cp1.c 37.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
/*> cp1.c <*/
/* MIPS Simulator FPU (CoProcessor 1) support.
   Copyright (C) 2002 Free Software Foundation, Inc.
   Originally created by Cygnus Solutions.  Extensive modifications,
   including paired-single operation support and MIPS-3D support
   contributed by Ed Satterthwaite and Chris Demetriou, of Broadcom
   Corporation (SiByte).

This file is part of GDB, the GNU debugger.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

/* XXX: The following notice should be removed as soon as is practical:  */
/* Floating Point Support for gdb MIPS simulators

   This file is part of the MIPS sim

		THIS SOFTWARE IS NOT COPYRIGHTED
   (by Cygnus.)

   Cygnus offers the following for use in the public domain.  Cygnus
   makes no warranty with regard to the software or it's performance
   and the user accepts the software "AS IS" with all faults.

   CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO
   THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
   MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

   (Originally, this code was in interp.c)
*/

#include "sim-main.h"

/* Within cp1.c we refer to sim_cpu directly.  */
#define CPU cpu
#define SD CPU_STATE(cpu)

/*-- FPU support routines ---------------------------------------------------*/

/* Numbers are held in normalized form. The SINGLE and DOUBLE binary
   formats conform to ANSI/IEEE Std 754-1985.

   SINGLE precision floating:
      seeeeeeeefffffffffffffffffffffff
        s =  1bit  = sign
        e =  8bits = exponent
        f = 23bits = fraction

   SINGLE precision fixed:
      siiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
        s =  1bit  = sign
        i = 31bits = integer

   DOUBLE precision floating:
      seeeeeeeeeeeffffffffffffffffffffffffffffffffffffffffffffffffffff
        s =  1bit  = sign
        e = 11bits = exponent
        f = 52bits = fraction

   DOUBLE precision fixed:
      siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
        s =  1bit  = sign
        i = 63bits = integer

   PAIRED SINGLE precision floating:
      seeeeeeeefffffffffffffffffffffffseeeeeeeefffffffffffffffffffffff
      |         upper                ||         lower                |
        s =  1bit  = sign
        e =  8bits = exponent
        f = 23bits = fraction
    Note: upper = [63..32], lower = [31..0]
 */

/* Extract packed single values:  */
#define FP_PS_upper(v) (((v) >> 32) & (unsigned)0xFFFFFFFF)
#define FP_PS_lower(v) ((v) & (unsigned)0xFFFFFFFF)
#define FP_PS_cat(u,l) (((unsigned64)((u) & (unsigned)0xFFFFFFFF) << 32) \
                        | (unsigned64)((l) & 0xFFFFFFFF))

/* Explicit QNaN values.  */
#define FPQNaN_SINGLE   (0x7FBFFFFF)
#define FPQNaN_WORD     (0x7FFFFFFF)
#define FPQNaN_DOUBLE   (UNSIGNED64 (0x7FF7FFFFFFFFFFFF))
#define FPQNaN_LONG     (UNSIGNED64 (0x7FFFFFFFFFFFFFFF))
#define FPQNaN_PS       (FP_PS_cat (FPQNaN_SINGLE, FPQNaN_SINGLE))

static const char *fpu_format_name (FP_formats fmt);
#ifdef DEBUG
static const char *fpu_rounding_mode_name (int rm);
#endif

uword64
value_fpr (sim_cpu *cpu,
	   address_word cia,
	   int fpr,
	   FP_formats fmt)
{
  uword64 value = 0;
  int err = 0;

  /* Treat unused register values, as fixed-point 64bit values.  */
  if ((fmt == fmt_uninterpreted) || (fmt == fmt_unknown))
    {
#if 1
      /* If request to read data as "uninterpreted", then use the current
	 encoding:  */
      fmt = FPR_STATE[fpr];
#else
      fmt = fmt_long;
#endif
    }

  /* For values not yet accessed, set to the desired format.  */
  if (FPR_STATE[fpr] == fmt_uninterpreted)
    {
      FPR_STATE[fpr] = fmt;
#ifdef DEBUG
      printf ("DBG: Register %d was fmt_uninterpreted. Now %s\n", fpr,
	      fpu_format_name (fmt));
#endif /* DEBUG */
    }
  if (fmt != FPR_STATE[fpr])
    {
      sim_io_eprintf (SD, "FPR %d (format %s) being accessed with format %s - setting to unknown (PC = 0x%s)\n",
		      fpr, fpu_format_name (FPR_STATE[fpr]),
		      fpu_format_name (fmt), pr_addr (cia));
      FPR_STATE[fpr] = fmt_unknown;
    }

  if (FPR_STATE[fpr] == fmt_unknown)
    {
      /* Set QNaN value:  */
      switch (fmt)
	{
	case fmt_single:  value = FPQNaN_SINGLE;  break;
	case fmt_double:  value = FPQNaN_DOUBLE;  break;
	case fmt_word:    value = FPQNaN_WORD;    break;
	case fmt_long:    value = FPQNaN_LONG;    break;
	case fmt_ps:      value = FPQNaN_PS;      break;
	default:          err = -1;               break;
	}
    }
  else if (SizeFGR () == 64)
    {
      switch (fmt)
	{
	case fmt_single:
	case fmt_word:
	  value = (FGR[fpr] & 0xFFFFFFFF);
	  break;

	case fmt_uninterpreted:
	case fmt_double:
	case fmt_long:
	case fmt_ps:
	  value = FGR[fpr];
	  break;

	default:
	  err = -1;
	  break;
	}
    }
  else
    {
      switch (fmt)
	{
	case fmt_single:
	case fmt_word:
	  value = (FGR[fpr] & 0xFFFFFFFF);
	  break;

	case fmt_uninterpreted:
	case fmt_double:
	case fmt_long:
	  if ((fpr & 1) == 0)
	    {
	      /* Even register numbers only.  */
#ifdef DEBUG
	      printf ("DBG: ValueFPR: FGR[%d] = %s, FGR[%d] = %s\n",
		      fpr + 1, pr_uword64 ((uword64) FGR[fpr+1]),
		      fpr, pr_uword64 ((uword64) FGR[fpr]));
#endif
	      value = ((((uword64) FGR[fpr+1]) << 32)
		       | (FGR[fpr] & 0xFFFFFFFF));
	    }
	  else
	    {
	      SignalException (ReservedInstruction, 0);
	    }
	  break;

	case fmt_ps:
	  SignalException (ReservedInstruction, 0);
	  break;

	default:
	  err = -1;
	  break;
	}
    }

  if (err)
    SignalExceptionSimulatorFault ("Unrecognised FP format in ValueFPR ()");

