dp-bit.c 27.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
/* This is a software floating point library which can be used instead of
   the floating point routines in libgcc1.c for targets without hardware
   floating point.  */

/* Copyright (C) 1994 Free Software Foundation, Inc.

This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file.  (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)

This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* As a special exception, if you link this library with other files,
   some of which are compiled with GCC, to produce an executable,
   this library does not by itself cause the resulting executable
   to be covered by the GNU General Public License.
   This exception does not however invalidate any other reasons why
   the executable file might be covered by the GNU General Public License.  */

/* This implements IEEE 754 format arithmetic, but does not provide a
   mechanism for setting the rounding mode, or for generating or handling
   exceptions.

   The original code by Steve Chamberlain, hacked by Mark Eichin and Jim
   Wilson, all of Cygnus Support.  */

/* The intended way to use this file is to make two copies, add `#define FLOAT'
   to one copy, then compile both copies and add them to libgcc.a.  */

/* The following macros can be defined to change the behaviour of this file:
   FLOAT: Implement a `float', aka SFmode, fp library.  If this is not
     defined, then this file implements a `double', aka DFmode, fp library.
   FLOAT_ONLY: Used with FLOAT, to implement a `float' only library, i.e.
     don't include float->double conversion which requires the double library.
     This is useful only for machines which can't support doubles, e.g. some
     8-bit processors.
   CMPtype: Specify the type that floating point compares should return.
     This defaults to SItype, aka int.
   US_SOFTWARE_GOFAST: This makes all entry points use the same names as the
     US Software goFast library.  If this is not defined, the entry points use
     the same names as libgcc1.c.
   _DEBUG_BITFLOAT: This makes debugging the code a little easier, by adding
     two integers to the FLO_union_type.  
   NO_NANS: Disable nan and infinity handling
   SMALL_MACHINE: Useful when operations on QIs and HIs are faster
     than on an SI */

#ifndef SFtype
typedef SFtype __attribute__ ((mode (SF)));
#endif
#ifndef DFtype
typedef DFtype __attribute__ ((mode (DF)));
#endif

#ifndef HItype
typedef int HItype __attribute__ ((mode (HI)));
#endif
#ifndef SItype
typedef int SItype __attribute__ ((mode (SI)));
#endif
#ifndef DItype
typedef int DItype __attribute__ ((mode (DI)));
#endif

/* The type of the result of a fp compare */
#ifndef CMPtype
#define CMPtype SItype
#endif

#ifndef UHItype
typedef unsigned int UHItype __attribute__ ((mode (HI)));
#endif
#ifndef USItype
typedef unsigned int USItype __attribute__ ((mode (SI)));
#endif
#ifndef UDItype
typedef unsigned int UDItype __attribute__ ((mode (DI)));
#endif

#define MAX_SI_INT   ((SItype) ((unsigned) (~0)>>1))
#define MAX_USI_INT  ((USItype) ~0)


#ifdef FLOAT_ONLY
#define NO_DI_MODE
#endif

#ifdef FLOAT
#	define NGARDS    7L
#	define GARDROUND 0x3f
#	define GARDMASK  0x7f
#	define GARDMSB   0x40
#	define EXPBITS 8
#	define EXPBIAS 127
#	define FRACBITS 23
#	define EXPMAX (0xff)
#	define QUIET_NAN 0x100000L
#	define FRAC_NBITS 32
#	define FRACHIGH  0x80000000L
#	define FRACHIGH2 0xc0000000L
	typedef USItype fractype;
	typedef UHItype halffractype;
	typedef SFtype FLO_type;
	typedef SItype intfrac;

#else
#	define PREFIXFPDP dp
#	define PREFIXSFDF df
#	define NGARDS 8L
#	define GARDROUND 0x7f
#	define GARDMASK  0xff
#	define GARDMSB   0x80
#	define EXPBITS 11
#	define EXPBIAS 1023
#	define FRACBITS 52
#	define EXPMAX (0x7ff)
#	define QUIET_NAN 0x8000000000000LL
#	define FRAC_NBITS 64
#	define FRACHIGH  0x8000000000000000LL
#	define FRACHIGH2 0xc000000000000000LL
	typedef UDItype fractype;
	typedef USItype halffractype;
	typedef DFtype FLO_type;
	typedef DItype intfrac;
#endif

