sim-main.c 18.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
/*  Copyright (C) 1998, Cygnus Solutions

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

    */


#ifndef SIM_MAIN_C
#define SIM_MAIN_C

#include "sim-main.h"
#include "sim-assert.h"


/*---------------------------------------------------------------------------*/
/*-- simulator engine -------------------------------------------------------*/
/*---------------------------------------------------------------------------*/


/* Description from page A-22 of the "MIPS IV Instruction Set" manual
   (revision 3.1) */
/* Translate a virtual address to a physical address and cache
   coherence algorithm describing the mechanism used to resolve the
   memory reference. Given the virtual address vAddr, and whether the
   reference is to Instructions ot Data (IorD), find the corresponding
   physical address (pAddr) and the cache coherence algorithm (CCA)
   used to resolve the reference. If the virtual address is in one of
   the unmapped address spaces the physical address and the CCA are
   determined directly by the virtual address. If the virtual address
   is in one of the mapped address spaces then the TLB is used to
   determine the physical address and access type; if the required
   translation is not present in the TLB or the desired access is not
   permitted the function fails and an exception is taken.

   NOTE: Normally (RAW == 0), when address translation fails, this
   function raises an exception and does not return. */

INLINE_SIM_MAIN
(int)
address_translation (SIM_DESC sd,
		     sim_cpu * cpu,
		     address_word cia,
		     address_word vAddr,
		     int IorD,
		     int LorS,
		     address_word * pAddr,
		     int *CCA,
		     int raw)
{
  int res = -1;			/* TRUE : Assume good return */

#ifdef DEBUG
  sim_io_printf (sd, "AddressTranslation(0x%s,%s,%s,...);\n", pr_addr (vAddr), (IorD ? "isDATA" : "isINSTRUCTION"), (LorS ? "iSTORE" : "isLOAD"));
#endif

  /* Check that the address is valid for this memory model */

  /* For a simple (flat) memory model, we simply pass virtual
     addressess through (mostly) unchanged. */
  vAddr &= 0xFFFFFFFF;

  *pAddr = vAddr;		/* default for isTARGET */
  *CCA = Uncached;		/* not used for isHOST */

  return (res);
}



/* Description from page A-23 of the "MIPS IV Instruction Set" manual
   (revision 3.1) */
/* Prefetch data from memory. Prefetch is an advisory instruction for
   which an implementation specific action is taken. The action taken
   may increase performance, but must not change the meaning of the
   program, or alter architecturally-visible state. */

INLINE_SIM_MAIN (void)
prefetch (SIM_DESC sd,
	  sim_cpu *cpu,
	  address_word cia,
	  int CCA,
	  address_word pAddr,
	  address_word vAddr,
	  int DATA,
	  int hint)
{
#ifdef DEBUG
  sim_io_printf(sd,"Prefetch(%d,0x%s,0x%s,%d,%d);\n",CCA,pr_addr(pAddr),pr_addr(vAddr),DATA,hint);
#endif /* DEBUG */

  /* For our simple memory model we do nothing */
  return;
}

/* Description from page A-22 of the "MIPS IV Instruction Set" manual
   (revision 3.1) */
/* Load a value from memory. Use the cache and main memory as
   specified in the Cache Coherence Algorithm (CCA) and the sort of
   access (IorD) to find the contents of AccessLength memory bytes
   starting at physical location pAddr. The data is returned in the
   fixed width naturally-aligned memory element (MemElem). The
   low-order two (or three) bits of the address and the AccessLength
   indicate which of the bytes within MemElem needs to be given to the
   processor. If the memory access type of the reference is uncached
   then only the referenced bytes are read from memory and valid
   within the memory element. If the access type is cached, and the
   data is not present in cache, an implementation specific size and
   alignment block of memory is read and loaded into the cache to
   satisfy a load reference. At a minimum, the block is the entire
   memory element. */
INLINE_SIM_MAIN (void)
load_memory (SIM_DESC SD,
	     sim_cpu *CPU,
	     address_word cia,
	     uword64* memvalp,
	     uword64* memval1p,
	     int CCA,
	     unsigned int AccessLength,
	     address_word pAddr,
	     address_word vAddr,
	     int IorD)
{
  uword64 value = 0;
  uword64 value1 = 0;

