issue.v 58.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/**************************************************************************
 *                                                                        *
 *               Copyright (C) 1994, Silicon Graphics, Inc.               *
 *                                                                        *
 *  These coded instructions, statements, and computer programs  contain  *
 *  unpublished  proprietary  information of Silicon Graphics, Inc., and  *
 *  are protected by Federal copyright  law.  They  may not be disclosed  *
 *  to  third  parties  or copied or duplicated in any form, in whole or  *
 *  in part, without the prior written consent of Silicon Graphics, Inc.  *
 *                                                                        *
 *************************************************************************/
// $Id: issue.v,v 1.1.1.1 2002/05/17 06:07:48 blythe Exp $

// issue.v: 	RSP issue logic

`timescale 1ns / 10ps

module issue (clk, reset_l, halt, single_step, 
	pc_in_wr_en, pc_data_in, pc_sel, halting, 
	br_addr, rd_inst, set_broke, wr_br_addr, 
	imem_dma_pif, 
	taken, old_taken, adv_ir, kill_re, should_have_stalled, 
	old_delay_pending, clear_target_pending, old_target_pending, 
	su_inst_a, vu_inst_a, su_inst_b, vu_inst_b, 
	choose_su_inst_b, choose_vu_inst_b, 
	su_nop_debug, vu_nop_debug, 
	link_pc_delay_pc, pc, pc_wr_en, 
	rd_bubble, br_target, delay_slot,
	imem_stall, start_ext_halt, kill_su_issue, kill_vu_issue, 
	vu_comp, vs, vs_eq_one, rd_pre_vt, vt_sel,
	su_rd_pc_debug, vu_rd_pc_debug);

   input		clk;
   input		reset_l;
   input		halt;
   input		single_step;
   input		pc_in_wr_en;
   input	[11:2]	pc_data_in;
   input	[4:0]	pc_sel;
   input		halting;
   input	[11:2]	br_addr;
   input  	[63:0]  rd_inst;	// imem out.  [63:32] is low order inst
   input		set_broke;
   input		wr_br_addr;
   input		imem_dma_pif;
   input 		taken;
   input 		old_taken;
   input		adv_ir;
   input		kill_re;
   input		should_have_stalled;
   input		old_delay_pending;
   input 		clear_target_pending;
   input 		old_target_pending;

   output	[31:0]	su_inst_a;
   output	[31:0]	vu_inst_a;		// RD stage
   output	[31:0]	su_inst_b;
   output	[31:0]	vu_inst_b;		// RD stage
   output		choose_su_inst_b;
   output		choose_vu_inst_b;
   output		su_nop_debug;		// RD stage to nowhere
   output		vu_nop_debug;		// RD stage to nowhere
   output	[23:0]	link_pc_delay_pc;	// EX stage to LS
   output  	[11:2]  pc;
   output		pc_wr_en;
   output 		rd_bubble;
   output		br_target;
   output		delay_slot;
   output		imem_stall;
   output		start_ext_halt;
   output 		kill_su_issue;
   output		kill_vu_issue;
   output 	[11:0] 	su_rd_pc_debug; 		// for debug only
   output 	[11:0] 	vu_rd_pc_debug; 		// for debug only

   // Generation of these outputs is moved from suvuctl for timing reasons.

   output 		vu_comp;
   output 	[4:0] 	vs;
   output 		vs_eq_one;
   output 	[4:0]	rd_pre_vt;
   output	[1:0]	vt_sel;

   
   wire			start_ext_halt;
   wire			adv_ir;
   wire 		halting;
   wire			imem_dma_if;

/* ********************************************************************** */
// Issue logic
 
   wire			adv_pcs;
   wire		[11:3]  if_next_pc;		// IF stage
   wire		[11:2]	pc_mux_out;
   wire		[11:2]	sav_pc;			// pc of saved instruction
   wire		[11:2]  int_halt_pc;
   wire		[63:0]	stalled_rd_inst;
   wire		[63:0]	muxed_rd_inst;
   wire		[31:0]	sav_inst;

   wire		[11:2]	old_br_addr;
   wire  	[11:3]  next_pc;		// RD stage
   wire		[11:2]	cur_rd_pc;
   wire		[11:2]	delay_pc;
   wire		[11:2]	link_pc;
   wire		[23:0]	rd_link_pc_delay_pc;	// RD stage

   wire			if_bubble;
   wire			if_other_bubble;
   wire			rd_other_bubble;
   wire			rd_other_bubble_tmp;
   wire 		if_next_is_target;
   wire 		rd_next_is_target;
   wire			target;
   wire			next_br_target;
   wire			even_target;		// target is 64-bit aligned
   wire			odd_target;		// target is not 64-bit aligned
   wire			delay_slot;
   wire			sav_br;
   wire			sav_su;
   wire			sav_vu;

   wire			fst_br;
   wire			snd_br;
   wire			fst_vu;	// first instruction of imem pair is VU type
   wire			snd_vu;	// second instruction of imem pair is VU type
   wire			s_f_dep;
   wire			f_s_dep;

   wire			next_target;
   wire			next_delay_slot;
   wire			next_sav_br;
   wire			next_sav_su;
   wire			next_sav_vu;

   wire		[4:0]	su_inst_sel;
   wire		[4:0]	vu_inst_sel;

// Dual Issue Signals:

   wire		[31:0]	fst_inst;
   wire		[31:0]	sec_inst;
   wire		[4:0]	fst_vs;
   wire		[4:0]	fst_vt;
   wire		[4:0]	sec_vs;
   wire		[4:0]	sec_vt;
   wire		[4:0]	sav_vd;
   wire		[4:0]	fst_vd;
   wire		[4:0]	sec_vd;
   wire		[4:0]	sav_rt;
   wire		[4:0]	fst_rt;
   wire		[4:0]	sec_rt;
   wire		[4:0]	sav_rd;
   wire		[4:0]	fst_rd;
   wire		[4:0]	sec_rd;
   wire		[5:0]	sav_vu_func;
   wire		[5:0]	fst_vu_func;
   wire		[5:0]	sec_vu_func;
   wire			sav_vu_comp;
   wire			fst_vu_comp;
   wire			sec_vu_comp;
   wire			sav_break;
   wire			fst_break;
   wire			sav_lwc2;
   wire			fst_lwc2;
   wire			sec_lwc2;
   wire			fst_swc2;
   wire			sec_swc2;
   wire			sav_lst;
   wire			fst_lst;
   wire			sec_lst;
   wire			sav_mtc2;
   wire			fst_mtc2;
   wire			sec_mtc2;
   wire			sav_ctc2;
   wire			fst_ctc2;
   wire			sec_ctc2;
   wire			fst_mfc2;
   wire			sec_mfc2;
   wire			fst_cfc2;
   wire			sec_cfc2;
   wire			fst_use_vs;
   wire			sec_use_vs;
   wire			fst_use_vt;
   wire			sec_use_vt;
   wire			sav_ctc2_vc0;
   wire			fst_ctc2_vc0;
   wire			sec_ctc2_vc0;
   wire			sav_ctc2_vc1;
   wire			fst_ctc2_vc1;
   wire			sec_ctc2_vc1;
   wire			sav_ctc2_vc2;
   wire			fst_ctc2_vc2;
   wire			sec_ctc2_vc2;
   wire			fst_use_vc0;
   wire			sec_use_vc0;
   wire			fst_use_vc1;
   wire			sec_use_vc1;
   wire			fst_use_vc2;
   wire			sec_use_vc2;
   wire			sav_vu_nop;
   wire			fst_vu_nop;
   wire			sec_vu_nop;
   wire			sav_vu_rd_wr_en;
   wire			fst_vu_rd_wr_en;
   wire			sec_vu_rd_wr_en;
   wire			sav_set_vc0;
   wire			fst_set_vc0;
   wire			sec_set_vc0;
   wire			sav_set_vc1;
   wire			fst_set_vc1;
   wire			sec_set_vc1;
   wire			sav_set_vc2;
   wire			fst_set_vc2;
   wire			sec_set_vc2;
   wire			fst_cfc2_vc0;
   wire			sec_cfc2_vc0;
   wire			fst_cfc2_vc1;
   wire			sec_cfc2_vc1;
   wire			fst_cfc2_vc2;
   wire			sec_cfc2_vc2;
   wire			sav_fst_hazard;
   wire			fst_sec_hazard;

   wire 		ex_break;
   wire 		issued_sav;
   wire 		issued_fst;
   wire 		issued_sec;

   wire 		prev_stalled;
   wire 		save_rd_inst;

   wire		[11:2]	pc_n; 
   wire		[11:2]	cur_rd_pc_n; 
   wire		[11:3]	next_pc_n; 
   wire		[23:0]	link_pc_delay_pc_n;
   wire			prev_stalled_n;
   wire		[63:0]	stalled_rd_inst_n; 
   wire		[31:0]	sav_inst_n; 
   wire			rd_next_is_target_n; 
   wire			imem_dma_if_n; 
   wire			rd_bubble_n; 
   wire			rd_other_bubble_tmp_n; 
   wire			br_target_n; 
   wire			target_n; 
   wire			clr_state_n; 
   wire			sav_br_n;
   wire			sav_su_n;
   wire			sav_vu_n;
   wire			tmp_delay_slot_n;
   wire		[11:2]	sav_pc_n; 
   wire		[11:2]	old_br_addr_n; 
   wire			ex_break_n; 


   function [11:2] pc_mux;
       input [4:0] pc_sel;
       input [11:2] in_a, in_b, in_c, in_d, in_e;
       begin
	   pc_mux = 'h0; 	//default
	   case	(1'b1)		// synopsys parallel_case full_case
	       pc_sel[0] : pc_mux = in_a;
	       pc_sel[1] : pc_mux = in_b;
	       pc_sel[2] : pc_mux = in_c;
	       pc_sel[3] : pc_mux = in_d;
	       pc_sel[4] : pc_mux = in_e;
           endcase
       end
   endfunction


   assign pc_mux_out = pc_mux(pc_sel, pc_data_in[11:2], int_halt_pc, br_addr, 
		    	   old_br_addr, {if_next_pc, 1'b0});
   spasdffen_10_0_h pc_ff (pc, pc_n, pc_mux_out, pc_wr_en, clk, reset_l);
   assign if_next_pc = pc[11:3] + 1;

// Delay_pc is used for branch target calculations.  It is the pc of the 
// instruction following the branch.  If the branch instruction comes 
// from sav_inst (sav_br), then delay_pc is the pc of rd_inst.  If there 
// is no sav_br, but the first instruction of rd_inst is a branch (fst_br), 
// the delay_pc is the pc of the second instruction in rd_inst.  Finally, 
// if there is no sav_br and no fst_br, but the second instruction in rd_inst 
// is a branch, then delay_pc is the pc of the next sequential imem access 
// after rd_inst.  If there is no branch in sight, delay_pc is a don't care.