#ifdef US_SOFTWARE_GOFAST
#	ifdef FLOAT
#		define add 		fpadd
#		define sub 		fpsub
#		define multiply 	fpmul
#		define divide 		fpdiv
#		define compare 		fpcmp
#		define si_to_float 	sitofp
#		define float_to_si 	fptosi
#		define float_to_usi 	fptoui
#		define negate 		__negsf2
#		define sf_to_df		fptodp
#		define dptofp 		dptofp
#else
#		define add 		dpadd
#		define sub 		dpsub
#		define multiply 	dpmul
#		define divide 		dpdiv
#		define compare 		dpcmp
#		define si_to_float 	litodp
#		define float_to_si 	dptoli
#		define float_to_usi 	dptoul
#		define negate 		__negdf2
#		define df_to_sf 	dptofp
#endif
#else
#	ifdef FLOAT
#		define add 		__addsf3
#		define sub 		__subsf3
#		define multiply 	__mulsf3
#		define divide 		__divsf3
#		define compare 		__cmpsf2
#		define _eq_f2 		__eqsf2
#		define _ne_f2 		__nesf2
#		define _gt_f2 		__gtsf2
#		define _ge_f2 		__gesf2
#		define _lt_f2 		__ltsf2
#		define _le_f2 		__lesf2
#		define si_to_float 	__floatsisf
#		define float_to_si 	__fixsfsi
#		define float_to_usi 	__fixunssfsi
#		define negate 		__negsf2
#		define sf_to_df		__extendsfdf2
#else
#		define add 		__adddf3
#		define sub 		__subdf3
#		define multiply 	__muldf3
#		define divide 		__divdf3
#		define compare 		__cmpdf2
#		define _eq_f2 		__eqdf2
#		define _ne_f2 		__nedf2
#		define _gt_f2 		__gtdf2
#		define _ge_f2 		__gedf2
#		define _lt_f2 		__ltdf2
#		define _le_f2 		__ledf2
#		define si_to_float 	__floatsidf
#		define float_to_si 	__fixdfsi
#		define float_to_usi 	__fixunsdfsi
#		define negate 		__negdf2
#		define df_to_sf		__truncdfsf2
#	endif
#endif


#ifndef INLINE
#define INLINE __inline__
#endif

/* Preserve the sticky-bit when shifting fractions to the right.  */
#define LSHIFT(a) { a = (a & 1) | (a >> 1); }

/* numeric parameters */
/* F_D_BITOFF is the number of bits offset between the MSB of the mantissa
   of a float and of a double. Assumes there are only two float types.
   (double::FRAC_BITS+double::NGARGS-(float::FRAC_BITS-float::NGARDS))
 */
#define F_D_BITOFF (52+8-(23+7))


#define NORMAL_EXPMIN (-(EXPBIAS)+1)
#define IMPLICIT_1 (1LL<<(FRACBITS+NGARDS))
#define IMPLICIT_2 (1LL<<(FRACBITS+1+NGARDS))

/* common types */

typedef enum
{
  CLASS_SNAN,
  CLASS_QNAN,
  CLASS_ZERO,
  CLASS_NUMBER,
  CLASS_INFINITY
} fp_class_type;

typedef struct
{
#ifdef SMALL_MACHINE
  char class;
  unsigned char sign;
  short normal_exp;
#else
  fp_class_type class;
  unsigned int sign;
  int normal_exp;
#endif

  union
    {
      fractype ll;
      halffractype l[2];
    } fraction;
} fp_number_type;

typedef union
{
  FLO_type value;
#ifdef _DEBUG_BITFLOAT
  int l[2];
#endif
  struct
    {
#ifndef FLOAT_BIT_ORDER_MISMATCH
      unsigned int sign:1 __attribute__ ((packed));
      unsigned int exp:EXPBITS __attribute__ ((packed));
      fractype fraction:FRACBITS __attribute__ ((packed));
#else
      fractype fraction:FRACBITS __attribute__ ((packed));
      unsigned int exp:EXPBITS __attribute__ ((packed));
      unsigned int sign:1 __attribute__ ((packed));
#endif
    }
  bits;
}
FLO_union_type;