#ifdef DEBUG
  sim_io_printf(sd,"DBG: LoadMemory(%p,%p,%d,%d,0x%s,0x%s,%s)\n",memvalp,memval1p,CCA,AccessLength,pr_addr(pAddr),pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION"));
#endif /* DEBUG */

#if defined(WARN_MEM)
  if (CCA != uncached)
    sim_io_eprintf(sd,"LoadMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
#endif /* WARN_MEM */

  if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
    {
      /* In reality this should be a Bus Error */
      sim_io_error (SD, "LOAD AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
		    AccessLength,
		    (LOADDRMASK + 1) << 3,
		    pr_addr (pAddr));
    }

#if defined(TRACE)
  dotrace (SD, CPU, tracefh,((IorD == isDATA) ? 0 : 2),(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"load%s",((IorD == isDATA) ? "" : " instruction"));
#endif /* TRACE */
  
  /* Read the specified number of bytes from memory.  Adjust for
     host/target byte ordering/ Align the least significant byte
     read. */

  switch (AccessLength)
    {
    case AccessLength_QUADWORD:
      {
	unsigned_16 val = sim_core_read_aligned_16 (CPU, cia, read_map, pAddr);
	value1 = VH8_16 (val);
	value = VL8_16 (val);
	break;
      }
    case AccessLength_DOUBLEWORD:
      value = sim_core_read_aligned_8 (CPU, cia, read_map, pAddr);
      break;
    case AccessLength_SEPTIBYTE:
      value = sim_core_read_misaligned_7 (CPU, cia, read_map, pAddr);
      break;
    case AccessLength_SEXTIBYTE:
      value = sim_core_read_misaligned_6 (CPU, cia, read_map, pAddr);
      break;
    case AccessLength_QUINTIBYTE:
      value = sim_core_read_misaligned_5 (CPU, cia, read_map, pAddr);
      break;
    case AccessLength_WORD:
      value = sim_core_read_aligned_4 (CPU, cia, read_map, pAddr);
      break;
    case AccessLength_TRIPLEBYTE:
      value = sim_core_read_misaligned_3 (CPU, cia, read_map, pAddr);
      break;
    case AccessLength_HALFWORD:
      value = sim_core_read_aligned_2 (CPU, cia, read_map, pAddr);
      break;
    case AccessLength_BYTE:
      value = sim_core_read_aligned_1 (CPU, cia, read_map, pAddr);
      break;
    default:
      abort ();
    }
  
#ifdef DEBUG
  printf("DBG: LoadMemory() : (offset %d) : value = 0x%s%s\n",
	 (int)(pAddr & LOADDRMASK),pr_uword64(value1),pr_uword64(value));
#endif /* DEBUG */
  
  /* See also store_memory. Position data in correct byte lanes. */
  if (AccessLength <= LOADDRMASK)
    {
      if (BigEndianMem)
	/* for big endian target, byte (pAddr&LOADDRMASK == 0) is
	   shifted to the most significant byte position.  */
	value <<= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
      else
	/* For little endian target, byte (pAddr&LOADDRMASK == 0)
	   is already in the correct postition. */
	value <<= ((pAddr & LOADDRMASK) * 8);
    }
  
#ifdef DEBUG
  printf("DBG: LoadMemory() : shifted value = 0x%s%s\n",
	 pr_uword64(value1),pr_uword64(value));
#endif /* DEBUG */
  