// Link_pc is the link address used for bxx_al and jalx.  It is the pc of 
// the second sequential instruction following the branch.  If the branch 
// instruction comes from sav_inst (sav_br), then link_pc is the pc of the 
// second instruction in rd_inst.  If there is no sav_br, but the first 
// instruction of rd_inst is a branch (fst_br), the link_pc is the pc of 
// the next sequential imem access after rd_inst.  Finally, if there is no 
// sav_br and no fst_br, but the second instruction in rd_inst is a branch,
// then link_pc is the pc of the second instruction in the  next sequential 
// imem access after rd_inst.  If there is no branch in sight, link_pc is a 
// don't care.

// *** This use of adv_pcs should be adv_ir ???:
   spasdffen_10_0 cur_pc_ff (cur_rd_pc, cur_rd_pc_n, pc, adv_pcs, clk, 1'b1);
// *** Perhaps this one could be, too:
   spasdffen_9_0 su_ir_pc_ff (next_pc, next_pc_n, if_next_pc, adv_pcs, clk, 1'b1);
   assign delay_pc = 
			 sav_br ? {cur_rd_pc[11:3], 1'b0} : 
			 fst_br ? {cur_rd_pc[11:3], 1'b1} : 
	    	     /* snd_br */ {next_pc, 1'b0};
   assign link_pc = 
			 sav_br ? {cur_rd_pc[11:3], 1'b1} : 
			 fst_br ? {next_pc, 1'b0} : 
		     /* snd_br */ {next_pc, 1'b1};
   assign rd_link_pc_delay_pc = {link_pc, 2'b0, delay_pc, 2'b0};
   spasdff_24_0 su_re_l_d_pc_ff (link_pc_delay_pc,link_pc_delay_pc_n,rd_link_pc_delay_pc,clk,1'b1);

/*
  Bubble generation: if pc_sel == 0010, there is a branch in EX, the branch 
  delay slot is in RD, and the instruction sequentially following the delay 
  slot is in IF.  The instructions in IF have to be killed.  (Also, only one 
  RD instruction is issued.)  This is difficult 
  in IF, because the IR flip-flop is included in the imem module.  So we wait 
  one cycle, then do it in RD.  We pipe pc_sel to the next cycle ( *** should 
  this be conditional on adv_ir?  Is adv_ir guaranteed to be 1 at this point?)
   and, conditional on it, kill the instruction now in RD.
*/

   assign fst_vu = prev_stalled ? (stalled_rd_inst[63:57] == 7'h25) : 
				  (rd_inst[63:57] == 7'h25);
   assign snd_vu = prev_stalled ? (stalled_rd_inst[31:25] == 7'h25) : 
				  (rd_inst[31:25] == 7'h25);
   assign fst_br = !odd_target && (
	(muxed_rd_inst[63:60] == 4'b0001) || 
	(muxed_rd_inst[63:59] == 5'b00001) || 
	(muxed_rd_inst[63:58] == 6'b000001) || 
      	((muxed_rd_inst[63:58]==6'b000000) && (muxed_rd_inst[35:33]==3'b100)));
   assign snd_br = 
	(muxed_rd_inst[31:28] == 4'b0001) || 
	(muxed_rd_inst[31:27] == 5'b00001) || 
	(muxed_rd_inst[31:26] == 6'b000001) || 
	((muxed_rd_inst[31:26]==6'b000000) && (muxed_rd_inst[3:1]==3'b100));
   assign s_f_dep = sav_fst_hazard || ((sav_su || sav_vu) && single_step);
   assign f_s_dep = fst_sec_hazard || ((!sav_su && !sav_vu) && single_step);

// Halt sets if_bubble, therefore clearing all of this state during the 
// following cycle:
// *** No, it doesn't.  To force this, should "halting" also go into 
// *** next_delay_slot and next_target?
   assign odd_target = target && cur_rd_pc[2];
   assign even_target = target && !cur_rd_pc[2];
// *** Is this true in the presence of stalls, etc.? :
   assign next_br_target = rd_bubble || rd_next_is_target || 
	(old_target_pending && !clear_target_pending);
   assign next_target = rd_other_bubble || 
	(old_target_pending && !(target && !kill_re));
   // Next_delay_slot: there's a branch available to issue and it will issue.
   assign next_delay_slot = 
		!kill_re && !rd_other_bubble && (sav_br || 
		(fst_br && !sav_su && !sav_vu) ||
		(fst_br && sav_vu && !delay_slot && !s_f_dep) ||
		(snd_br && odd_target) || 
		(snd_br && fst_vu && !odd_target && 
			!sav_su && !sav_vu && !delay_slot && !f_s_dep));
// *** check use of !delay_slot in next_sav_br, next_sav_su, next_sav_vu
// *** next_br_target and rd_bubble are somewhat redundant in next_sav_xx
// *** remove redundant !odd target in next_sav_xx clauses.
   assign next_sav_br = !next_br_target && !odd_target && !halting && !rd_other_bubble && 
	!(delay_slot && (taken || old_taken)) &&  // = 2nd_br && next_sav_su;
        ((!fst_vu && snd_br && !odd_target && !sav_su && !sav_vu) || 
	    (!fst_vu && snd_br && !odd_target && !sav_su && 
		!delay_slot && sav_vu && !s_f_dep) || 
	    (fst_vu && snd_br && delay_slot && !sav_su && !sav_vu) ||
	    (fst_vu&& snd_br&& !delay_slot && !sav_br && sav_su && !s_f_dep) ||
	    (fst_vu && snd_br && !odd_target && !delay_slot && 
		!sav_su && !sav_vu && f_s_dep));
   assign next_sav_su = !next_br_target && !odd_target && !halting && !rd_other_bubble && 
	!(delay_slot && (taken || old_taken)) && 
	((!fst_vu && !snd_vu && !odd_target && !sav_su && !sav_vu) || 
	    (!fst_vu && !snd_vu && !odd_target && !sav_su && 
		!delay_slot && sav_vu && !s_f_dep) || 
	    (fst_vu && !snd_vu && delay_slot && !sav_su && !sav_vu) ||
	    (fst_vu && !snd_vu && !delay_slot && !sav_br && sav_su && 
		!s_f_dep) ||
	    (fst_vu && !snd_vu && !odd_target && !delay_slot && 
		!sav_su && !sav_vu && f_s_dep));

   assign next_sav_vu = !next_br_target && !odd_target && !halting && !rd_other_bubble && 
	!(delay_slot && (taken || old_taken)) && 
	((fst_vu && snd_vu && !odd_target && !sav_vu && !sav_su) || 
	    (fst_vu && snd_vu && !odd_target && !sav_vu && 
		!delay_slot && !sav_br && sav_su && !s_f_dep) || 
            (!fst_vu && snd_vu && delay_slot && !sav_su && !sav_vu) ||
	    (!fst_vu && snd_vu && !delay_slot && sav_vu && !s_f_dep) ||
    (/* !fst_vu && */ snd_vu && !delay_slot && !sav_su && !sav_vu && fst_br) ||
	    (!fst_vu && snd_vu && !odd_target && !delay_slot && 
		!sav_su && !sav_vu && f_s_dep));

/* 
The enable on the IMem output FF is the same signal as chip select, which
is required to be valid about 1 ns before the *falling* edge of the clock.
We would like to use this FF to hold stalled instructions, but it's 
impossible to produce the stall signal (adv_ir) in time.  Therefore we 
create this side FF to hold instructions which should have been stalled, 
and add a leg to the su_inst_sel and vu_inst_sel muxes to choose the stalled
instruction.
*/

spasdff_1_0_h prev_imem_stall_ff (prev_stalled, prev_stalled_n, should_have_stalled, clk, reset_l);
assign save_rd_inst = should_have_stalled && !prev_stalled;
spasdffen_64_h rd_inst_ff (stalled_rd_inst, stalled_rd_inst_n, rd_inst, save_rd_inst, clk);
assign muxed_rd_inst = prev_stalled ? stalled_rd_inst : rd_inst;