/* end of header */

/* IEEE "special" number predicates */

#ifdef NO_NANS

#define nan() 0
#define isnan(x) 0
#define isinf(x) 0
#else

INLINE
static fp_number_type *
nan ()
{
  static fp_number_type thenan;

  return &thenan;
}

INLINE
static int
isnan ( fp_number_type *  x)
{
  return x->class == CLASS_SNAN || x->class == CLASS_QNAN;
}

INLINE
static int
isinf ( fp_number_type *  x)
{
  return x->class == CLASS_INFINITY;
}

#endif

INLINE
static int
iszero ( fp_number_type *  x)
{
  return x->class == CLASS_ZERO;
}

INLINE 
static void
flip_sign ( fp_number_type *  x)
{
  x->sign = !x->sign;
}

static FLO_type
pack_d ( fp_number_type *  src)
{
  FLO_union_type dst;
  fractype fraction = src->fraction.ll;	/* wasn't unsigned before? */

  dst.bits.sign = src->sign;

  if (isnan (src))
    {
      dst.bits.exp = EXPMAX;
      dst.bits.fraction = src->fraction.ll;
      if (src->class == CLASS_QNAN || 1)
	{
	  dst.bits.fraction |= QUIET_NAN;
	}
    }
  else if (isinf (src))
    {
      dst.bits.exp = EXPMAX;
      dst.bits.fraction = 0;
    }
  else if (iszero (src))
    {
      dst.bits.exp = 0;
      dst.bits.fraction = 0;
    }
  else if (fraction == 0)
    {
      dst.value = 0;
    }
  else
    {
      if (src->normal_exp < NORMAL_EXPMIN)
	{
	  /* This number's exponent is too low to fit into the bits
	     available in the number, so we'll store 0 in the exponent and
	     shift the fraction to the right to make up for it.  */

	  int shift = NORMAL_EXPMIN - src->normal_exp;

	  dst.bits.exp = 0;

	  if (shift > FRAC_NBITS - NGARDS)
	    {
	      /* No point shifting, since it's more that 64 out.  */
	      fraction = 0;
	    }
	  else
	    {
	      /* Shift by the value */
	      fraction >>= shift;
	    }
	  fraction >>= NGARDS;
	  dst.bits.fraction = fraction;
	}
      else if (src->normal_exp > EXPBIAS)
	{
	  dst.bits.exp = EXPMAX;
	  dst.bits.fraction = 0;
	}
      else
	{
	  dst.bits.exp = src->normal_exp + EXPBIAS;
	  /* IF the gard bits are the all zero, but the first, then we're
	     half way between two numbers, choose the one which makes the
	     lsb of the answer 0.  */
	  if ((fraction & GARDMASK) == GARDMSB)
	    {
	      if (fraction & (1 << NGARDS))
		fraction += GARDROUND + 1;
	    }
	  else
	    {
	      /* Add a one to the guards to round up */
	      fraction += GARDROUND;
	    }
	  if (fraction >= IMPLICIT_2)
	    {
	      fraction >>= 1;
	      dst.bits.exp += 1;
	    }
	  fraction >>= NGARDS;
	  dst.bits.fraction = fraction;
	}
    }
  return dst.value;
}

static void
unpack_d (FLO_union_type * src, fp_number_type * dst)
{
  fractype fraction = src->bits.fraction;

  dst->sign = src->bits.sign;
  if (src->bits.exp == 0)
    {
      /* Hmm.  Looks like 0 */
      if (fraction == 0)
	{
	  /* tastes like zero */
	  dst->class = CLASS_ZERO;
	}
      else
	{
	  /* Zero exponent with non zero fraction - it's denormalized,
	     so there isn't a leading implicit one - we'll shift it so
	     it gets one.  */
	  dst->normal_exp = src->bits.exp - EXPBIAS + 1;
	  fraction <<= NGARDS;