#ifdef DEBUG
  printf ("DBG: ValueFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR () = %d\n",
	  fpr, fpu_format_name (fmt), pr_uword64 (value), pr_addr (cia),
	  SizeFGR ());
#endif /* DEBUG */

  return (value);
}

void
store_fpr (sim_cpu *cpu,
	   address_word cia,
	   int fpr,
	   FP_formats fmt,
	   uword64 value)
{
  int err = 0;

#ifdef DEBUG
  printf ("DBG: StoreFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR () = %d, \n",
	  fpr, fpu_format_name (fmt), pr_uword64 (value), pr_addr (cia),
	  SizeFGR ());
#endif /* DEBUG */

  if (SizeFGR () == 64)
    {
      switch (fmt)
	{
	case fmt_uninterpreted_32:
	  fmt = fmt_uninterpreted;
	case fmt_single:
	case fmt_word:
	  if (STATE_VERBOSE_P (SD))
	    sim_io_eprintf (SD,
			    "Warning: PC 0x%s: interp.c store_fpr DEADCODE\n",
			    pr_addr (cia));
	  FGR[fpr] = (((uword64) 0xDEADC0DE << 32) | (value & 0xFFFFFFFF));
	  FPR_STATE[fpr] = fmt;
	  break;

	case fmt_uninterpreted_64:
	  fmt = fmt_uninterpreted;
	case fmt_uninterpreted:
	case fmt_double:
	case fmt_long:
	case fmt_ps:
	  FGR[fpr] = value;
	  FPR_STATE[fpr] = fmt;
	  break;

	default:
	  FPR_STATE[fpr] = fmt_unknown;
	  err = -1;
	  break;
	}
    }
  else
    {
      switch (fmt)
	{
	case fmt_uninterpreted_32:
	  fmt = fmt_uninterpreted;
	case fmt_single:
	case fmt_word:
	  FGR[fpr] = (value & 0xFFFFFFFF);
	  FPR_STATE[fpr] = fmt;
	  break;

	case fmt_uninterpreted_64:
	  fmt = fmt_uninterpreted;
	case fmt_uninterpreted:
	case fmt_double:
	case fmt_long:
	  if ((fpr & 1) == 0)
	    {
	      /* Even register numbers only.  */
	      FGR[fpr+1] = (value >> 32);
	      FGR[fpr] = (value & 0xFFFFFFFF);
	      FPR_STATE[fpr + 1] = fmt;
	      FPR_STATE[fpr] = fmt;
	    }
	  else
	    {
	      FPR_STATE[fpr] = fmt_unknown;
	      FPR_STATE[fpr + 1] = fmt_unknown;
	      SignalException (ReservedInstruction, 0);
	    }
	  break;

	case fmt_ps:
	  FPR_STATE[fpr] = fmt_unknown;
	  SignalException (ReservedInstruction, 0);
	  break;

	default:
	  FPR_STATE[fpr] = fmt_unknown;
	  err = -1;
	  break;
	}
    }

  if (err)
    SignalExceptionSimulatorFault ("Unrecognised FP format in StoreFPR ()");

#ifdef DEBUG
  printf ("DBG: StoreFPR: fpr[%d] = 0x%s (format %s)\n",
	  fpr, pr_uword64 (FGR[fpr]), fpu_format_name (fmt));
#endif /* DEBUG */

  return;
}


/* CP1 control/status register access functions.  */

void
test_fcsr (sim_cpu *cpu,
	   address_word cia)
{
  unsigned int cause;

  cause = (FCSR & fcsr_CAUSE_mask) >> fcsr_CAUSE_shift;
  if ((cause & ((FCSR & fcsr_ENABLES_mask) >> fcsr_ENABLES_shift)) != 0
      || (cause & (1 << UO)))
    {
      SignalExceptionFPE();
    }
}

unsigned_word
value_fcr(sim_cpu *cpu,
	  address_word cia,
	  int fcr)
{
  unsigned32 value = 0;

  switch (fcr)
    {
    case 0:  /* FP Implementation and Revision Register.  */
      value = FCR0;
      break;
    case 25:  /* FP Condition Codes Register (derived from FCSR).  */
      value = (FCR31 & fcsr_FCC_mask) >> fcsr_FCC_shift;
      value = (value & 0x1) | (value >> 1);   /* Close FCC gap.  */
      break;
    case 26:  /* FP Exceptions Register (derived from FCSR).  */
      value = FCR31 & (fcsr_CAUSE_mask | fcsr_FLAGS_mask);
      break;
    case 28:  /* FP Enables Register (derived from FCSR).  */
      value = FCR31 & (fcsr_ENABLES_mask | fcsr_RM_mask);
      if ((FCR31 & fcsr_FS) != 0)
	value |= fenr_FS;
      break;
    case 31:  /* FP Control/Status Register (FCSR).  */
      value = FCR31 & ~fcsr_ZERO_mask;
      break;
    }

  return (EXTEND32 (value));
}

void
store_fcr(sim_cpu *cpu,
	  address_word cia,
	  int fcr,
	  unsigned_word value)
{
  unsigned32 v;