// *** Need assertion here to check for multiple (or no) selects valid
// Mutual exclusivity depends on: xxx_target implies !sav_xx
// su_inst_sel: [0]: sav_inst, [1]: fst_inst, [2]: snd_inst
// vu_inst_sel: ditto

   wire				fst_rd_vu;
   wire				snd_rd_vu;
   wire				fst_st_vu;
   wire				snd_st_vu;
   wire				fst_rd_br;
   wire				fst_st_br;
   assign fst_rd_vu = (rd_inst[63:57] == 7'h25);
   assign snd_rd_vu = (rd_inst[31:25] == 7'h25);
   assign fst_st_vu = (stalled_rd_inst[63:57] == 7'h25);
   assign snd_st_vu = (stalled_rd_inst[31:25] == 7'h25);
   assign fst_rd_br = !odd_target && (
	(rd_inst[63:60] == 4'b0001) || 
	(rd_inst[63:59] == 5'b00001) || 
	(rd_inst[63:58] == 6'b000001) || 
      	((rd_inst[63:58]==6'b000000) && (rd_inst[35:33]==3'b100)));
   assign fst_st_br = !odd_target && (
	(stalled_rd_inst[63:60] == 4'b0001) || 
	(stalled_rd_inst[63:59] == 5'b00001) || 
	(stalled_rd_inst[63:58] == 6'b000001) || 
      ((stalled_rd_inst[63:58]==6'b000000)&&(stalled_rd_inst[35:33]==3'b100)));

   assign su_inst_sel[0] = sav_su;
   assign su_inst_sel[1] = !prev_stalled && !sav_su && !fst_rd_vu&&!odd_target;
   assign su_inst_sel[2] = !prev_stalled && 
	((!snd_rd_vu && odd_target) || 
	(fst_rd_vu && !snd_rd_vu && even_target) ||
	(fst_rd_vu && !snd_rd_vu && !sav_su && !sav_vu && !delay_slot));
   assign su_inst_sel[3] = prev_stalled && !sav_su && !fst_st_vu &&!odd_target;
   assign su_inst_sel[4] = prev_stalled && 
	((!snd_st_vu && odd_target) || 
	(fst_st_vu && !snd_st_vu && even_target) ||
	(fst_st_vu && !snd_st_vu && !sav_su && !sav_vu && !delay_slot));

   wire no_su_inst_rd;
   assign no_su_inst_rd = 
   	!(sav_su) && 
   	!(!fst_rd_vu && !odd_target) &&
   	!(!snd_rd_vu && odd_target) &&
   	!(fst_rd_vu && !snd_rd_vu && even_target) &&
   	!(fst_rd_vu && !snd_rd_vu && !sav_vu && !delay_slot);

   wire no_su_inst_st;
   assign no_su_inst_st = 
   	!(sav_su) && 
   	!(!fst_st_vu && !odd_target) &&
   	!(!snd_st_vu && odd_target) &&
   	!(fst_st_vu && !snd_st_vu && even_target) &&
   	!(fst_st_vu && !snd_st_vu && !sav_vu && !delay_slot);

   wire no_su_inst = (prev_stalled && no_su_inst_st) || (!prev_stalled && no_su_inst_rd);

   assign vu_inst_sel[0] = sav_vu;
   assign vu_inst_sel[1] = !prev_stalled && !sav_vu && fst_rd_vu &&!odd_target;
   assign vu_inst_sel[2] = !prev_stalled && 
	((snd_rd_vu && odd_target) || 
	(!fst_rd_vu && snd_rd_vu && even_target && !fst_rd_br) ||
	(!fst_rd_vu && snd_rd_vu &&!delay_slot&&!sav_su&&!sav_vu&&!fst_rd_br));
   assign vu_inst_sel[3] = prev_stalled && !sav_vu && fst_st_vu && !odd_target;
   assign vu_inst_sel[4] = prev_stalled && 
	((snd_st_vu && odd_target) || 
	(!fst_st_vu && snd_st_vu && even_target && !fst_st_br) ||
	(!fst_st_vu && snd_st_vu &&!delay_slot&&!sav_su&&!sav_vu&&!fst_st_br));
								
   wire no_vu_inst_rd;
   assign no_vu_inst_rd = 
   	!(sav_vu) && 
   	!(fst_rd_vu &&!odd_target) &&
   	!(snd_rd_vu && odd_target) &&
   	!(!fst_rd_vu && snd_rd_vu && even_target && !fst_rd_br) &&
   	!(!fst_rd_vu && snd_rd_vu && !delay_slot && !sav_su && !fst_rd_br);

   wire no_vu_inst_st;
   assign no_vu_inst_st = 
   	!(sav_vu) && 
   	!(fst_st_vu &&!odd_target) &&
   	!(snd_st_vu && odd_target) &&
   	!(!fst_st_vu && snd_st_vu && even_target && !fst_st_br) &&
   	!(!fst_st_vu && snd_st_vu && !delay_slot && !sav_su && !fst_st_br);

   wire no_vu_inst = (prev_stalled && no_vu_inst_st) || (!prev_stalled && no_vu_inst_rd);

   reg [31:0] su_inst_b_reg;
   reg [31:0] vu_inst_b_reg;
   wire [1:0] su_inst_b_sel;
   wire [1:0] vu_inst_b_sel;

   assign su_inst_b_sel[0] = !prev_stalled;
   assign su_inst_b_sel[1] = prev_stalled;
   assign vu_inst_b_sel[0] = !prev_stalled;
   assign vu_inst_b_sel[1] = prev_stalled;

   wire choose_su_inst_b;
   wire choose_vu_inst_b;


   wire		[31:0]		rd_inst_high_n_buf;
   wire		[31:0]		st_rd_inst_high_n_buf;
   wire		[31:0]		sav_inst_n_buf;

   big_inv_bufs_32 rd_inst_high_bufs (rd_inst_high_n_buf, rd_inst[63:32]);
   big_inv_bufs_32 st_rd_inst_high_bufs (st_rd_inst_high_n_buf, stalled_rd_inst[63:32]);
   big_inv_bufs_32 sav_inst_bufs (sav_inst_n_buf, sav_inst);

   wire 	[31:0]		ded_sav_su;
   wire 	[31:0]		ded_sav_su_n;
   wire 	[31:0]		ded_sav_vu;
   wire 	[31:0]		ded_sav_vu_n;
   wire 	[31:0]		ded_prev_stalled;
   wire 	[31:0]		ded_prev_stalled_n;

   spasdffen_32_0 ded_su_sv_su_ff (	
	ded_sav_su, ded_sav_su_n, {32{next_sav_su}}, 
	(!kill_re||halting), clk, reset_l);
   spasdffen_32_0 ded_su_sv_vu_ff (	
	ded_sav_vu, ded_sav_vu_n, {32{next_sav_vu}},
	(!kill_re||halting), clk, reset_l);
   spasdff_32_0 ded_prev_imem_stall_ff (ded_prev_stalled, ded_prev_stalled_n, 
	{32{should_have_stalled}}, clk, reset_l);
   inst_a_mux su_inst_a_mux (ded_prev_stalled, ded_prev_stalled_n, ded_sav_su, 
	ded_sav_su_n, sav_inst_n_buf, rd_inst_high_n_buf, 
	st_rd_inst_high_n_buf, su_inst_a);
   inst_a_mux vu_inst_a_mux (ded_prev_stalled, ded_prev_stalled_n, ded_sav_vu, 
	ded_sav_vu_n, sav_inst_n_buf, rd_inst_high_n_buf, 
	st_rd_inst_high_n_buf, vu_inst_a);

   always @(su_inst_b_sel or rd_inst or stalled_rd_inst) begin
       case (1'b1) 			//synopsys parallel_case full_case
	   su_inst_b_sel[0] : su_inst_b_reg = rd_inst[31:0];
	   su_inst_b_sel[1] : su_inst_b_reg = stalled_rd_inst[31:0];
        endcase
   end

   always @(vu_inst_b_sel or rd_inst or stalled_rd_inst) begin
       case (1'b1) 			//synopsys parallel_case full_case
	   vu_inst_b_sel[0] : vu_inst_b_reg = rd_inst[31:0];
	   vu_inst_b_sel[1] : vu_inst_b_reg = stalled_rd_inst[31:0];
        endcase
   end

   assign su_inst_b = su_inst_b_reg;
   assign vu_inst_b = vu_inst_b_reg;

   assign choose_vu_inst_b = !sav_vu && 
	((prev_stalled && !fst_st_vu) ||
	(!fst_rd_vu && !prev_stalled) ||
	(!fst_rd_vu && !fst_st_vu) ||
	odd_target);
   assign choose_su_inst_b = !sav_su && 
	((prev_stalled && fst_st_vu) ||
	(fst_rd_vu && !prev_stalled) ||
	(fst_rd_vu && fst_st_vu) ||
	odd_target);


   wire [31:0] muxed_sav_inst;
   assign muxed_sav_inst =prev_stalled ? stalled_rd_inst[31:0] : rd_inst[31:0];
   spasdffen_32_0 su_sav_inst_ff (sav_inst, sav_inst_n, muxed_sav_inst,adv_ir, clk,reset_l);
   // If delay slot is stalled one cycle, don't want to kill it.  Hence, 
   // (rd_bubble && !delay_slot).   
   assign kill_su_issue = rd_other_bubble_tmp || 
	(rd_bubble && !delay_slot) || (odd_target && snd_vu) ||
	// not odd target; 1st is su, but don't issue 1st
     	((su_inst_sel[1]||su_inst_sel[3])&&((delay_slot&&sav_vu)||s_f_dep)) || 
	// not odd target; 2nd is su (???), but don't issue 2nd
	(!odd_target && fst_vu && !sav_su && delay_slot) ||
	(!odd_target && fst_vu && sav_vu) ||
	((vu_inst_sel[1] || vu_inst_sel[3]) && f_s_dep) ||
	// no su instructions available
//	(!sav_su && fst_vu && snd_vu);
	no_su_inst;

   assign kill_vu_issue = rd_other_bubble_tmp || 
	(rd_bubble && !delay_slot) || (odd_target && !snd_vu) ||
	// not high target; 1st is vu, but don't issue 1st
	((vu_inst_sel[1] || vu_inst_sel[3]) && ((delay_slot && sav_su) || sav_br || (sav_break && sav_su) || s_f_dep)) ||
	// not high target; 2nd is vu, but don't issue 2nd
	(!odd_target && !fst_vu && !sav_vu && delay_slot) ||
	(!odd_target && !fst_vu && sav_su) ||
	((su_inst_sel[1] || su_inst_sel[3]) && fst_break && !sav_vu) ||
	((su_inst_sel[1] || su_inst_sel[3]) && f_s_dep) ||
	// no vu instructions available
//        (!sav_vu && !fst_vu && !snd_vu);
	no_vu_inst;