	  dst->class = CLASS_NUMBER;
#if 1
	  while (fraction < IMPLICIT_1)
	    {
	      fraction <<= 1;
	      dst->normal_exp--;
	    }
#endif
	  dst->fraction.ll = fraction;
	}
    }
  else if (src->bits.exp == EXPMAX)
    {
      /* Huge exponent*/
      if (fraction == 0)
	{
	  /* Attached to a zero fraction - means infinity */
	  dst->class = CLASS_INFINITY;
	}
      else
	{
	  /* Non zero fraction, means nan */
	  if (dst->sign)
	    {
	      dst->class = CLASS_SNAN;
	    }
	  else
	    {
	      dst->class = CLASS_QNAN;
	    }
	  /* Keep the fraction part as the nan number */
	  dst->fraction.ll = fraction;
	}
    }
  else
    {
      /* Nothing strange about this number */
      dst->normal_exp = src->bits.exp - EXPBIAS;
      dst->class = CLASS_NUMBER;
      dst->fraction.ll = (fraction << NGARDS) | IMPLICIT_1;
    }
}

static fp_number_type *
_fpadd_parts (fp_number_type * a,
	      fp_number_type * b,
	      fp_number_type * tmp)
{
  intfrac tfraction;

  /* Put commonly used fields in local variables.  */
  int a_normal_exp;
  int b_normal_exp;
  fractype a_fraction;
  fractype b_fraction;

  if (isnan (a))
    {
      return a;
    }
  if (isnan (b))
    {
      return b;
    }
  if (isinf (a))
    {
      /* Adding infinities with opposite signs yields a NaN.  */
      if (isinf (b) && a->sign != b->sign)
	return nan ();
      return a;
    }
  if (isinf (b))
    {
      return b;
    }
  if (iszero (b))
    {
      return a;
    }
  if (iszero (a))
    {
      return b;
    }

  /* Got two numbers. shift the smaller and increment the exponent till
     they're the same */
  {
    int diff;

    a_normal_exp = a->normal_exp;
    b_normal_exp = b->normal_exp;
    a_fraction = a->fraction.ll;
    b_fraction = b->fraction.ll;

    diff = a_normal_exp - b_normal_exp;

    if (diff < 0)
      diff = -diff;
    if (diff < FRAC_NBITS)
      {
	/* ??? This does shifts one bit at a time.  Optimize.  */
	while (a_normal_exp > b_normal_exp)
	  {
	    b_normal_exp++;
	    LSHIFT (b_fraction);
	  }
	while (b_normal_exp > a_normal_exp)
	  {
	    a_normal_exp++;
	    LSHIFT (a_fraction);
	  }
      }
    else
      {
	/* Somethings's up.. choose the biggest */
	if (a_normal_exp > b_normal_exp)
	  {
	    b_normal_exp = a_normal_exp;
	    b_fraction = 0;
	  }
	else
	  {
	    a_normal_exp = b_normal_exp;
	    a_fraction = 0;
	  }
      }
  }

  if (a->sign != b->sign)
    {
      if (a->sign)
	{
	  tfraction = -a_fraction + b_fraction;
	}
      else
	{
	  tfraction = a_fraction - b_fraction;
	}
      if (tfraction > 0)
	{
	  tmp->sign = 0;
	  tmp->normal_exp = a_normal_exp;
	  tmp->fraction.ll = tfraction;
	}
      else
	{
	  tmp->sign = 1;
	  tmp->normal_exp = a_normal_exp;
	  tmp->fraction.ll = -tfraction;
	}
      /* and renormalize it */

      while (tmp->fraction.ll < IMPLICIT_1 && tmp->fraction.ll)
	{
	  tmp->fraction.ll <<= 1;
	  tmp->normal_exp--;
	}
    }
  else
    {
      tmp->sign = a->sign;
      tmp->normal_exp = a_normal_exp;
      tmp->fraction.ll = a_fraction + b_fraction;
    }
  tmp->class = CLASS_NUMBER;
  /* Now the fraction is added, we have to shift down to renormalize the
     number */

  if (tmp->fraction.ll >= IMPLICIT_2)
    {
      LSHIFT (tmp->fraction.ll);
      tmp->normal_exp++;
    }
  return tmp;