  *memvalp = value;
  if (memval1p) *memval1p = value1;
}


/* Description from page A-23 of the "MIPS IV Instruction Set" manual
   (revision 3.1) */
/* Store a value to memory. The specified data is stored into the
   physical location pAddr using the memory hierarchy (data caches and
   main memory) as specified by the Cache Coherence Algorithm
   (CCA). The MemElem contains the data for an aligned, fixed-width
   memory element (word for 32-bit processors, doubleword for 64-bit
   processors), though only the bytes that will actually be stored to
   memory need to be valid. The low-order two (or three) bits of pAddr
   and the AccessLength field indicates which of the bytes within the
   MemElem data should actually be stored; only these bytes in memory
   will be changed. */

INLINE_SIM_MAIN (void)
store_memory (SIM_DESC SD,
	      sim_cpu *CPU,
	      address_word cia,
	      int CCA,
	      unsigned int AccessLength,
	      uword64 MemElem,
	      uword64 MemElem1,   /* High order 64 bits */
	      address_word pAddr,
	      address_word vAddr)
{
#ifdef DEBUG
  sim_io_printf(sd,"DBG: StoreMemory(%d,%d,0x%s,0x%s,0x%s,0x%s)\n",CCA,AccessLength,pr_uword64(MemElem),pr_uword64(MemElem1),pr_addr(pAddr),pr_addr(vAddr));
#endif /* DEBUG */
  
#if defined(WARN_MEM)
  if (CCA != uncached)
    sim_io_eprintf(sd,"StoreMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
#endif /* WARN_MEM */
  
  if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
    sim_io_error (SD, "STORE AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
		  AccessLength,
		  (LOADDRMASK + 1) << 3,
		  pr_addr(pAddr));
  
#if defined(TRACE)
  dotrace (SD, CPU, tracefh,1,(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"store");
#endif /* TRACE */
  
#ifdef DEBUG
  printf("DBG: StoreMemory: offset = %d MemElem = 0x%s%s\n",(unsigned int)(pAddr & LOADDRMASK),pr_uword64(MemElem1),pr_uword64(MemElem));
#endif /* DEBUG */
  
  /* See also load_memory. Position data in correct byte lanes. */
  if (AccessLength <= LOADDRMASK)
    {
      if (BigEndianMem)
	/* for big endian target, byte (pAddr&LOADDRMASK == 0) is
	   shifted to the most significant byte position.  */
	MemElem >>= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
      else
	/* For little endian target, byte (pAddr&LOADDRMASK == 0)
	   is already in the correct postition. */
	MemElem >>= ((pAddr & LOADDRMASK) * 8);
    }
  
#ifdef DEBUG
  printf("DBG: StoreMemory: shift = %d MemElem = 0x%s%s\n",shift,pr_uword64(MemElem1),pr_uword64(MemElem));
#endif /* DEBUG */
  
  switch (AccessLength)
    {
    case AccessLength_QUADWORD:
      {
	unsigned_16 val = U16_8 (MemElem1, MemElem);
	sim_core_write_aligned_16 (CPU, cia, write_map, pAddr, val);
	break;
      }
    case AccessLength_DOUBLEWORD:
      sim_core_write_aligned_8 (CPU, cia, write_map, pAddr, MemElem);
      break;
    case AccessLength_SEPTIBYTE:
      sim_core_write_misaligned_7 (CPU, cia, write_map, pAddr, MemElem);
      break;
    case AccessLength_SEXTIBYTE:
      sim_core_write_misaligned_6 (CPU, cia, write_map, pAddr, MemElem);
      break;
    case AccessLength_QUINTIBYTE:
      sim_core_write_misaligned_5 (CPU, cia, write_map, pAddr, MemElem);
      break;
    case AccessLength_WORD:
      sim_core_write_aligned_4 (CPU, cia, write_map, pAddr, MemElem);
      break;
    case AccessLength_TRIPLEBYTE:
      sim_core_write_misaligned_3 (CPU, cia, write_map, pAddr, MemElem);
      break;
    case AccessLength_HALFWORD:
      sim_core_write_aligned_2 (CPU, cia, write_map, pAddr, MemElem);
      break;
    case AccessLength_BYTE:
      sim_core_write_aligned_1 (CPU, cia, write_map, pAddr, MemElem);
      break;
    default:
      abort ();
    }	
  