  v = VL4_8(value);
  switch (fcr)
    {
    case 25:  /* FP Condition Codes Register (stored into FCSR).  */
      v = (v << 1) | (v & 0x1);             /* Adjust for FCC gap.  */
      FCR31 &= ~fcsr_FCC_mask;
      FCR31 |= ((v << fcsr_FCC_shift) & fcsr_FCC_mask);
      break;
    case 26:  /* FP Exceptions Register (stored into FCSR).  */
      FCR31 &= ~(fcsr_CAUSE_mask | fcsr_FLAGS_mask);
      FCR31 |= (v & (fcsr_CAUSE_mask | fcsr_FLAGS_mask));
      test_fcsr(cpu, cia);
      break;
    case 28:  /* FP Enables Register (stored into FCSR).  */
      if ((v & fenr_FS) != 0)
	v |= fcsr_FS;
      else
	v &= ~fcsr_FS;
      FCR31 &= (fcsr_FCC_mask | fcsr_CAUSE_mask | fcsr_FLAGS_mask);
      FCR31 |= (v & (fcsr_FS | fcsr_ENABLES_mask | fcsr_RM_mask));
      test_fcsr(cpu, cia);
      break;
    case 31:  /* FP Control/Status Register (FCSR).  */
      FCR31 = v & ~fcsr_ZERO_mask;
      test_fcsr(cpu, cia);
      break;
    }
}

void
update_fcsr (sim_cpu *cpu,
	     address_word cia,
	     sim_fpu_status status)
{
  FCSR &= ~fcsr_CAUSE_mask;

  if (status != 0)
    {
      unsigned int cause = 0;

      /* map between sim_fpu codes and MIPS FCSR */
      if (status & (sim_fpu_status_invalid_snan
		    | sim_fpu_status_invalid_isi
		    | sim_fpu_status_invalid_idi
		    | sim_fpu_status_invalid_zdz
		    | sim_fpu_status_invalid_imz
		    | sim_fpu_status_invalid_cmp
		    | sim_fpu_status_invalid_sqrt
		    | sim_fpu_status_invalid_cvi))
	cause |= (1 << IO);
      if (status & sim_fpu_status_invalid_div0)
	cause |= (1 << DZ);
      if (status & sim_fpu_status_overflow)
	cause |= (1 << OF);
      if (status & sim_fpu_status_underflow)
	cause |= (1 << UF);
      if (status & sim_fpu_status_inexact)
	cause |= (1 << IR);
#if 0 /* Not yet.  */
      /* Implicit clearing of other bits by unimplemented done by callers.  */
      if (status & sim_fpu_status_unimplemented)
	cause |= (1 << UO);
#endif

      FCSR |= (cause << fcsr_CAUSE_shift);
      test_fcsr (cpu, cia);
      FCSR |= ((cause & ~(1 << UO)) << fcsr_FLAGS_shift);
    }
  return;
}

static sim_fpu_round
rounding_mode(int rm)
{
  sim_fpu_round round;

  switch (rm)
    {
    case FP_RM_NEAREST:
      /* Round result to nearest representable value. When two
	 representable values are equally near, round to the value
	 that has a least significant bit of zero (i.e. is even).  */
      round = sim_fpu_round_near;
      break;
    case FP_RM_TOZERO:
      /* Round result to the value closest to, and not greater in
	 magnitude than, the result.  */
      round = sim_fpu_round_zero;
      break;
    case FP_RM_TOPINF:
      /* Round result to the value closest to, and not less than,
	 the result.  */
      round = sim_fpu_round_up;
      break;
    case FP_RM_TOMINF:
      /* Round result to the value closest to, and not greater than,
	 the result.  */
      round = sim_fpu_round_down;
      break;
    default:
      round = 0;
      fprintf (stderr, "Bad switch\n");
      abort ();
    }
  return round;
}

/* When the FS bit is set, MIPS processors return zero for
   denormalized results and optionally replace denormalized inputs
   with zero.  When FS is clear, some implementation trap on input
   and/or output, while other perform the operation in hardware.  */
static sim_fpu_denorm
denorm_mode(sim_cpu *cpu)
{
  sim_fpu_denorm denorm;

  /* XXX: FIXME: Eventually should be CPU model dependent.  */
  if (GETFS())
    denorm = sim_fpu_denorm_zero;
  else
    denorm = 0;
  return denorm;
}


/* Comparison operations.  */

static sim_fpu_status
fp_test(unsigned64 op1,
	unsigned64 op2,
	FP_formats fmt,
	int abs,
	int cond,
	int *condition)
{
  sim_fpu wop1;
  sim_fpu wop2;
  sim_fpu_status status = 0;
  int  less, equal, unordered;

  /* The format type has already been checked:  */
  switch (fmt)
    {
    case fmt_single:
      {
	sim_fpu_32to (&wop1, op1);
	sim_fpu_32to (&wop2, op2);
	break;
      }
    case fmt_double:
      {
	sim_fpu_64to (&wop1, op1);
	sim_fpu_64to (&wop2, op2);
	break;
      }
    default:
      fprintf (stderr, "Bad switch\n");
      abort ();
    }

  if (sim_fpu_is_nan (&wop1) || sim_fpu_is_nan (&wop2))
    {
      if ((cond & (1 << 3)) ||
	  sim_fpu_is_snan (&wop1) || sim_fpu_is_snan (&wop2))
	status = sim_fpu_status_invalid_snan;
      less = 0;
      equal = 0;
      unordered = 1;
    }
  else
    {
      if (abs)
	{
	  status |= sim_fpu_abs (&wop1, &wop1);
	  status |= sim_fpu_abs (&wop2, &wop2);
	}
      equal = sim_fpu_is_eq (&wop1, &wop2);
      less = !equal && sim_fpu_is_lt (&wop1, &wop2);
      unordered = 0;
    }
  *condition = (((cond & (1 << 2)) && less)
		|| ((cond & (1 << 1)) && equal)
		|| ((cond & (1 << 0)) && unordered));
  return status;
}

void
fp_cmp(sim_cpu *cpu,
       address_word cia,
       unsigned64 op1,
       unsigned64 op2,
       FP_formats fmt,
       int abs,
       int cond,
       int cc)
{
  sim_fpu_status status = 0;