}

FLO_type
add (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  fp_number_type tmp;
  fp_number_type *res;

  unpack_d ((FLO_union_type *) & arg_a, &a);
  unpack_d ((FLO_union_type *) & arg_b, &b);

  res = _fpadd_parts (&a, &b, &tmp);

  return pack_d (res);
}

FLO_type
sub (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  fp_number_type tmp;
  fp_number_type *res;

  unpack_d ((FLO_union_type *) & arg_a, &a);
  unpack_d ((FLO_union_type *) & arg_b, &b);

  b.sign ^= 1;

  res = _fpadd_parts (&a, &b, &tmp);

  return pack_d (res);
}

static fp_number_type *
_fpmul_parts ( fp_number_type *  a,
	       fp_number_type *  b,
	       fp_number_type * tmp)
{
  fractype low = 0;
  fractype high = 0;

  if (isnan (a))
    {
      a->sign = a->sign != b->sign;
      return a;
    }
  if (isnan (b))
    {
      b->sign = a->sign != b->sign;
      return b;
    }
  if (isinf (a))
    {
      if (iszero (b))
	return nan ();
      a->sign = a->sign != b->sign;
      return a;
    }
  if (isinf (b))
    {
      if (iszero (a))
	{
	  return nan ();
	}
      b->sign = a->sign != b->sign;
      return b;
    }
  if (iszero (a))
    {
      a->sign = a->sign != b->sign;
      return a;
    }
  if (iszero (b))
    {
      b->sign = a->sign != b->sign;
      return b;
    }

  /* Calculate the mantissa by multiplying both 64bit numbers to get a
     128 bit number */
  {
    fractype x = a->fraction.ll;
    fractype ylow = b->fraction.ll;
    fractype yhigh = 0;
    int bit;

#if defined(NO_DI_MODE)
    {
      /* ??? This does multiplies one bit at a time.  Optimize.  */
      for (bit = 0; bit < FRAC_NBITS; bit++)
	{
	  int carry;

	  if (x & 1)
	    {
	      carry = (low += ylow) < ylow;
	      high += yhigh + carry;
	    }
	  yhigh <<= 1;
	  if (ylow & FRACHIGH)
	    {
	      yhigh |= 1;
	    }
	  ylow <<= 1;
	  x >>= 1;
	}
    }
#elif defined(FLOAT) 
    {
      /* Multiplying two 32 bit numbers to get a 64 bit number  on 
        a machine with DI, so we're safe */

      DItype answer = (DItype)(a->fraction.ll) * (DItype)(b->fraction.ll);
      
      high = answer >> 32;
      low = answer;
    }
#else
    /* Doing a 64*64 to 128 */
    {
      UDItype nl = a->fraction.ll & 0xffffffff;
      UDItype nh = a->fraction.ll >> 32;
      UDItype ml = b->fraction.ll & 0xffffffff;
      UDItype mh = b->fraction.ll >>32;
      UDItype pp_ll = ml * nl;
      UDItype pp_hl = mh * nl;
      UDItype pp_lh = ml * nh;
      UDItype pp_hh = mh * nh;
      UDItype res2 = 0;
      UDItype res0 = 0;
      UDItype ps_hh__ = pp_hl + pp_lh;
      if (ps_hh__ < pp_hl)
	res2 += 0x100000000LL;
      pp_hl = (ps_hh__ << 32) & 0xffffffff00000000LL;
      res0 = pp_ll + pp_hl;
      if (res0 < pp_ll)
	res2++;
      res2 += ((ps_hh__ >> 32) & 0xffffffffL) + pp_hh;
      high = res2;
      low = res0;
    }
#endif
  }

  tmp->normal_exp = a->normal_exp + b->normal_exp;
  tmp->sign = a->sign != b->sign;
#ifdef FLOAT
  tmp->normal_exp += 2;		/* ??????????????? */
#else
  tmp->normal_exp += 4;		/* ??????????????? */
#endif
  while (high >= IMPLICIT_2)
    {
      tmp->normal_exp++;
      if (high & 1)
	{
	  low >>= 1;
	  low |= FRACHIGH;
	}
      high >>= 1;
    }
  while (high < IMPLICIT_1)
    {
      tmp->normal_exp--;