  return;
}


INLINE_SIM_MAIN (unsigned32)
ifetch32 (SIM_DESC SD,
	  sim_cpu *CPU,
	  address_word cia,
	  address_word vaddr)
{
  /* Copy the action of the LW instruction */
  address_word mask = LOADDRMASK;
  address_word access = AccessLength_WORD;
  address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
  address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
  unsigned int byte;
  address_word paddr;
  int uncached;
  unsigned64 memval;

  if ((vaddr & access) != 0)
    SignalExceptionInstructionFetch ();
  AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
  paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
  LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
  byte = ((vaddr & mask) ^ bigendiancpu);
  return (memval >> (8 * byte));
}


INLINE_SIM_MAIN (unsigned16)
ifetch16 (SIM_DESC SD,
	  sim_cpu *CPU,
	  address_word cia,
	  address_word vaddr)
{
  /* Copy the action of the LH instruction */
  address_word mask = LOADDRMASK;
  address_word access = AccessLength_HALFWORD;
  address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
  address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
  unsigned int byte;
  address_word paddr;
  int uncached;
  unsigned64 memval;

  if ((vaddr & access) != 0)
    SignalExceptionInstructionFetch ();
  AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
  paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
  LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
  byte = ((vaddr & mask) ^ bigendiancpu);
  return (memval >> (8 * byte));
}



/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
/* Order loads and stores to synchronise shared memory. Perform the
   action necessary to make the effects of groups of synchronizable
   loads and stores indicated by stype occur in the same order for all
   processors. */
INLINE_SIM_MAIN (void)
sync_operation (SIM_DESC sd,
		sim_cpu *cpu,
		address_word cia,
		int stype)
{
#ifdef DEBUG
  sim_io_printf(sd,"SyncOperation(%d) : TODO\n",stype);
#endif /* DEBUG */
  return;
}

INLINE_SIM_MAIN (void)
cache_op (SIM_DESC SD,
	  sim_cpu *CPU,
	  address_word cia,
	  int op,
	  address_word pAddr,
	  address_word vAddr,
	  unsigned int instruction)
{
#if 1 /* stop warning message being displayed (we should really just remove the code) */
  static int icache_warning = 1;
  static int dcache_warning = 1;
#else
  static int icache_warning = 0;
  static int dcache_warning = 0;
#endif

  /* If CP0 is not useable (User or Supervisor mode) and the CP0
     enable bit in the Status Register is clear - a coprocessor
     unusable exception is taken. */
#if 0
  sim_io_printf(SD,"TODO: Cache availability checking (PC = 0x%s)\n",pr_addr(cia));
#endif

  switch (op & 0x3) {
    case 0: /* instruction cache */
      switch (op >> 2) {
        case 0: /* Index Invalidate */
        case 1: /* Index Load Tag */
        case 2: /* Index Store Tag */
        case 4: /* Hit Invalidate */
        case 5: /* Fill */
        case 6: /* Hit Writeback */
          if (!icache_warning)
            {
              sim_io_eprintf(SD,"Instruction CACHE operation %d to be coded\n",(op >> 2));
              icache_warning = 1;
            }
          break;

        default:
          SignalException(ReservedInstruction,instruction);
          break;
      }
      break;

    case 1: /* data cache */
    case 3: /* secondary data cache */
      switch (op >> 2) {
        case 0: /* Index Writeback Invalidate */
        case 1: /* Index Load Tag */
        case 2: /* Index Store Tag */
        case 3: /* Create Dirty */
        case 4: /* Hit Invalidate */
        case 5: /* Hit Writeback Invalidate */
        case 6: /* Hit Writeback */ 
          if (!dcache_warning)
            {
              sim_io_eprintf(SD,"Data CACHE operation %d to be coded\n",(op >> 2));
              dcache_warning = 1;
            }
          break;