  /* The format type should already have been checked.  The FCSR is
     updated before the condition codes so that any exceptions will
     be signalled before the condition codes are changed.  */
  switch (fmt)
    {
    case fmt_single:
    case fmt_double:
      {
	int result;
	status = fp_test(op1, op2, fmt, abs, cond, &result);
	update_fcsr (cpu, cia, status);
	SETFCC (cc, result);
	break;
      }
    case fmt_ps:
      {
	int result0, result1;
	status  = fp_test(FP_PS_lower (op1), FP_PS_lower (op2), fmt_single,
			  abs, cond, &result0);
	status |= fp_test(FP_PS_upper (op1), FP_PS_upper (op2), fmt_single,
			  abs, cond, &result1);
	update_fcsr (cpu, cia, status);
	SETFCC (cc, result0);
	SETFCC (cc+1, result1);
	break;
      }
    default:
      sim_io_eprintf (SD, "Bad switch\n");
      abort ();
    }
}


/* Basic arithmetic operations.  */

static unsigned64
fp_unary(sim_cpu *cpu,
	 address_word cia,
	 int (*sim_fpu_op)(sim_fpu *, const sim_fpu *),
	 unsigned64 op,
	 FP_formats fmt)
{
  sim_fpu wop;
  sim_fpu ans;
  sim_fpu_round round = rounding_mode (GETRM());
  sim_fpu_denorm denorm = denorm_mode (cpu);
  sim_fpu_status status = 0;
  unsigned64 result = 0;

  /* The format type has already been checked: */
  switch (fmt)
    {
    case fmt_single:
      {
	unsigned32 res;
	sim_fpu_32to (&wop, op);
	status |= (*sim_fpu_op) (&ans, &wop);
	status |= sim_fpu_round_32 (&ans, round, denorm);
	sim_fpu_to32 (&res, &ans);
	result = res;
	break;
      }
    case fmt_double:
      {
	unsigned64 res;
	sim_fpu_64to (&wop, op);
	status |= (*sim_fpu_op) (&ans, &wop);
	status |= sim_fpu_round_64 (&ans, round, denorm);
	sim_fpu_to64 (&res, &ans);
	result = res;
	break;
      }
    case fmt_ps:
      {
	int status_u = 0, status_l = 0;
	unsigned32 res_u, res_l;
	sim_fpu_32to (&wop, FP_PS_upper(op));
	status_u |= (*sim_fpu_op) (&ans, &wop);
	sim_fpu_to32 (&res_u, &ans);
	sim_fpu_32to (&wop, FP_PS_lower(op));
	status_l |= (*sim_fpu_op) (&ans, &wop);
	sim_fpu_to32 (&res_l, &ans);
	result = FP_PS_cat(res_u, res_l);
	status = status_u | status_l;
	break;
      }
    default:
      sim_io_eprintf (SD, "Bad switch\n");
      abort ();
    }

  update_fcsr (cpu, cia, status);
  return result;
}

static unsigned64
fp_binary(sim_cpu *cpu,
	  address_word cia,
	  int (*sim_fpu_op)(sim_fpu *, const sim_fpu *, const sim_fpu *),
	  unsigned64 op1,
	  unsigned64 op2,
	  FP_formats fmt)
{
  sim_fpu wop1;
  sim_fpu wop2;
  sim_fpu ans;
  sim_fpu_round round = rounding_mode (GETRM());
  sim_fpu_denorm denorm = denorm_mode (cpu);
  sim_fpu_status status = 0;
  unsigned64 result = 0;

  /* The format type has already been checked: */
  switch (fmt)
    {
    case fmt_single:
      {
	unsigned32 res;
	sim_fpu_32to (&wop1, op1);
	sim_fpu_32to (&wop2, op2);
	status |= (*sim_fpu_op) (&ans, &wop1, &wop2);
	status |= sim_fpu_round_32 (&ans, round, denorm);
	sim_fpu_to32 (&res, &ans);
	result = res;
	break;
      }
    case fmt_double:
      {
	unsigned64 res;
	sim_fpu_64to (&wop1, op1);
	sim_fpu_64to (&wop2, op2);
	status |= (*sim_fpu_op) (&ans, &wop1, &wop2);
	status |= sim_fpu_round_64 (&ans, round, denorm);
	sim_fpu_to64 (&res, &ans);
	result = res;
	break;
      }
    case fmt_ps:
      {
	int status_u = 0, status_l = 0;
	unsigned32 res_u, res_l;
	sim_fpu_32to (&wop1, FP_PS_upper(op1));
	sim_fpu_32to (&wop2, FP_PS_upper(op2));
	status_u |= (*sim_fpu_op) (&ans, &wop1, &wop2);
	sim_fpu_to32 (&res_u, &ans);
	sim_fpu_32to (&wop1, FP_PS_lower(op1));
	sim_fpu_32to (&wop2, FP_PS_lower(op2));
	status_l |= (*sim_fpu_op) (&ans, &wop1, &wop2);
	sim_fpu_to32 (&res_l, &ans);
	result = FP_PS_cat(res_u, res_l);
	status = status_u | status_l;
	break;
      }
    default:
      sim_io_eprintf (SD, "Bad switch\n");
      abort ();
    }

  update_fcsr (cpu, cia, status);
  return result;
}

/* Common MAC code for single operands (.s or .d), defers setting FCSR.  */
static sim_fpu_status
inner_mac(int (*sim_fpu_op)(sim_fpu *, const sim_fpu *, const sim_fpu *),
	  unsigned64 op1,
	  unsigned64 op2,
	  unsigned64 op3,
	  int scale,
	  int negate,
	  FP_formats fmt,
	  sim_fpu_round round,
	  sim_fpu_denorm denorm,
	  unsigned64 *result)
{
  sim_fpu wop1;
  sim_fpu wop2;
  sim_fpu ans;
  sim_fpu_status status = 0;
  sim_fpu_status op_status;
  unsigned64 temp = 0;