      high <<= 1;
      if (low & FRACHIGH)
	high |= 1;
      low <<= 1;
    }
  /* rounding is tricky. if we only round if it won't make us round later. */
#if 0
  if (low & FRACHIGH2)
    {
      if (((high & GARDMASK) != GARDMSB)
	  && (((high + 1) & GARDMASK) == GARDMSB))
	{
	  /* don't round, it gets done again later. */
	}
      else
	{
	  high++;
	}
    }
#endif
  if ((high & GARDMASK) == GARDMSB)
    {
      if (high & (1 << NGARDS))
	{
	  /* half way, so round to even */
	  high += GARDROUND + 1;
	}
      else if (low)
	{
	  /* but we really weren't half way */
	  high += GARDROUND + 1;
	}
    }
  tmp->fraction.ll = high;
  tmp->class = CLASS_NUMBER;
  return tmp;
}

FLO_type
multiply (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  fp_number_type tmp;
  fp_number_type *res;

  unpack_d ((FLO_union_type *) & arg_a, &a);
  unpack_d ((FLO_union_type *) & arg_b, &b);

  res = _fpmul_parts (&a, &b, &tmp);

  return pack_d (res);
}

static fp_number_type *
_fpdiv_parts (fp_number_type * a,
	      fp_number_type * b,
	      fp_number_type * tmp)
{
  fractype low = 0;
  fractype high = 0;
  fractype r0, r1, y0, y1, bit;
  fractype q;
  fractype numerator;
  fractype denominator;
  fractype quotient;
  fractype remainder;

  if (isnan (a))
    {
      return a;
    }
  if (isnan (b))
    {
      return b;
    }
  if (isinf (a) || iszero (a))
    {
      if (a->class == b->class)
	return nan ();
      return a;
    }
  a->sign = a->sign ^ b->sign;

  if (isinf (b))
    {
      a->fraction.ll = 0;
      a->normal_exp = 0;
      return a;
    }
  if (iszero (b))
    {
      a->class = CLASS_INFINITY;
      return b;
    }

  /* Calculate the mantissa by multiplying both 64bit numbers to get a
     128 bit number */
  {
    int carry;
    intfrac d0, d1;		/* weren't unsigned before ??? */

    /* quotient =
       ( numerator / denominator) * 2^(numerator exponent -  denominator exponent)
     */

    a->normal_exp = a->normal_exp - b->normal_exp;
    numerator = a->fraction.ll;
    denominator = b->fraction.ll;

    if (numerator < denominator)
      {
	/* Fraction will be less than 1.0 */
	numerator *= 2;
	a->normal_exp--;
      }
    bit = IMPLICIT_1;
    quotient = 0;
    /* ??? Does divide one bit at a time.  Optimize.  */
    while (bit)
      {
	if (numerator >= denominator)
	  {
	    quotient |= bit;
	    numerator -= denominator;
	  }
	bit >>= 1;
	numerator *= 2;
      }

    if ((quotient & GARDMASK) == GARDMSB)
      {
	if (quotient & (1 << NGARDS))
	  {
	    /* half way, so round to even */
	    quotient += GARDROUND + 1;
	  }
	else if (numerator)
	  {
	    /* but we really weren't half way, more bits exist */
	    quotient += GARDROUND + 1;
	  }
      }

    a->fraction.ll = quotient;
    return (a);
  }
}

FLO_type
divide (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  fp_number_type tmp;
  fp_number_type *res;

  unpack_d ((FLO_union_type *) & arg_a, &a);
  unpack_d ((FLO_union_type *) & arg_b, &b);

  res = _fpdiv_parts (&a, &b, &tmp);

  return pack_d (res);
}

/* according to the demo, fpcmp returns a comparison with 0... thus
   a<b -> -1
   a==b -> 0
   a>b -> +1
 */

static int
_fpcmp_parts (fp_number_type * a, fp_number_type * b)
{
#if 0
  /* either nan -> unordered. Must be checked outside of this routine. */
  if (isnan (a) && isnan (b))
    {
      return 1;			/* still unordered! */
    }
#endif