// *** What about !sav_su && !sav_vu && fst_br and snd_vu?  And do we get sav_vu in this case?


   assign su_nop_debug = (kill_su_issue || kill_re);
   assign vu_nop_debug = (kill_vu_issue || kill_re);

   assign imem_stall = !rd_bubble && 
	((sav_su && (!fst_vu || delay_slot || sav_br || s_f_dep)) || 
	(sav_vu && (fst_vu || delay_slot || s_f_dep)));
	// = (sav_su && !(vu_inst_sel[1] || vu_inst_sel[3])) || 
	// (sav_vu && (!su_inst_sel[1] || su_inst_sel[3]));

   // Only need bubble when there is no interruption between the taken 
   // branch and the target instruction.  pc_sel[2] indicates there is 
   // a taken branch in EX and the target pc will enter IF in the next
   // cycle.

   assign if_bubble = (pc_sel[2] || pc_sel[3]) && pc_wr_en;

   // These are used to figure out when we're at the target of a branch even 
   // though there was no rd_bubble.
   assign if_next_is_target = pc_sel[3] && pc_wr_en;
   spasdffen_1_0 is_ir_next_tar_ff (rd_next_is_target, rd_next_is_target_n, if_next_is_target, adv_ir, clk, reset_l);

// if pc is target pc = prev pc_wr_en && prev_pc_mux=
   spasdff_1_0 su_pifif_dma_ff(imem_dma_if, imem_dma_if_n, imem_dma_pif, clk, reset_l);
   assign if_other_bubble = halt || (imem_dma_if & !imem_dma_pif);

   spasdffen_1_0 su_ir_bubble_ff (rd_bubble, rd_bubble_n, if_bubble, adv_ir,clk, reset_l);
   spasdff_1_0 su_ir_obubble_ff (rd_other_bubble_tmp, rd_other_bubble_tmp_n, if_other_bubble,clk,reset_l);
   spasdffen_1_0 su_btarget_ff (br_target, br_target_n, next_br_target,!kill_re,clk, reset_l);
   spasdffen_1_0 su_target_ff (target, target_n, next_target, adv_ir, clk, reset_l);

   wire tmp_delay_slot;
   spasdff_1_0_h su_sv_br_ff (			// rigged high-perf ff w/ en
	sav_br, sav_br_n,
	((!kill_re||halting) ? next_sav_br : sav_br),
	clk, reset_l);
   spasdff_1_0_h su_sv_su_ff (			// rigged high-perf ff w/ en
	sav_su, sav_su_n,
	((!kill_re||halting) ? next_sav_su : sav_su),
	clk, reset_l);
   spasdff_1_0_h su_sv_vu_ff (			// rigged high-perf ff w/ en
	sav_vu, sav_vu_n,
	((!kill_re||halting) ? next_sav_vu : sav_vu), 
	clk, reset_l);
   spasdffen_1_0 su_del_slot_ff(tmp_delay_slot,tmp_delay_slot_n,next_delay_slot,adv_ir,clk,reset_l);

   assign delay_slot = tmp_delay_slot || old_delay_pending;

   assign rd_other_bubble = rd_other_bubble_tmp || rd_bubble;
   spasdffen_10_0 su_sav_pc_ff (sav_pc,sav_pc_n, {cur_rd_pc[11:3],1'b1},adv_ir,clk,1'b1);

   assign su_rd_pc_debug = 		// for debug only
	su_inst_sel[0] ? {sav_pc, 2'b00} :
	su_inst_sel[1] ? {cur_rd_pc[11:3], 3'b000} :
	su_inst_sel[2] ? {cur_rd_pc[11:3], 3'b100} :
	su_inst_sel[3] ? {cur_rd_pc[11:3], 3'b000} :
	su_inst_sel[4] ? {cur_rd_pc[11:3], 3'b100} :
			  12'b0;

   assign vu_rd_pc_debug = 		// for debug only
	vu_inst_sel[0] ? {sav_pc, 2'b00} :
	vu_inst_sel[1] ? {cur_rd_pc[11:3], 3'b000} :
	vu_inst_sel[2] ? {cur_rd_pc[11:3], 3'b100} :
	vu_inst_sel[3] ? {cur_rd_pc[11:3], 3'b000} :
	vu_inst_sel[4] ? {cur_rd_pc[11:3], 3'b100} :
			 12'b0;

/* ********************************************************************** */
// Dual-issue hazards

   // Detect hazards (VU register and VU control register) between the two 
   // instructions that are otherwise expected to dual-issue.
   // *** This could be very bad, timing-wise.

   assign fst_inst = muxed_rd_inst[63:32];
   assign sec_inst = muxed_rd_inst[31:0];
   assign fst_vs = fst_inst[15:11];
   assign sec_vs = sec_inst[15:11];
   assign fst_vt = fst_inst[20:16];
   assign sec_vt = sec_inst[20:16];
   assign sav_vd = sav_inst[10:6];
   assign fst_vd = fst_inst[10:6];
   assign sec_vd = sec_inst[10:6];
   assign sav_rt = sav_inst[20:16];
   assign fst_rt = fst_inst[20:16];
   assign sec_rt = sec_inst[20:16];
   assign sav_rd = sav_inst[15:11];
   assign fst_rd = fst_inst[15:11];
   assign sec_rd = sec_inst[15:11];
   assign sav_vu_comp = sav_inst[31:25] == 7'b0100101;
   assign fst_vu_comp = fst_inst[31:25] == 7'b0100101;
   assign sec_vu_comp = sec_inst[31:25] == 7'b0100101;
   assign sav_vu_func = sav_inst[5:0];
   assign fst_vu_func = fst_inst[5:0];
   assign sec_vu_func = sec_inst[5:0];
   assign sav_break = (sav_inst[31:26]==6'b000000)&&(sav_inst[5:0]==6'b001101);
   assign fst_break = (fst_inst[31:26]==6'b000000)&&(fst_inst[5:0]==6'b001101);
   assign sav_lwc2 = (sav_inst[31:26]==6'b110010);
   assign fst_lwc2 = (fst_inst[31:26]==6'b110010);
   assign sec_lwc2 = (sec_inst[31:26]==6'b110010);
   assign fst_swc2 = (fst_inst[31:26]==6'b111010);
   assign sec_swc2 = (sec_inst[31:26]==6'b111010);
   assign sav_lst = (sav_inst[14:11]==4'b1011);
   assign fst_lst = (fst_inst[14:11]==4'b1011);
   assign sec_lst = (sec_inst[14:11]==4'b1011);
   assign sav_mtc2 = (sav_inst[31:22]==10'b0100100010);
   assign fst_mtc2 = (fst_inst[31:22]==10'b0100100010);
   assign sec_mtc2 = (sec_inst[31:22]==10'b0100100010);
   assign sav_ctc2 = (sav_inst[31:22]==10'b0100100011);
   assign fst_ctc2 = (fst_inst[31:22]==10'b0100100011);
   assign sec_ctc2 = (sec_inst[31:22]==10'b0100100011);
   assign fst_mfc2 = (fst_inst[31:22]==10'b0100100000);
   assign sec_mfc2 = (sec_inst[31:22]==10'b0100100000);
   assign fst_cfc2 = (fst_inst[31:22]==10'b0100100001);
   assign sec_cfc2 = (sec_inst[31:22]==10'b0100100001);