  switch (fmt)
    {
    case fmt_single:
      {
	unsigned32 res;
	sim_fpu_32to (&wop1, op1);
	sim_fpu_32to (&wop2, op2);
	status |= sim_fpu_mul (&ans, &wop1, &wop2);
	if (scale != 0 && sim_fpu_is_number (&ans))  /* number or denorm */
	  ans.normal_exp += scale;
	status |= sim_fpu_round_32 (&ans, round, denorm);
	wop1 = ans;
        op_status = 0;
	sim_fpu_32to (&wop2, op3);
	op_status |= (*sim_fpu_op) (&ans, &wop1, &wop2);
	op_status |= sim_fpu_round_32 (&ans, round, denorm);
	status |= op_status;
	if (negate)
	  {
	    wop1 = ans;
	    op_status = sim_fpu_neg (&ans, &wop1);
	    op_status |= sim_fpu_round_32 (&ans, round, denorm);
	    status |= op_status;
	  }
	sim_fpu_to32 (&res, &ans);
	temp = res;
	break;
      }
    case fmt_double:
      {
	unsigned64 res;
	sim_fpu_64to (&wop1, op1);
	sim_fpu_64to (&wop2, op2);
	status |= sim_fpu_mul (&ans, &wop1, &wop2);
	if (scale != 0 && sim_fpu_is_number (&ans))  /* number or denorm */
	  ans.normal_exp += scale;
	status |= sim_fpu_round_64 (&ans, round, denorm);
	wop1 = ans;
        op_status = 0;
	sim_fpu_64to (&wop2, op3);
	op_status |= (*sim_fpu_op) (&ans, &wop1, &wop2);
	op_status |= sim_fpu_round_64 (&ans, round, denorm);
	status |= op_status;
	if (negate)
	  {
	    wop1 = ans;
	    op_status = sim_fpu_neg (&ans, &wop1);
	    op_status |= sim_fpu_round_64 (&ans, round, denorm);
	    status |= op_status;
	  }
	sim_fpu_to64 (&res, &ans);
	temp = res;
	break;
      }
    default:
      fprintf (stderr, "Bad switch\n");
      abort ();
    }
  *result = temp;
  return status;
}

/* Common implementation of madd, nmadd, msub, nmsub that does
   intermediate rounding per spec.  Also used for recip2 and rsqrt2,
   which are transformed into equivalent nmsub operations.  The scale
   argument is an adjustment to the exponent of the intermediate
   product op1*op2.  It is currently non-zero for rsqrt2 (-1), which
   requires an effective division by 2. */
static unsigned64
fp_mac(sim_cpu *cpu,
       address_word cia,
       int (*sim_fpu_op)(sim_fpu *, const sim_fpu *, const sim_fpu *),
       unsigned64 op1,
       unsigned64 op2,
       unsigned64 op3,
       int scale,
       int negate,
       FP_formats fmt)
{
  sim_fpu_round round = rounding_mode (GETRM());
  sim_fpu_denorm denorm = denorm_mode (cpu);
  sim_fpu_status status = 0;
  unsigned64 result = 0;

  /* The format type has already been checked: */
  switch (fmt)
    {
    case fmt_single:
    case fmt_double:
      status = inner_mac(sim_fpu_op, op1, op2, op3, scale,
			 negate, fmt, round, denorm, &result);
      break;
    case fmt_ps:
      {
	int status_u, status_l;
	unsigned64 result_u, result_l;
	status_u = inner_mac(sim_fpu_op, FP_PS_upper(op1), FP_PS_upper(op2),
			     FP_PS_upper(op3), scale, negate, fmt_single,
			     round, denorm, &result_u);
	status_l = inner_mac(sim_fpu_op, FP_PS_lower(op1), FP_PS_lower(op2),
			     FP_PS_lower(op3), scale, negate, fmt_single,
			     round, denorm, &result_l);
	result = FP_PS_cat(result_u, result_l);
	status = status_u | status_l;
	break;
      }
    default:
      sim_io_eprintf (SD, "Bad switch\n");
      abort ();
    }

  update_fcsr (cpu, cia, status);
  return result;
}

/* Common rsqrt code for single operands (.s or .d), intermediate rounding.  */
static sim_fpu_status
inner_rsqrt(unsigned64 op1,
	    FP_formats fmt,
	    sim_fpu_round round,
	    sim_fpu_denorm denorm,
	    unsigned64 *result)
{
  sim_fpu wop1;
  sim_fpu ans;
  sim_fpu_status status = 0;
  sim_fpu_status op_status;
  unsigned64 temp = 0;

  switch (fmt)
    {
    case fmt_single:
      {
	unsigned32 res;
	sim_fpu_32to (&wop1, op1);
	status |= sim_fpu_sqrt (&ans, &wop1);
	status |= sim_fpu_round_32 (&ans, status, round);
	wop1 = ans;
	op_status = sim_fpu_inv (&ans, &wop1);
	op_status |= sim_fpu_round_32 (&ans, round, denorm);
	sim_fpu_to32 (&res, &ans);
	temp = res;
	status |= op_status;
	break;
      }
    case fmt_double:
      {
	unsigned64 res;
	sim_fpu_64to (&wop1, op1);
	status |= sim_fpu_sqrt (&ans, &wop1);
	status |= sim_fpu_round_64 (&ans, round, denorm);
	wop1 = ans;
	op_status = sim_fpu_inv (&ans, &wop1);
	op_status |= sim_fpu_round_64 (&ans, round, denorm);
	sim_fpu_to64 (&res, &ans);
	temp = res;
	status |= op_status;
	break;
      }
    default:
      fprintf (stderr, "Bad switch\n");
      abort ();
    }
  *result = temp;
  return status;
}

static unsigned64
fp_inv_sqrt(sim_cpu *cpu,
	    address_word cia,
	    unsigned64 op1,
	    FP_formats fmt)
{
  sim_fpu_round round = rounding_mode (GETRM());
  sim_fpu_round denorm = denorm_mode (cpu);
  sim_fpu_status status = 0;
  unsigned64 result = 0;