  if (isnan (a) || isnan (b))
    {
      return 1;			/* how to indicate unordered compare? */
    }
  if (isinf (a) && isinf (b))
    {
      /* +inf > -inf, but +inf != +inf */
      /* b    \a| +inf(0)| -inf(1)
       ______\+--------+--------
       +inf(0)| a==b(0)| a<b(-1)
       -------+--------+--------
       -inf(1)| a>b(1) | a==b(0)
       -------+--------+--------
       So since unordered must be non zero, just line up the columns...
       */
      return b->sign - a->sign;
    }
  /* but not both... */
  if (isinf (a))
    {
      return a->sign ? -1 : 1;
    }
  if (isinf (b))
    {
      return b->sign ? 1 : -1;
    }
  if (iszero (a) && iszero (b))
    {
      return 0;
    }
  if (iszero (a))
    {
      return b->sign ? 1 : -1;
    }
  if (iszero (b))
    {
      return a->sign ? -1 : 1;
    }
  /* now both are "normal". */
  if (a->sign != b->sign)
    {
      /* opposite signs */
      return a->sign ? -1 : 1;
    }
  /* same sign; exponents? */
  if (a->normal_exp > b->normal_exp)
    {
      return a->sign ? -1 : 1;
    }
  if (a->normal_exp < b->normal_exp)
    {
      return a->sign ? 1 : -1;
    }
  /* same exponents; check size. */
  if (a->fraction.ll > b->fraction.ll)
    {
      return a->sign ? -1 : 1;
    }
  if (a->fraction.ll < b->fraction.ll)
    {
      return a->sign ? 1 : -1;
    }
  /* after all that, they're equal. */
  return 0;
}

CMPtype
compare (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;

  unpack_d ((FLO_union_type *) & arg_a, &a);
  unpack_d ((FLO_union_type *) & arg_b, &b);

  return _fpcmp_parts (&a, &b);
}

#ifndef US_SOFTWARE_GOFAST

/* These should be optimized for their specific tasks someday.  */

CMPtype
_eq_f2 (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;

  unpack_d ((FLO_union_type *) & arg_a, &a);
  unpack_d ((FLO_union_type *) & arg_b, &b);

  if (isnan (&a) || isnan (&b))
    return 1;			/* false, truth == 0 */

  return _fpcmp_parts (&a, &b) ;
}

CMPtype
_ne_f2 (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;

  unpack_d ((FLO_union_type *) & arg_a, &a);
  unpack_d ((FLO_union_type *) & arg_b, &b);

  if (isnan (&a) || isnan (&b))
    return 1;			/* true, truth != 0 */

  return  _fpcmp_parts (&a, &b) ;
}

CMPtype
_gt_f2 (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;

  unpack_d ((FLO_union_type *) & arg_a, &a);
  unpack_d ((FLO_union_type *) & arg_b, &b);

  if (isnan (&a) || isnan (&b))
    return -1;			/* false, truth > 0 */

  return _fpcmp_parts (&a, &b);
}

CMPtype
_ge_f2 (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;

  unpack_d ((FLO_union_type *) & arg_a, &a);
  unpack_d ((FLO_union_type *) & arg_b, &b);

  if (isnan (&a) || isnan (&b))
    return -1;			/* false, truth >= 0 */
  return _fpcmp_parts (&a, &b) ;
}

CMPtype
_lt_f2 (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;

  unpack_d ((FLO_union_type *) & arg_a, &a);
  unpack_d ((FLO_union_type *) & arg_b, &b);

  if (isnan (&a) || isnan (&b))
    return 1;			/* false, truth < 0 */

  return _fpcmp_parts (&a, &b);
}

CMPtype
_le_f2 (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;

  unpack_d ((FLO_union_type *) & arg_a, &a);
  unpack_d ((FLO_union_type *) & arg_b, &b);

  if (isnan (&a) || isnan (&b))
    return 1;			/* false, truth <= 0 */

  return _fpcmp_parts (&a, &b) ;
}

#endif /* ! US_SOFTWARE_GOFAST */

FLO_type
si_to_float (SItype arg_a)
{
  fp_number_type in;

  in.class = CLASS_NUMBER;
  in.sign = arg_a < 0;
  if (!arg_a)
    {
      in.class = CLASS_ZERO;
    }
  else
    {
      in.normal_exp = FRACBITS + NGARDS;
      if (in.sign) 
	{
	  /* Special case for minint, since there is no +ve integer
	     representation for it */
	  if (arg_a == 0x80000000)
	    {
	      return -2147483648.0;
	    }
	  in.fraction.ll = (-arg_a);
	}
      else
	in.fraction.ll = arg_a;

      while (in.fraction.ll < (1LL << (FRACBITS + NGARDS)))
	{
	  in.fraction.ll <<= 1;
	  in.normal_exp -= 1;
	}
    }
  return pack_d (&in);
}