   assign fst_use_vs = 
       fst_vu_comp && !((fst_vu_func[5:0] == 6'b110111) ||  // !nop
 		        (fst_vu_func[5:0] == 6'b111111) ||  // !nop
 		        (fst_vu_func[5:0] == 6'b001011) ||  // !macq
 		        (fst_vu_func[5:0] == 6'b011100) ||  // !vsum
		        (fst_vu_func[5:0] == 6'b000010) ||  // !rnd
		        (fst_vu_func[5:0] == 6'b001010) ||  // !rnd
		        (fst_vu_func[5:2] == 4'b0111));     // !sar
   assign sec_use_vs = 
       sec_vu_comp && !((sec_vu_func[5:0] == 6'b110111) ||  // !nop
 		        (sec_vu_func[5:0] == 6'b111111) ||  // !nop
 		        (sec_vu_func[5:0] == 6'b001011) ||  // !macq
 		        (sec_vu_func[5:0] == 6'b011100) ||  // !vsum
		        (sec_vu_func[5:0] == 6'b000010) ||  // !rnd
		        (sec_vu_func[5:0] == 6'b001010) ||  // !rnd
		        (sec_vu_func[5:2] == 4'b0111));     // !sar
   assign fst_use_vt = 
       fst_vu_comp && !((fst_vu_func[5:0] == 6'b001011) ||  // !macq
		        (fst_vu_func[5:0] == 6'b011100) ||  // !vsum
		        (fst_vu_func[5:0] == 6'b110111) ||  // !nop
		        (fst_vu_func[5:0] == 6'b111111) ||  // !nop
		        (fst_vu_func[5:2] == 4'b1111) ||    // !extract
		        (fst_vu_func[5:2] == 4'b0111));     // !sar
   assign sec_use_vt = 
       sec_vu_comp && !((sec_vu_func[5:0] == 6'b001011) ||  // !macq
		        (sec_vu_func[5:0] == 6'b011100) ||  // !vsum
		        (sec_vu_func[5:0] == 6'b110111) ||  // !nop
		        (sec_vu_func[5:0] == 6'b111111) ||  // !nop
		        (sec_vu_func[5:2] == 4'b1111) ||    // !extract
		        (sec_vu_func[5:2] == 4'b0111));     // !sar

   assign sav_ctc2_vc0 = sav_ctc2 && (sav_rd[1:0]==2'b00);
   assign fst_ctc2_vc0 = fst_ctc2 && (fst_rd[1:0]==2'b00);
   assign sec_ctc2_vc0 = sec_ctc2 && (sec_rd[1:0]==2'b00);
   assign sav_ctc2_vc1 = sav_ctc2 && (sav_rd[1:0]==2'b01);
   assign fst_ctc2_vc1 = fst_ctc2 && (fst_rd[1:0]==2'b01);
   assign sec_ctc2_vc1 = sec_ctc2 && (sec_rd[1:0]==2'b01);
   assign sav_ctc2_vc2 = sav_ctc2 && (sav_rd[1:0]==2'b10);
   assign fst_ctc2_vc2 = fst_ctc2 && (fst_rd[1:0]==2'b10);
   assign sec_ctc2_vc2 = sec_ctc2 && (sec_rd[1:0]==2'b10);

   // In some cases instructions that don't actually have the described
   // behavior are included in the following use/set assignments for 
   // hardware convenience. 
   // vco: use_vc0: vabs and vmrg; set_vc0: vabs, vaddb, vsubb, and vmrg
   // vcc: use_vc1: vmrg, cl, cr; set_vc1: all selects 
   // 		(vmrg doesn't really set vc1, but we say it does to prevent
   // 		it from dual issuing with ctc2)
   // vce: use_vc2: cl; set_vc2: cl, ch, cr			
   assign fst_use_vc0 = fst_vu_comp && 			// cmp, not mrg
	(((fst_vu_func[5:3] == 3'b100) && (fst_vu_func[2:0] != 3'b111)) ||
		(fst_vu_func[5:2] == 4'b0100)); 	// add, sub, sut, abs
   assign sec_use_vc0 = sec_vu_comp && 			// cmp, not mrg
	(((sec_vu_func[5:3] == 3'b100) && (sec_vu_func[2:0] != 3'b111)) ||
		(sec_vu_func[5:2] == 4'b0100)); 	// add, sub, sut, abs
   assign fst_use_vc1 = fst_vu_comp && 
	((fst_vu_func[5:0]==6'b100101) || 		// cl
	 (fst_vu_func[5:1]==5'b10011)); 		// mrg, cr
   assign sec_use_vc1 = sec_vu_comp && 
	((sec_vu_func[5:0]==6'b100101) || 		// cl
	 (sec_vu_func[5:1]==5'b10011)); 		// mrg, cr
   assign fst_use_vc2 = fst_vu_comp && (fst_vu_func[5:0]==6'b100101); // cl
   assign sec_use_vc2 = sec_vu_comp && (sec_vu_func[5:0]==6'b100101); // cl

   assign sav_set_vc0 = sav_vu_comp && 
	((sav_vu_func[5:3] == 3'b010) ||	  	// add, sub class
	 (sav_vu_func[5:3] == 3'b100));			// compare
   assign fst_set_vc0 = fst_vu_comp && 
	((fst_vu_func[5:3] == 3'b010) ||	  	// add, sub class
	 (fst_vu_func[5:3] == 3'b100));			// compare
   assign sec_set_vc0 = sec_vu_comp && 
	((sec_vu_func[5:3] == 3'b010) ||	  	// add, sub class
	 (sec_vu_func[5:3] == 3'b100));			// compare
   assign sav_set_vc1 = sav_vu_comp && 			// comp
	(sav_vu_func[5:3] == 3'b100);
   assign fst_set_vc1 = fst_vu_comp && 			// comp 
	(fst_vu_func[5:3] == 3'b100);
   assign sec_set_vc1 = sec_vu_comp &&  		// comp
	(sec_vu_func[5:3] == 3'b100);
   assign sav_set_vc2 = sav_vu_comp &&   		// cl,ch,cr
	((sav_vu_func[5:1]==5'b10010) || (sav_vu_func==6'b100110));
   assign fst_set_vc2 = fst_vu_comp &&   		// cl,ch,cr
	((fst_vu_func[5:1]==5'b10010) || (fst_vu_func==6'b100110));
   assign sec_set_vc2 = sec_vu_comp &&  		// cl,ch,cr
	((sec_vu_func[5:1]==5'b10010) || (sec_vu_func==6'b100110));

   assign fst_cfc2_vc0 = fst_cfc2 && (fst_rd[1:0]==2'b00);
   assign sec_cfc2_vc0 = sec_cfc2 && (sec_rd[1:0]==2'b00);
   assign fst_cfc2_vc1 = fst_cfc2 && (fst_rd[1:0]==2'b01);
   assign sec_cfc2_vc1 = sec_cfc2 && (sec_rd[1:0]==2'b01);
   assign fst_cfc2_vc2 = fst_cfc2 && (fst_rd[1:0]==2'b10);
   assign sec_cfc2_vc2 = sec_cfc2 && (sec_rd[1:0]==2'b10);

   assign sav_vu_nop = sav_vu_comp && 
        ((sav_vu_func == 6'b110111) || (sav_vu_func == 6'b111111));
   assign fst_vu_nop = fst_vu_comp && 
        ((fst_vu_func == 6'b110111) || (fst_vu_func == 6'b111111));
   assign sec_vu_nop = sec_vu_comp && 
        ((sec_vu_func == 6'b110111) || (sec_vu_func == 6'b111111));
   assign sav_vu_rd_wr_en = sav_vu_comp && !(sav_vu_nop);
   assign fst_vu_rd_wr_en = fst_vu_comp && !(fst_vu_nop);
   assign sec_vu_rd_wr_en = sec_vu_comp && !(sec_vu_nop);

   assign sav_fst_hazard = 
    (sav_su && (
    	(sav_lwc2 && (sav_rt == fst_vs) && fst_use_vs) ||
        (sav_lwc2 && (sav_rt == fst_vt) && fst_use_vt) ||
        (sav_lwc2 && (sav_rt == fst_vd) && fst_vu_rd_wr_en) ||  // dest to dest
        (sav_mtc2 && (sav_rd==fst_vs) && fst_use_vs) ||
        (sav_mtc2 && (sav_rd==fst_vt) && fst_use_vt) ||
        (sav_mtc2 && (sav_rd==fst_vd) && fst_vu_comp) ||    // dest to dest
        (sav_lwc2 &&sav_lst&&(sav_rt[4:3]==fst_vs[4:3])&&fst_use_vs) ||
        (sav_lwc2 &&sav_lst&&(sav_rt[4:3]==fst_vt[4:3])&&fst_use_vt) ||
        (sav_lwc2 &&sav_lst&&(sav_rt[4:3]==fst_vd[4:3])&&fst_vu_comp) || // dest to dest
        (sav_ctc2_vc0 && (fst_use_vc0 || fst_set_vc0)) ||
        (sav_ctc2_vc1 && (fst_use_vc1 || fst_set_vc1)) ||
        (sav_ctc2_vc2 && (fst_use_vc2 || fst_set_vc2)))) ||
   (sav_vu && (
        (sav_vu_rd_wr_en && (sav_vd == fst_rt) && fst_swc2) || 
        (sav_vu_rd_wr_en && (sav_vd == fst_rd) && fst_mfc2) || 
        (sav_vu_rd_wr_en && (sav_vd == fst_rd) && fst_mtc2) ||  // dest to dest
        (sav_vu_rd_wr_en && (sav_vd == fst_rt) && fst_lwc2) ||  // dest to dest
        (sav_vu_rd_wr_en && (sav_vd[4:3]==fst_rt[4:3]) && fst_swc2&&fst_lst) ||
        (sav_vu_rd_wr_en && (sav_vd[4:3]==fst_rt[4:3]) && fst_lwc2 && fst_lst) || // dest to dest
        (sav_set_vc0 && (fst_cfc2_vc0 || fst_ctc2_vc0)) ||
        (sav_set_vc1 && (fst_cfc2_vc1 || fst_ctc2_vc1)) || 
        (sav_set_vc2 && (fst_cfc2_vc2 || fst_ctc2_vc2))));