  /* The format type has already been checked: */
  switch (fmt)
    {
    case fmt_single:
    case fmt_double:
      status = inner_rsqrt (op1, fmt, round, denorm, &result);
      break;
    case fmt_ps:
      {
	int status_u, status_l;
	unsigned64 result_u, result_l;
	status_u = inner_rsqrt (FP_PS_upper(op1), fmt_single, round, denorm,
				&result_u);
	status_l = inner_rsqrt (FP_PS_lower(op1), fmt_single, round, denorm,
				&result_l);
	result = FP_PS_cat(result_u, result_l);
	status = status_u | status_l;
	break;
      }
    default:
      sim_io_eprintf (SD, "Bad switch\n");
      abort ();
    }

  update_fcsr (cpu, cia, status);
  return result;
}


unsigned64
fp_abs(sim_cpu *cpu,
       address_word cia,
       unsigned64 op,
       FP_formats fmt)
{
  return fp_unary(cpu, cia, &sim_fpu_abs, op, fmt);
}

unsigned64
fp_neg(sim_cpu *cpu,
       address_word cia,
       unsigned64 op,
       FP_formats fmt)
{
  return fp_unary(cpu, cia, &sim_fpu_neg, op, fmt);
}

unsigned64
fp_add(sim_cpu *cpu,
       address_word cia,
       unsigned64 op1,
       unsigned64 op2,
       FP_formats fmt)
{
  return fp_binary(cpu, cia, &sim_fpu_add, op1, op2, fmt);
}

unsigned64
fp_sub(sim_cpu *cpu,
       address_word cia,
       unsigned64 op1,
       unsigned64 op2,
       FP_formats fmt)
{
  return fp_binary(cpu, cia, &sim_fpu_sub, op1, op2, fmt);
}

unsigned64
fp_mul(sim_cpu *cpu,
       address_word cia,
       unsigned64 op1,
       unsigned64 op2,
       FP_formats fmt)
{
  return fp_binary(cpu, cia, &sim_fpu_mul, op1, op2, fmt);
}

unsigned64
fp_div(sim_cpu *cpu,
       address_word cia,
       unsigned64 op1,
       unsigned64 op2,
       FP_formats fmt)
{
  return fp_binary(cpu, cia, &sim_fpu_div, op1, op2, fmt);
}

unsigned64
fp_recip(sim_cpu *cpu,
         address_word cia,
         unsigned64 op,
         FP_formats fmt)
{
  return fp_unary(cpu, cia, &sim_fpu_inv, op, fmt);
}

unsigned64
fp_sqrt(sim_cpu *cpu,
        address_word cia,
        unsigned64 op,
        FP_formats fmt)
{
  return fp_unary(cpu, cia, &sim_fpu_sqrt, op, fmt);
}

unsigned64
fp_rsqrt(sim_cpu *cpu,
         address_word cia,
         unsigned64 op,
         FP_formats fmt)
{
  return fp_inv_sqrt(cpu, cia, op, fmt);
}

unsigned64
fp_madd(sim_cpu *cpu,
        address_word cia,
        unsigned64 op1,
        unsigned64 op2,
        unsigned64 op3,
        FP_formats fmt)
{
  return fp_mac(cpu, cia, &sim_fpu_add, op1, op2, op3, 0, 0, fmt);
}

unsigned64
fp_msub(sim_cpu *cpu,
        address_word cia,
        unsigned64 op1,
        unsigned64 op2,
        unsigned64 op3,
        FP_formats fmt)
{
  return fp_mac(cpu, cia, &sim_fpu_sub, op1, op2, op3, 0, 0, fmt);
}

unsigned64
fp_nmadd(sim_cpu *cpu,
         address_word cia,
         unsigned64 op1,
         unsigned64 op2,
         unsigned64 op3,
         FP_formats fmt)
{
  return fp_mac(cpu, cia, &sim_fpu_add, op1, op2, op3, 0, 1, fmt);
}

unsigned64
fp_nmsub(sim_cpu *cpu,
         address_word cia,
         unsigned64 op1,
         unsigned64 op2,
         unsigned64 op3,
         FP_formats fmt)
{
  return fp_mac(cpu, cia, &sim_fpu_sub, op1, op2, op3, 0, 1, fmt);
}


/* MIPS-3D ASE operations.  */

/* Variant of fp_binary for *r.ps MIPS-3D operations. */
static unsigned64
fp_binary_r(sim_cpu *cpu,
	    address_word cia,
	    int (*sim_fpu_op)(sim_fpu *, const sim_fpu *, const sim_fpu *),
	    unsigned64 op1,
	    unsigned64 op2) 
{
  sim_fpu wop1;
  sim_fpu wop2;
  sim_fpu ans;
  sim_fpu_round round = rounding_mode (GETRM ());
  sim_fpu_denorm denorm = denorm_mode (cpu);
  sim_fpu_status status_u, status_l;
  unsigned64 result;
  unsigned32 res_u, res_l;

  /* The format must be fmt_ps.  */
  status_u = 0;
  sim_fpu_32to (&wop1, FP_PS_upper (op1));
  sim_fpu_32to (&wop2, FP_PS_lower (op1));
  status_u |= (*sim_fpu_op) (&ans, &wop1, &wop2);
  status_u |= sim_fpu_round_32 (&ans, round, denorm);
  sim_fpu_to32 (&res_u, &ans);
  status_l = 0;
  sim_fpu_32to (&wop1, FP_PS_upper (op2));
  sim_fpu_32to (&wop2, FP_PS_lower (op2));
  status_l |= (*sim_fpu_op) (&ans, &wop1, &wop2);
  status_l |= sim_fpu_round_32 (&ans, round, denorm);
  sim_fpu_to32 (&res_l, &ans);
  result = FP_PS_cat (res_u, res_l);

  update_fcsr (cpu, cia, status_u | status_l);
  return result;
}

unsigned64
fp_add_r(sim_cpu *cpu,
         address_word cia,
         unsigned64 op1,
         unsigned64 op2,
         FP_formats fmt)
{
  return fp_binary_r (cpu, cia, &sim_fpu_add, op1, op2);
}

unsigned64
fp_mul_r(sim_cpu *cpu,
         address_word cia,
         unsigned64 op1,
         unsigned64 op2,
         FP_formats fmt)
{
  return fp_binary_r (cpu, cia, &sim_fpu_mul, op1, op2);
}