SItype
float_to_si (FLO_type arg_a)
{
  fp_number_type a;
  SItype tmp;

  unpack_d ((FLO_union_type *) & arg_a, &a);
  if (iszero (&a))
    return 0;
  if (isnan (&a))
    return 0;
  /* get reasonable MAX_SI_INT... */
  if (isinf (&a))
    return a.sign ? MAX_SI_INT : (-MAX_SI_INT)-1;
  /* it is a number, but a small one */
  if (a.normal_exp < 0)
    return 0;
  if (a.normal_exp > 30)
    return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
  tmp = a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
  return a.sign ? (-tmp) : (tmp);
}

#ifdef US_SOFTWARE_GOFAST
/* While libgcc2.c defines its own __fixunssfsi and __fixunsdfsi routines,
   we also define them for GOFAST because the ones in libgcc2.c have the
   wrong names and I'd rather define these here and keep GOFAST CYG-LOC's
   out of libgcc2.c.  We can't define these here if not GOFAST because then
   there'd be duplicate copies.  */

USItype
float_to_usi (FLO_type arg_a)
{
  fp_number_type a;

  unpack_d ((FLO_union_type *) & arg_a, &a);
  if (iszero (&a))
    return 0;
  if (isnan (&a))
    return 0;
  /* get reasonable MAX_USI_INT... */
  if (isinf (&a))
    return a.sign ? MAX_USI_INT : 0;
  /* it is a negative number */
  if (a.sign)
    return 0;
  /* it is a number, but a small one */
  if (a.normal_exp < 0)
    return 0;
  if (a.normal_exp > 31)
    return MAX_USI_INT;
  else if (a.normal_exp > (FRACBITS + NGARDS))
    return a.fraction.ll << ((FRACBITS + NGARDS) - a.normal_exp);
  else
    return a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
}
#endif

FLO_type
negate (FLO_type arg_a)
{
  fp_number_type a;

  unpack_d ((FLO_union_type *) & arg_a, &a);
  flip_sign (&a);
  return pack_d (&a);
}

#ifdef FLOAT

SFtype
__make_fp(fp_class_type class,
	     unsigned int sign,
	     int exp, 
	     USItype frac)
{
  fp_number_type in;

  in.class = class;
  in.sign = sign;
  in.normal_exp = exp;
  in.fraction.ll = frac;
  return pack_d (&in);
}

#ifndef FLOAT_ONLY

/* This enables one to build an fp library that supports float but not double.
   Otherwise, we would get an undefined reference to __make_dp.
   This is needed for some 8-bit ports that can't handle well values that
   are 8-bytes in size, so we just don't support double for them at all.  */

extern DFtype __make_dp (fp_class_type, unsigned int, int, UDItype frac);

DFtype
sf_to_df (SFtype arg_a)
{
  fp_number_type in;

  unpack_d ((FLO_union_type *) & arg_a, &in);
  return __make_dp (in.class, in.sign, in.normal_exp,
		    ((UDItype) in.fraction.ll) << F_D_BITOFF);
}

#endif
#endif

#ifndef FLOAT

extern SFtype __make_fp (fp_class_type, unsigned int, int, USItype);

DFtype
__make_dp (fp_class_type class, unsigned int sign, int exp, UDItype frac)
{
  fp_number_type in;

  in.class = class;
  in.sign = sign;
  in.normal_exp = exp;
  in.fraction.ll = frac;
  return pack_d (&in);
}

SFtype
df_to_sf (DFtype arg_a)
{
  fp_number_type in;

  unpack_d ((FLO_union_type *) & arg_a, &in);
  return __make_fp (in.class, in.sign, in.normal_exp,
		    in.fraction.ll >> F_D_BITOFF);
}

#endif