        default:
          SignalException(ReservedInstruction,instruction);
          break;
      }
      break;

    default: /* unrecognised cache ID */
      SignalException(ReservedInstruction,instruction);
      break;
  }

  return;
}


INLINE_SIM_MAIN (void)
pending_tick (SIM_DESC SD,
	      sim_cpu *CPU,
	      address_word cia)
{
  if (PENDING_TRACE)							
    sim_io_eprintf (SD, "PENDING_DRAIN - 0x%lx - pending_in = %d, pending_out = %d, pending_total = %d\n", (unsigned long) cia, PENDING_IN, PENDING_OUT, PENDING_TOTAL); 
  if (PENDING_OUT != PENDING_IN)					
    {									
      int loop;							
      int index = PENDING_OUT;					
      int total = PENDING_TOTAL;					
      if (PENDING_TOTAL == 0)						
	sim_engine_abort (SD, CPU, cia, "PENDING_DRAIN - Mis-match on pending update pointers\n"); 
      for (loop = 0, index = PENDING_OUT;
	   (loop < total);
	   loop++, index = (index + 1) % PSLOTS)
	{								
	  if (PENDING_SLOT_DEST[index] != NULL)			
	    {								
	      PENDING_SLOT_DELAY[index] -= 1;				
	      if (PENDING_SLOT_DELAY[index] == 0)			
		{							
		  if (PENDING_TRACE)
		    sim_io_eprintf (SD, "PENDING_DRAIN - drained - index %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
				    index,
				    (unsigned long) PENDING_SLOT_DEST[index],
				    PENDING_SLOT_BIT[index],
				    (unsigned long) PENDING_SLOT_VALUE[index],
				    PENDING_SLOT_SIZE[index]);
		  if (PENDING_SLOT_BIT[index] >= 0)			
		    switch (PENDING_SLOT_SIZE[index])                 
		      {						
		      case 4:
			if (PENDING_SLOT_VALUE[index])		
			  *(unsigned32*)PENDING_SLOT_DEST[index] |= 	
			    BIT32 (PENDING_SLOT_BIT[index]);		
			else						
			  *(unsigned32*)PENDING_SLOT_DEST[index] &= 	
			    BIT32 (PENDING_SLOT_BIT[index]);		
			break;					
		      case 8:					
			if (PENDING_SLOT_VALUE[index])		
			  *(unsigned64*)PENDING_SLOT_DEST[index] |= 	
			    BIT64 (PENDING_SLOT_BIT[index]);		
			else						
			  *(unsigned64*)PENDING_SLOT_DEST[index] &= 	
			    BIT64 (PENDING_SLOT_BIT[index]);		
			break;					
		      }
		  else
		    switch (PENDING_SLOT_SIZE[index])                 
		      {						
		      case 4:					
			*(unsigned32*)PENDING_SLOT_DEST[index] = 	
			  PENDING_SLOT_VALUE[index];			
			break;					
		      case 8:					
			*(unsigned64*)PENDING_SLOT_DEST[index] = 	
			  PENDING_SLOT_VALUE[index];			
			break;					
		      }							
		  if (PENDING_OUT == index)
		    {
		      PENDING_SLOT_DEST[index] = NULL;
		      PENDING_OUT = (PENDING_OUT + 1) % PSLOTS;
		      PENDING_TOTAL--;
		    }
		}							
	      else if (PENDING_TRACE && PENDING_SLOT_DELAY[index] > 0)
		sim_io_eprintf (SD, "PENDING_DRAIN - queued - index %d, delay %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
				index, PENDING_SLOT_DELAY[index],
				(unsigned long) PENDING_SLOT_DEST[index],
				PENDING_SLOT_BIT[index],
				(unsigned long) PENDING_SLOT_VALUE[index],
				PENDING_SLOT_SIZE[index]);

	    }								
	}								
    }									
}


#endif