#define NR_FRAC_GUARD   (60)
#define IMPLICIT_1 LSBIT64 (NR_FRAC_GUARD)

static int
fpu_inv1(sim_fpu *f, const sim_fpu *l)
{
  static const sim_fpu sim_fpu_one = {
    sim_fpu_class_number, 0, IMPLICIT_1, 0
  };
  int  status = 0;
  sim_fpu t;

  if (sim_fpu_is_zero (l))
    {
      *f = sim_fpu_maxfp;
      f->sign = l->sign;
      return sim_fpu_status_invalid_div0;
    }
  if (sim_fpu_is_infinity (l))
    {
      *f = sim_fpu_zero;
      f->sign = l->sign;
      return status;
    }
  status |= sim_fpu_div (f, &sim_fpu_one, l);
  return status;
}

static int
fpu_inv1_32(sim_fpu *f, const sim_fpu *l)
{
  if (sim_fpu_is_zero (l))
    {
      *f = sim_fpu_max32;
      f->sign = l->sign;
      return sim_fpu_status_invalid_div0;
    }
  return fpu_inv1 (f, l);
}

static int
fpu_inv1_64(sim_fpu *f, const sim_fpu *l)
{
  if (sim_fpu_is_zero (l))
    {
      *f = sim_fpu_max64;
      f->sign = l->sign;
      return sim_fpu_status_invalid_div0;
    }
  return fpu_inv1 (f, l);
}

unsigned64
fp_recip1(sim_cpu *cpu,
          address_word cia,
          unsigned64 op,
          FP_formats fmt)
{
  switch (fmt)
    {
    case fmt_single:
    case fmt_ps:
      return fp_unary (cpu, cia, &fpu_inv1_32, op, fmt);
    case fmt_double:
      return fp_unary (cpu, cia, &fpu_inv1_64, op, fmt);
    }
  return 0;
}

unsigned64
fp_recip2(sim_cpu *cpu,
          address_word cia,
          unsigned64 op1,
          unsigned64 op2,
          FP_formats fmt)
{
  static const unsigned64 one_single = UNSIGNED64 (0x3F800000);
  static const unsigned64 one_double = UNSIGNED64 (0x3FF0000000000000);
  static const unsigned64 one_ps = (UNSIGNED64 (0x3F800000) << 32 | UNSIGNED64 (0x3F800000));
  unsigned64 one;

  /* Implemented as nmsub fd, 1, fs, ft.  */
  switch (fmt)
    {
    case fmt_single:  one = one_single;  break;
    case fmt_double:  one = one_double;  break;
    case fmt_ps:      one = one_ps;      break;
    default:          one = 0;           abort ();
    }
  return fp_mac (cpu, cia, &sim_fpu_sub, op1, op2, one, 0, 1, fmt);
}

static int
fpu_inv_sqrt1(sim_fpu *f, const sim_fpu *l)
{
  static const sim_fpu sim_fpu_one = {
    sim_fpu_class_number, 0, IMPLICIT_1, 0
  };
  int  status = 0;
  sim_fpu t;

  if (sim_fpu_is_zero (l))
    {
      *f = sim_fpu_maxfp;
      f->sign = l->sign;
      return sim_fpu_status_invalid_div0;
    }
  if (sim_fpu_is_infinity (l))
    {
      if (!l->sign)
	{
	  f->class = sim_fpu_class_zero;
	  f->sign = 0;
	}
      else
	{
	  *f = sim_fpu_qnan;
	  status = sim_fpu_status_invalid_sqrt;
	}
      return status;
    }
  status |= sim_fpu_sqrt (&t, l);
  status |= sim_fpu_div (f, &sim_fpu_one, &t);
  return status;
}

static int
fpu_inv_sqrt1_32(sim_fpu *f, const sim_fpu *l)
{
  if (sim_fpu_is_zero (l))
    {
      *f = sim_fpu_max32;
      f->sign = l->sign;
      return sim_fpu_status_invalid_div0;
    }
  return fpu_inv_sqrt1 (f, l);
}

static int
fpu_inv_sqrt1_64(sim_fpu *f, const sim_fpu *l)
{
  if (sim_fpu_is_zero (l))
    {
      *f = sim_fpu_max64;
      f->sign = l->sign;
      return sim_fpu_status_invalid_div0;
    }
  return fpu_inv_sqrt1 (f, l);
}

unsigned64
fp_rsqrt1(sim_cpu *cpu,
          address_word cia,
          unsigned64 op,
          FP_formats fmt)
{
  switch (fmt)
    {
    case fmt_single:
    case fmt_ps:
      return fp_unary (cpu, cia, &fpu_inv_sqrt1_32, op, fmt);
    case fmt_double:
      return fp_unary (cpu, cia, &fpu_inv_sqrt1_64, op, fmt);
    }
  return 0;
}

unsigned64
fp_rsqrt2(sim_cpu *cpu,
          address_word cia,
          unsigned64 op1,
          unsigned64 op2,
          FP_formats fmt)
{
  static const unsigned64 half_single = UNSIGNED64 (0x3F000000);
  static const unsigned64 half_double = UNSIGNED64 (0x3FE0000000000000);
  static const unsigned64 half_ps = (UNSIGNED64 (0x3F000000) << 32 | UNSIGNED64 (0x3F000000));
  unsigned64 half;

  /* Implemented as (nmsub fd, 0.5, fs, ft)/2, where the divide is
     done by scaling the exponent during multiply.  */
  switch (fmt)
    {
    case fmt_single:  half = half_single;  break;
    case fmt_double:  half = half_double;  break;
    case fmt_ps:      half = half_ps;      break;
    default:          half = 0;            abort ();
    }
  return fp_mac (cpu, cia, &sim_fpu_sub, op1, op2, half, -1, 1, fmt);
}


/* Conversion operations.  */

uword64
convert (sim_cpu *cpu,
	 address_word cia,
	 int rm,
	 uword64 op,
	 FP_formats from,
	 FP_formats to)
{
  sim_fpu wop;
  sim_fpu_round round = rounding_mode (rm);
  sim_fpu_denorm denorm = denorm_mode (cpu);
  unsigned32 result32;
  unsigned64 result64;
  sim_fpu_status status = 0;