   assign fst_sec_hazard = !odd_target && !sav_su && !sav_vu && 
    ((!fst_vu && (
        (fst_lwc2 && (fst_rt == sec_vs) && sec_use_vs) ||
        (fst_lwc2 && (fst_rt == sec_vt) && sec_use_vt) ||
        (fst_lwc2 && (fst_rt == sec_vd) && sec_vu_rd_wr_en) ||  // dest to dest
        (fst_mtc2 && (fst_rd==sec_vs) && sec_use_vs) ||
        (fst_mtc2 && (fst_rd==sec_vt) && sec_use_vt) ||
        (fst_mtc2 && (fst_rd==sec_vd) && sec_vu_rd_wr_en) ||    // dest to dest
        (fst_lwc2 &&fst_lst&&(fst_rt[4:3]==sec_vs[4:3])&&sec_use_vs) ||
        (fst_lwc2 &&fst_lst&&(fst_rt[4:3]==sec_vt[4:3])&&sec_use_vt) ||
        (fst_lwc2 &&fst_lst&&(fst_rt[4:3]==sec_vd[4:3])&&sec_vu_comp) || // dest to dest
        (fst_ctc2_vc0 && (sec_use_vc0 || sec_set_vc0)) ||
        (fst_ctc2_vc1 && (sec_use_vc1 || sec_set_vc1)) ||
        (fst_ctc2_vc2 && (sec_use_vc2 || sec_set_vc2)))) ||
    (fst_vu && (
        (fst_vu_rd_wr_en && (fst_vd == sec_rt) && sec_swc2) || 
        (fst_vu_rd_wr_en && (fst_vd == sec_rd) && sec_mfc2) || 
        (fst_vu_rd_wr_en && (fst_vd == sec_rd) && sec_mtc2) ||  // dest to dest
        (fst_vu_rd_wr_en && (fst_vd == sec_rt) && sec_lwc2) ||  // dest to dest
        (fst_vu_rd_wr_en && (fst_vd[4:3]==sec_rt[4:3]) && sec_swc2&&sec_lst) ||
        (fst_vu_rd_wr_en && (fst_vd[4:3]==sec_rt[4:3]) && sec_lwc2 && sec_lst) || // dest to dest
        (fst_set_vc0 && (sec_cfc2_vc0 || sec_ctc2_vc0)) ||
        (fst_set_vc1 && (sec_cfc2_vc1 || sec_ctc2_vc1)) || 
        (fst_set_vc2 && (sec_cfc2_vc2 || sec_ctc2_vc2)))));

/*
   If there is a taken branch (pc_sel[2 or 3]) but adv_ir is deasserted, we 
   have to latch both taken and the branch address until adv_ir is next 
   asserted and the pc ff can be loaded.  Old_br_addr implements the address 
   latch; taken is latched in suctl.
*/

   spasdffen_10_0 su_br_addr_ff (old_br_addr, old_br_addr_n, br_addr,wr_br_addr,clk,reset_l);

// When halt is deasserted, pc is pointing to the first instruction to execute
// and the rd_inst is garbage.  Therefore, when halt is deasserted, *don't* 
// issue an instruction in that cycle.  Wait til the next one.

// The PC is only written when the RSP is halted.  The pipe is empty,
// and cur_rd_pc, link_pc_delay_pc, and next_pc are don't cares (so it's
// ok to write them, too).

// *** What happens here if an instruction is issued but stalls in rd. 
// *** It should complete and be unaffected by stall.
// *** But this won't work for IMem DMA, where we have to get out of the way 
// *** in a fixed time (2 cycles) for DMA.  But DMA shouldn't be happening 
// *** where we're executing ... that's a software restriction. (Whether we're 
// *** halted or not?)

// *** IMem write: just stall everything, including rd_inst, and continue 
// *** when it's done.
// *** IMem read: assume we've already come to a graceful halt

   assign issued_sav =  (sav_su && !(kill_su_issue || kill_re)) || 
			(sav_vu && !(kill_vu_issue || kill_re));
   assign issued_fst =			// issued first implies !odd_target 
	(((su_inst_sel[1] || su_inst_sel[3]) && !(kill_su_issue || kill_re)) ||
	 ((vu_inst_sel[1] || vu_inst_sel[3]) && !(kill_vu_issue || kill_re)));
   assign issued_sec = 
	(((su_inst_sel[2] || su_inst_sel[4]) && !(kill_su_issue || kill_re)) ||
	 ((vu_inst_sel[2] || vu_inst_sel[4]) && !(kill_vu_issue || kill_re)));

   assign start_ext_halt = halt && !ex_break;

   wire [7:0] halt_sel;
   reg  [11:2] int_halt_pc_reg;

   assign halt_sel[0] = (halt_sel[2:1]==2'b0) && !(delay_slot && kill_re) && (rd_bubble || (old_target_pending && !br_target));
   assign halt_sel[1] = delay_slot && !kill_re && taken; 
   assign halt_sel[2] = delay_slot && !kill_re && !taken && old_taken;
   assign halt_sel[3] = (halt_sel[2:0]==3'b0) && (sav_su || sav_vu) && !issued_sav && !issued_fst && !issued_sec && !odd_target;
   assign halt_sel[4] = (halt_sel[2:0]==3'b0) && issued_sav && !issued_fst && !issued_sec && !odd_target;
   assign halt_sel[5] = (halt_sel[2:0]==3'b0) && issued_fst && !issued_sec;	// !odd_target implied by issued_fst
   assign halt_sel[6] = (halt_sel[2:0]==3'b0) && !issued_sec && odd_target;
   assign halt_sel[7] = (halt_sel[2:0]==3'b0) && issued_sec;

   always @(halt_sel or pc or sav_pc or cur_rd_pc or br_addr or old_br_addr) 
   begin
       case (1'b1) 			//synopsys parallel_case
           halt_sel[0] : int_halt_pc_reg = pc[11:2];
           halt_sel[1] : int_halt_pc_reg = br_addr[11:2];
           halt_sel[2] : int_halt_pc_reg = old_br_addr[11:2];
           halt_sel[3] : int_halt_pc_reg = sav_pc[11:2];
           halt_sel[4] : int_halt_pc_reg = {cur_rd_pc[11:3], 1'b0};
           halt_sel[5] : int_halt_pc_reg = {cur_rd_pc[11:3], 1'b1};
           halt_sel[6] : int_halt_pc_reg = {cur_rd_pc[11:3], 1'b1};
           halt_sel[7] : int_halt_pc_reg = {pc[11:3], 1'b0};
           default     : int_halt_pc_reg = {cur_rd_pc[11:3], 1'b0};	// first instruction, used for delay_slot && kill_re && !sav_xu
       endcase
   end
   assign int_halt_pc = int_halt_pc_reg;

   // *** There is an identical ex_break ff in suctl:
   spasdff_1_0 is_re_break_ff (ex_break, ex_break_n, set_broke, clk, reset_l);

   // Enable pc write with pc input or int_halt_pc or "normal" next pc.
   assign pc_wr_en = 
	pc_in_wr_en ||				// external write
	halting || 
	(adv_pcs && !halt && !imem_dma_if); 	// normal condition

   // Advance unless there are instructions that have to be executed in the
   // IR latch (imem_stall and not taking a branch).
   assign adv_pcs = adv_ir && (!imem_stall || pc_sel[2] || pc_sel[3]);

  // Moved from suvuctl for improved synthesis:

   wire [5:0] vu_func_a;
   wire [5:0] vu_func_b;
   wire vu_comp_a;
   wire vu_comp_b;
   wire [4:0] vs_a;
   wire [4:0] vs_b;

   assign vu_func_a = vu_inst_a[5:0];
   assign vu_func_b = vu_inst_b[5:0];
   assign vu_comp_a = (vu_inst_a[31:25] == 7'b0100101) && 	// nop
	!((vu_func_a == 6'b110111) || (vu_func_a == 6'b111111));	
   assign vu_comp_b = (vu_inst_b[31:25] == 7'b0100101) && 	// nop
	!((vu_func_b == 6'b110111) || (vu_func_b == 6'b111111));	
   assign vu_comp = choose_vu_inst_b ? vu_comp_b : vu_comp_a;
   
   assign vs_a = vu_inst_a[15:11];
   assign vs_b = vu_inst_b[15:11];
   assign vs = choose_vu_inst_b ? vs_b : vs_a;
   assign vs_eq_one = (vs[0]==1);

   // VT to the VU is a very critical path.  There are five possible 
   // for vt: sav_inst, stalled_rd_inst[63:32], stalled_rd_inst[31:0], 
   // rd_inst[63:32], and rd_inst[31:0].  The first 3, while RD stage 
   // instructions, are available in the previous stage as
   // muxed_sav_inst (advanced with adv_ir) and rd_inst (advanced 
   // with save_rd_inst).  The logic below muxes these 3 early 
   // then latches them.  The result, rd_pre_vt, is output to the vt 
   // logic, where it is decoded and muxed with decoded versions of  
   // vt obtained from rd_inst[63:32] and rd_inst[31:0].  The control
   // for this final mux, vt_sel, is also generated below.  
   // vt_sel == 00	vt = pre_vt	(use stalled_rd_inst or sav_inst)
   // vt_sel == 01	vt = rd_inst[63:32][vt]
   // vt_sel == 10	vt = rd_inst[31:0]][vt]
   // vt_sel == 11	illegal condition

   wire			adv_sav_inst;
   wire			adv_ctl;
   wire			adv_st_inst;
   wire		[7:0]	pre_vt_sel;
   wire 	[4:0]	if_pre_vt;
   wire			use_pre_vt;
   wire 	[4:0]	rd_pre_vt_n;

   assign adv_sav_inst = adv_ir;		// advances muxed_sav_inst -> sav_inst
   assign adv_ctl = !kill_re || halting;	// advances next_sav_vu > sav_vu
   assign adv_st_inst = save_rd_inst; 		// advances rd_inst -> stalled_rd_inst

