_archive_filename (ibfd));
      ok = FALSE;
    }
  else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
    {
      /* OBFD's ISA isn't the same as, or an extension of, IBFD's.  */
      if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
	{
	  /* Copy the architecture info from IBFD to OBFD.  Also copy
	     the 32-bit flag (if set) so that we continue to recognise
	     OBFD as a 32-bit binary.  */
	  bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
	  elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
	  elf_elfheader (obfd)->e_flags
	    |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);

	  /* Copy across the ABI flags if OBFD doesn't use them
	     and if that was what caused us to treat IBFD as 32-bit.  */
	  if ((old_flags & EF_MIPS_ABI) == 0
	      && mips_32bit_flags_p (new_flags)
	      && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
	    elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
	}
      else
	{
	  /* The ISAs aren't compatible.  */
	  (*_bfd_error_handler)
	    (_("%s: linking %s module with previous %s modules"),
	     bfd_archive_filename (ibfd),
	     bfd_printable_name (ibfd),
	     bfd_printable_name (obfd));
	  ok = FALSE;
	}
    }

  new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
  old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);

  /* Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI.  But, it
     does set EI_CLASS differently from any 32-bit ABI.  */
  if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
      || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
	  != elf_elfheader (obfd)->e_ident[EI_CLASS]))
    {
      /* Only error if both are set (to different values).  */
      if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
	  || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
	      != elf_elfheader (obfd)->e_ident[EI_CLASS]))
	{
	  (*_bfd_error_handler)
	    (_("%s: ABI mismatch: linking %s module with previous %s modules"),
	     bfd_archive_filename (ibfd),
	     elf_mips_abi_name (ibfd),
	     elf_mips_abi_name (obfd));
	  ok = FALSE;
	}
      new_flags &= ~EF_MIPS_ABI;
      old_flags &= ~EF_MIPS_ABI;
    }

  /* For now, allow arbitrary mixing of ASEs (retain the union).  */
  if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
    {
      elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;

      new_flags &= ~ EF_MIPS_ARCH_ASE;
      old_flags &= ~ EF_MIPS_ARCH_ASE;
    }

  /* Warn about any other mismatches */
  if (new_flags != old_flags)
    {
      (*_bfd_error_handler)
	(_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
	 bfd_archive_filename (ibfd), (unsigned long) new_flags,
	 (unsigned long) old_flags);
      ok = FALSE;
    }

  if (! ok)
    {
      bfd_set_error (bfd_error_bad_value);
      return FALSE;
    }

  return TRUE;
}

/* Function to keep MIPS specific file flags like as EF_MIPS_PIC.  */

bfd_boolean
_bfd_mips_elf_set_private_flags (abfd, flags)
     bfd *abfd;
     flagword flags;
{
  BFD_ASSERT (!elf_flags_init (abfd)
	      || elf_elfheader (abfd)->e_flags == flags);

  elf_elfheader (abfd)->e_flags = flags;
  elf_flags_init (abfd) = TRUE;
  return TRUE;
}

bfd_boolean
_bfd_mips_elf_print_private_bfd_data (abfd, ptr)
     bfd *abfd;
     PTR ptr;
{
  FILE *file = (FILE *) ptr;

  BFD_ASSERT (abfd != NULL && ptr != NULL);

  /* Print normal ELF private data.  */
  _bfd_elf_print_private_bfd_data (abfd, ptr);

  /* xgettext:c-format */
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);

  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
    fprintf (file, _(" [abi=O32]"));
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
    fprintf (file, _(" [abi=O64]"));
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
    fprintf (file, _(" [abi=EABI32]"));
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
    fprintf (file, _(" [abi=EABI64]"));
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
    fprintf (file, _(" [abi unknown]"));
  else if (ABI_N32_P (abfd))
    fprintf (file, _(" [abi=N32]"));
  else if (ABI_64_P (abfd))
    fprintf (file, _(" [abi=64]"));
  else
    fprintf (file, _(" [no abi set]"));

  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
    fprintf (file, _(" [mips1]"));
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
    fprintf (file, _(" [mips2]"));
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
    fprintf (file, _(" [mips3]"));
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
    fprintf (file, _(" [mips4]"));
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
    fprintf (file, _(" [mips5]"));
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
    fprintf (file, _(" [mips32]"));
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
    fprintf (file, _(" [mips64]"));
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
    fprintf (file, _(" [mips32r2]"));
  else
    fprintf (file, _(" [unknown ISA]"));

  if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
    fprintf (file, _(" [mdmx]"));

  if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
    fprintf (file, _(" [mips16]"));

  if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
    fprintf (file, _(" [32bitmode]"));
  else
    fprintf (file, _(" [not 32bitmode]"));

  fputc ('\n', file);

  return TRUE;
}