  /* Convert the input to sim_fpu internal format */
  switch (from)
    {
    case fmt_double:
      sim_fpu_64to (&wop, op);
      break;
    case fmt_single:
      sim_fpu_32to (&wop, op);
      break;
    case fmt_word:
      status = sim_fpu_i32to (&wop, op, round);
      break;
    case fmt_long:
      status = sim_fpu_i64to (&wop, op, round);
      break;
    default:
      sim_io_eprintf (SD, "Bad switch\n");
      abort ();
    }

  /* Convert sim_fpu format into the output */
  /* The value WOP is converted to the destination format, rounding
     using mode RM. When the destination is a fixed-point format, then
     a source value of Infinity, NaN or one which would round to an
     integer outside the fixed point range then an IEEE Invalid Operation
     condition is raised.  Not used if destination format is PS.  */
  switch (to)
    {
    case fmt_single:
      status |= sim_fpu_round_32 (&wop, round, denorm);
      /* For a NaN, normalize mantissa bits (cvt.s.d can't preserve them) */
      if (sim_fpu_is_qnan (&wop))
	wop = sim_fpu_qnan;
      sim_fpu_to32 (&result32, &wop);
      result64 = result32;
      break;
    case fmt_double:
      status |= sim_fpu_round_64 (&wop, round, denorm);
      /* For a NaN, normalize mantissa bits (make cvt.d.s consistent) */
      if (sim_fpu_is_qnan (&wop))
	wop = sim_fpu_qnan;
      sim_fpu_to64 (&result64, &wop);
      break;
    case fmt_word:
      status |= sim_fpu_to32i (&result32, &wop, round);
      result64 = result32;
      break;
    case fmt_long:
      status |= sim_fpu_to64i (&result64, &wop, round);
      break;
    default:
      result64 = 0;
      sim_io_eprintf (SD, "Bad switch\n");
      abort ();
    }

  update_fcsr (cpu, cia, status);
  return result64;
}

unsigned64
ps_lower(sim_cpu *cpu,
         address_word cia,
         unsigned64 op)
{
  return FP_PS_lower (op);
}

unsigned64
ps_upper(sim_cpu *cpu,
         address_word cia,
         unsigned64 op)
{
  return FP_PS_upper(op);
}

unsigned64
pack_ps(sim_cpu *cpu,
        address_word cia,
        unsigned64 op1,
        unsigned64 op2,
        FP_formats fmt)
{
  unsigned64 result = 0;

  /* The registers must specify FPRs valid for operands of type
     "fmt". If they are not valid, the result is undefined. */

  /* The format type should already have been checked: */
  switch (fmt)
    {
    case fmt_single:
      {
	sim_fpu wop;
	unsigned32 res_u, res_l;
	sim_fpu_32to (&wop, op1);
	sim_fpu_to32 (&res_u, &wop);
	sim_fpu_32to (&wop, op2);
	sim_fpu_to32 (&res_l, &wop);
	result = FP_PS_cat(res_u, res_l);
	break;
      }
    default:
      sim_io_eprintf (SD, "Bad switch\n");
      abort ();
    }

  return result;
}

unsigned64
convert_ps (sim_cpu *cpu,
            address_word cia,
            int rm,
            unsigned64 op,
            FP_formats from,
            FP_formats to)
{
  sim_fpu wop_u, wop_l;
  sim_fpu_round round = rounding_mode (rm);
  sim_fpu_denorm denorm = denorm_mode (cpu);
  unsigned32 res_u, res_l;
  unsigned64 result;
  sim_fpu_status status_u = 0, status_l = 0;

  /* As convert, but used only for paired values (formats PS, PW) */

  /* Convert the input to sim_fpu internal format */
  switch (from)
    {
    case fmt_word:   /* fmt_pw */
      sim_fpu_i32to (&wop_u, (op >> 32) & (unsigned)0xFFFFFFFF, round);
      sim_fpu_i32to (&wop_l, op & (unsigned)0xFFFFFFFF, round);
      break;
    case fmt_ps:
      sim_fpu_32to (&wop_u, FP_PS_upper(op));
      sim_fpu_32to (&wop_l, FP_PS_lower(op));
      break;
    default:
      sim_io_eprintf (SD, "Bad switch\n");
      abort ();
    }

  /* Convert sim_fpu format into the output */
  switch (to)
    {
    case fmt_word:   /* fmt_pw */
      status_u |= sim_fpu_to32i (&res_u, &wop_u, round);
      status_l |= sim_fpu_to32i (&res_l, &wop_l, round);
      result = (((unsigned64)res_u) << 32) | (unsigned64)res_l;
      break;
    case fmt_ps:
      status_u |= sim_fpu_round_32 (&wop_u, 0, round);
      status_l |= sim_fpu_round_32 (&wop_l, 0, round);
      sim_fpu_to32 (&res_u, &wop_u);
      sim_fpu_to32 (&res_l, &wop_l);
      result = FP_PS_cat(res_u, res_l);
      break;
    default:
      result = 0;
      sim_io_eprintf (SD, "Bad switch\n");
      abort ();
    }

  update_fcsr (cpu, cia, status_u | status_l);
  return result;
}

static const char *
fpu_format_name (FP_formats fmt)
{
  switch (fmt)
    {
    case fmt_single:
      return "single";
    case fmt_double:
      return "double";
    case fmt_word:
      return "word";
    case fmt_long:
      return "long";
    case fmt_ps:
      return "ps";
    case fmt_unknown:
      return "<unknown>";
    case fmt_uninterpreted:
      return "<uninterpreted>";
    case fmt_uninterpreted_32:
      return "<uninterpreted_32>";
    case fmt_uninterpreted_64:
      return "<uninterpreted_64>";
    default:
      return "<format error>";
    }
}

#ifdef DEBUG
static const char *
fpu_rounding_mode_name (int rm)
{
  switch (rm)
    {
    case FP_RM_NEAREST:
      return "Round";
    case FP_RM_TOZERO:
      return "Trunc";
    case FP_RM_TOPINF:
      return "Ceil";
    case FP_RM_TOMINF:
      return "Floor";
    default:
      return "<rounding mode error>";
    }
}
#endif /* DEBUG */