// odd_target = target && cur_rd_pc[2];  To generate pre_odd_target (a version for IF
// pipe stage) we use previous versions of target (next_target) and cur_rd_pc (pc).
// We need to consider three situations: both advance, target advances but cur_rd_pc
// does not, and neither advance.  (cur_rd_pc advancing but target not is impossible.)
   wire 		pre_odd_target;
   assign pre_odd_target = 
	(next_target && adv_ir && pc[2] && (!imem_stall || pc_sel[2] || pc_sel[3])) || 		// advance both
	(next_target && adv_ir && cur_rd_pc[2] && !(!imem_stall || pc_sel[2] || pc_sel[3])) || 	// advance target but not pc
	(target && !adv_ir && cur_rd_pc[2]);							// advance neither

   assign pre_vt_sel[0] = next_sav_vu && adv_ctl && adv_sav_inst;
   assign pre_vt_sel[1] = next_sav_vu && adv_ctl && !adv_sav_inst;
   assign pre_vt_sel[2] = sav_vu && !adv_ctl && adv_sav_inst;
   assign pre_vt_sel[3] = sav_vu && !adv_ctl && !adv_sav_inst;
   assign pre_vt_sel[4] = (pre_vt_sel[3:0] == 4'b0) && (fst_rd_vu && !pre_odd_target) && adv_st_inst;
   assign pre_vt_sel[5] = (pre_vt_sel[3:0] == 4'b0) && !(fst_rd_vu && !pre_odd_target) && adv_st_inst;
   assign pre_vt_sel[6] = (pre_vt_sel[3:0] == 4'b0) && (fst_st_vu && !pre_odd_target) && !adv_st_inst;
   assign pre_vt_sel[7] = (pre_vt_sel[3:0] == 4'b0) && !(fst_st_vu && !pre_odd_target) && !adv_st_inst;

   reg		[4:0]	if_pre_vt_reg;
   always @(pre_vt_sel or muxed_sav_inst or sav_inst or rd_inst or stalled_rd_inst)
   begin
      case (1'b1) 			//synopsys parallel_case full_case
	pre_vt_sel[0] : if_pre_vt_reg = muxed_sav_inst[20:16]; 
	pre_vt_sel[1] : if_pre_vt_reg = sav_inst[20:16]; 
	pre_vt_sel[2] : if_pre_vt_reg = muxed_sav_inst[20:16]; 
	pre_vt_sel[3] : if_pre_vt_reg = sav_inst[20:16]; 
	pre_vt_sel[4] : if_pre_vt_reg = rd_inst[52:48]; 
	pre_vt_sel[5] : if_pre_vt_reg = rd_inst[20:16];
	pre_vt_sel[6] : if_pre_vt_reg = stalled_rd_inst[52:48]; 
	pre_vt_sel[7] : if_pre_vt_reg = stalled_rd_inst[20:16];
      endcase
   end
   assign if_pre_vt = if_pre_vt_reg;

  // Always advance pre_vt.  Various stall conditions are taken into account in 
  // if_pre_vt mux.
  spasdff_5_0 is_vt_ff (rd_pre_vt, rd_pre_vt_n, if_pre_vt, clk, 1'b1);

  assign use_pre_vt = sav_vu || prev_stalled;
  assign vt_sel[0] = !use_pre_vt && fst_rd_vu && !odd_target;
  assign vt_sel[1] = !use_pre_vt && (!fst_rd_vu || odd_target);
  
endmodule


module inst_a_mux (ded_prev_stalled, ded_prev_stalled_n, ded_sav, ded_sav_n, 
	sav_inst_n_buf, rd_inst_high_n_buf, st_rd_inst_high_n_buf, inst_a);

  input		[31:0]	ded_prev_stalled;
  input		[31:0]	ded_prev_stalled_n;
  input		[31:0]	ded_sav; 
  input		[31:0]	ded_sav_n; 
  input		[31:0]	sav_inst_n_buf;
  input		[31:0]	rd_inst_high_n_buf;
  input		[31:0]	st_rd_inst_high_n_buf;

  output	[31:0]	inst_a;

  wire		[31:0]	leg_1;
  wire		[31:0]	leg_2;
  wire		[31:0]	leg_3;

  wire		[31:0]  inst_a_unbuf;

  nr02d0 nr02d0_leg1_0 (.zn(leg_1[0]), .a1(sav_inst_n_buf[0]), .a2(ded_sav_n[0]));
  nr02d0 nr02d0_leg1_1 (.zn(leg_1[1]), .a1(sav_inst_n_buf[1]), .a2(ded_sav_n[1]));
  nr02d0 nr02d0_leg1_2 (.zn(leg_1[2]), .a1(sav_inst_n_buf[2]), .a2(ded_sav_n[2]));
  nr02d0 nr02d0_leg1_3 (.zn(leg_1[3]), .a1(sav_inst_n_buf[3]), .a2(ded_sav_n[3]));
  nr02d0 nr02d0_leg1_4 (.zn(leg_1[4]), .a1(sav_inst_n_buf[4]), .a2(ded_sav_n[4]));
  nr02d0 nr02d0_leg1_5 (.zn(leg_1[5]), .a1(sav_inst_n_buf[5]), .a2(ded_sav_n[5]));
  nr02d0 nr02d0_leg1_6 (.zn(leg_1[6]), .a1(sav_inst_n_buf[6]), .a2(ded_sav_n[6]));
  nr02d0 nr02d0_leg1_7 (.zn(leg_1[7]), .a1(sav_inst_n_buf[7]), .a2(ded_sav_n[7]));
  nr02d0 nr02d0_leg1_8 (.zn(leg_1[8]), .a1(sav_inst_n_buf[8]), .a2(ded_sav_n[8]));
  nr02d0 nr02d0_leg1_9 (.zn(leg_1[9]), .a1(sav_inst_n_buf[9]), .a2(ded_sav_n[9]));
  nr02d0 nr02d0_leg1_10 (.zn(leg_1[10]), .a1(sav_inst_n_buf[10]), .a2(ded_sav_n[10]));
  nr02d0 nr02d0_leg1_11 (.zn(leg_1[11]), .a1(sav_inst_n_buf[11]), .a2(ded_sav_n[11]));
  nr02d0 nr02d0_leg1_12 (.zn(leg_1[12]), .a1(sav_inst_n_buf[12]), .a2(ded_sav_n[12]));
  nr02d0 nr02d0_leg1_13 (.zn(leg_1[13]), .a1(sav_inst_n_buf[13]), .a2(ded_sav_n[13]));
  nr02d0 nr02d0_leg1_14 (.zn(leg_1[14]), .a1(sav_inst_n_buf[14]), .a2(ded_sav_n[14]));
  nr02d0 nr02d0_leg1_15 (.zn(leg_1[15]), .a1(sav_inst_n_buf[15]), .a2(ded_sav_n[15]));
  nr02d0 nr02d0_leg1_16 (.zn(leg_1[16]), .a1(sav_inst_n_buf[16]), .a2(ded_sav_n[16]));
  nr02d0 nr02d0_leg1_17 (.zn(leg_1[17]), .a1(sav_inst_n_buf[17]), .a2(ded_sav_n[17]));
  nr02d0 nr02d0_leg1_18 (.zn(leg_1[18]), .a1(sav_inst_n_buf[18]), .a2(ded_sav_n[18]));
  nr02d0 nr02d0_leg1_19 (.zn(leg_1[19]), .a1(sav_inst_n_buf[19]), .a2(ded_sav_n[19]));
  nr02d0 nr02d0_leg1_20 (.zn(leg_1[20]), .a1(sav_inst_n_buf[20]), .a2(ded_sav_n[20]));
  nr02d0 nr02d0_leg1_21 (.zn(leg_1[21]), .a1(sav_inst_n_buf[21]), .a2(ded_sav_n[21]));
  nr02d0 nr02d0_leg1_22 (.zn(leg_1[22]), .a1(sav_inst_n_buf[22]), .a2(ded_sav_n[22]));
  nr02d0 nr02d0_leg1_23 (.zn(leg_1[23]), .a1(sav_inst_n_buf[23]), .a2(ded_sav_n[23]));
  nr02d0 nr02d0_leg1_24 (.zn(leg_1[24]), .a1(sav_inst_n_buf[24]), .a2(ded_sav_n[24]));
  nr02d0 nr02d0_leg1_25 (.zn(leg_1[25]), .a1(sav_inst_n_buf[25]), .a2(ded_sav_n[25]));
  nr02d0 nr02d0_leg1_26 (.zn(leg_1[26]), .a1(sav_inst_n_buf[26]), .a2(ded_sav_n[26]));
  nr02d0 nr02d0_leg1_27 (.zn(leg_1[27]), .a1(sav_inst_n_buf[27]), .a2(ded_sav_n[27]));
  nr02d0 nr02d0_leg1_28 (.zn(leg_1[28]), .a1(sav_inst_n_buf[28]), .a2(ded_sav_n[28]));
  nr02d0 nr02d0_leg1_29 (.zn(leg_1[29]), .a1(sav_inst_n_buf[29]), .a2(ded_sav_n[29]));
  nr02d0 nr02d0_leg1_30 (.zn(leg_1[30]), .a1(sav_inst_n_buf[30]), .a2(ded_sav_n[30]));
  nr02d0 nr02d0_leg1_31 (.zn(leg_1[31]), .a1(sav_inst_n_buf[31]), .a2(ded_sav_n[31]));

  nr03d0 nr03d0_leg2_0 (.zn(leg_2[0]), .a1(st_rd_inst_high_n_buf[0]), .a2(ded_prev_stalled_n[0]), .a3(ded_sav[0]));
  nr03d0 nr03d0_leg2_1 (.zn(leg_2[1]), .a1(st_rd_inst_high_n_buf[1]), .a2(ded_prev_stalled_n[1]), .a3(ded_sav[1]));
  nr03d0 nr03d0_leg2_2 (.zn(leg_2[2]), .a1(st_rd_inst_high_n_buf[2]), .a2(ded_prev_stalled_n[2]), .a3(ded_sav[2]));
  nr03d0 nr03d0_leg2_3 (.zn(leg_2[3]), .a1(st_rd_inst_high_n_buf[3]), .a2(ded_prev_stalled_n[3]), .a3(ded_sav[3]));
  nr03d0 nr03d0_leg2_4 (.zn(leg_2[4]), .a1(st_rd_inst_high_n_buf[4]), .a2(ded_prev_stalled_n[4]), .a3(ded_sav[4]));
  nr03d0 nr03d0_leg2_5 (.zn(leg_2[5]), .a1(st_rd_inst_high_n_buf[5]), .a2(ded_prev_stalled_n[5]), .a3(ded_sav[5]));
  nr03d0 nr03d0_leg2_6 (.zn(leg_2[6]), .a1(st_rd_inst_high_n_buf[6]), .a2(ded_prev_stalled_n[6]), .a3(ded_sav[6]));
  nr03d0 nr03d0_leg2_7 (.zn(leg_2[7]), .a1(st_rd_inst_high_n_buf[7]), .a2(ded_prev_stalled_n[7]), .a3(ded_sav[7]));
  nr03d0 nr03d0_leg2_8 (.zn(leg_2[8]), .a1(st_rd_inst_high_n_buf[8]), .a2(ded_prev_stalled_n[8]), .a3(ded_sav[8]));
  nr03d0 nr03d0_leg2_9 (.zn(leg_2[9]), .a1(st_rd_inst_high_n_buf[9]), .a2(ded_prev_stalled_n[9]), .a3(ded_sav[9]));
  nr03d0 nr03d0_leg2_10 (.zn(leg_2[10]), .a1(st_rd_inst_high_n_buf[10]), .a2(ded_prev_stalled_n[10]), .a3(ded_sav[10]));
  nr03d0 nr03d0_leg2_11 (.zn(leg_2[11]), .a1(st_rd_inst_high_n_buf[11]), .a2(ded_prev_stalled_n[11]), .a3(ded_sav[11]));
  nr03d0 nr03d0_leg2_12 (.zn(leg_2[12]), .a1(st_rd_inst_high_n_buf[12]), .a2(ded_prev_stalled_n[12]), .a3(ded_sav[12]));
  nr03d0 nr03d0_leg2_13 (.zn(leg_2[13]), .a1(st_rd_inst_high_n_buf[13]), .a2(ded_prev_stalled_n[13]), .a3(ded_sav[13]));
  nr03d0 nr03d0_leg2_14 (.zn(leg_2[14]), .a1(st_rd_inst_high_n_buf[14]), .a2(ded_prev_stalled_n[14]), .a3(ded_sav[14]));
  nr03d0 nr03d0_leg2_15 (.zn(leg_2[15]), .a1(st_rd_inst_high_n_buf[15]), .a2(ded_prev_stalled_n[15]), .a3(ded_sav[15]));
  nr03d0 nr03d0_leg2_16 (.zn(leg_2[16]), .a1(st_rd_inst_high_n_buf[16]), .a2(ded_prev_stalled_n[16]), .a3(ded_sav[16]));
  nr03d0 nr03d0_leg2_17 (.zn(leg_2[17]), .a1(st_rd_inst_high_n_buf[17]), .a2(ded_prev_stalled_n[17]), .a3(ded_sav[17]));
  nr03d0 nr03d0_leg2_18 (.zn(leg_2[18]), .a1(st_rd_inst_high_n_buf[18]), .a2(ded_prev_stalled_n[18]), .a3(ded_sav[18]));
  nr03d0 nr03d0_leg2_19 (.zn(leg_2[19]), .a1(st_rd_inst_high_n_buf[19]), .a2(ded_prev_stalled_n[19]), .a3(ded_sav[19]));
  nr03d0 nr03d0_leg2_20 (.zn(leg_2[20]), .a1(st_rd_inst_high_n_buf[20]), .a2(ded_prev_stalled_n[20]), .a3(ded_sav[20]));
  nr03d0 nr03d0_leg2_21 (.zn(leg_2[21]), .a1(st_rd_inst_high_n_buf[21]), .a2(ded_prev_stalled_n[21]), .a3(ded_sav[21]));
  nr03d0 nr03d0_leg2_22 (.zn(leg_2[22]), .a1(st_rd_inst_high_n_buf[22]), .a2(ded_prev_stalled_n[22]), .a3(ded_sav[22]));
  nr03d0 nr03d0_leg2_23 (.zn(leg_2[23]), .a1(st_rd_inst_high_n_buf[23]), .a2(ded_prev_stalled_n[23]), .a3(ded_sav[23]));
  nr03d0 nr03d0_leg2_24 (.zn(leg_2[24]), .a1(st_rd_inst_high_n_buf[24]), .a2(ded_prev_stalled_n[24]), .a3(ded_sav[24]));
  nr03d0 nr03d0_leg2_25 (.zn(leg_2[25]), .a1(st_rd_inst_high_n_buf[25]), .a2(ded_prev_stalled_n[25]), .a3(ded_sav[25]));
  nr03d0 nr03d0_leg2_26 (.zn(leg_2[26]), .a1(st_rd_inst_high_n_buf[26]), .a2(ded_prev_stalled_n[26]), .a3(ded_sav[26]));
  nr03d0 nr03d0_leg2_27 (.zn(leg_2[27]), .a1(st_rd_inst_high_n_buf[27]), .a2(ded_prev_stalled_n[27]), .a3(ded_sav[27]));
  nr03d0 nr03d0_leg2_28 (.zn(leg_2[28]), .a1(st_rd_inst_high_n_buf[28]), .a2(ded_prev_stalled_n[28]), .a3(ded_sav[28]));
  nr03d0 nr03d0_leg2_29 (.zn(leg_2[29]), .a1(st_rd_inst_high_n_buf[29]), .a2(ded_prev_stalled_n[29]), .a3(ded_sav[29]));
  nr03d0 nr03d0_leg2_30 (.zn(leg_2[30]), .a1(st_rd_inst_high_n_buf[30]), .a2(ded_prev_stalled_n[30]), .a3(ded_sav[30]));
  nr03d0 nr03d0_leg2_31 (.zn(leg_2[31]), .a1(st_rd_inst_high_n_buf[31]), .a2(ded_prev_stalled_n[31]), .a3(ded_sav[31]));

  nr03d0 nr03d0_leg3_0 (.zn(leg_3[0]), .a1(rd_inst_high_n_buf[0]), .a2(ded_prev_stalled[0]), .a3(ded_sav[0]));
  nr03d0 nr03d0_leg3_1 (.zn(leg_3[1]), .a1(rd_inst_high_n_buf[1]), .a2(ded_prev_stalled[1]), .a3(ded_sav[1]));
  nr03d0 nr03d0_leg3_2 (.zn(leg_3[2]), .a1(rd_inst_high_n_buf[2]), .a2(ded_prev_stalled[2]), .a3(ded_sav[2]));
  nr03d0 nr03d0_leg3_3 (.zn(leg_3[3]), .a1(rd_inst_high_n_buf[3]), .a2(ded_prev_stalled[3]), .a3(ded_sav[3]));
  nr03d0 nr03d0_leg3_4 (.zn(leg_3[4]), .a1(rd_inst_high_n_buf[4]), .a2(ded_prev_stalled[4]), .a3(ded_sav[4]));
  nr03d0 nr03d0_leg3_5 (.zn(leg_3[5]), .a1(rd_inst_high_n_buf[5]), .a2(ded_prev_stalled[5]), .a3(ded_sav[5]));
  nr03d0 nr03d0_leg3_6 (.zn(leg_3[6]), .a1(rd_inst_high_n_buf[6]), .a2(ded_prev_stalled[6]), .a3(ded_sav[6]));
  nr03d0 nr03d0_leg3_7 (.zn(leg_3[7]), .a1(rd_inst_high_n_buf[7]), .a2(ded_prev_stalled[7]), .a3(ded_sav[7]));
  nr03d0 nr03d0_leg3_8 (.zn(leg_3[8]), .a1(rd_inst_high_n_buf[8]), .a2(ded_prev_stalled[8]), .a3(ded_sav[8]));
  nr03d0 nr03d0_leg3_9 (.zn(leg_3[9]), .a1(rd_inst_high_n_buf[9]), .a2(ded_prev_stalled[9]), .a3(ded_sav[9]));
  nr03d0 nr03d0_leg3_10 (.zn(leg_3[10]), .a1(rd_inst_high_n_buf[10]), .a2(ded_prev_stalled[10]), .a3(ded_sav[10]));
  nr03d0 nr03d0_leg3_11 (.zn(leg_3[11]), .a1(rd_inst_high_n_buf[11]), .a2(ded_prev_stalled[11]), .a3(ded_sav[11]));
  nr03d0 nr03d0_leg3_12 (.zn(leg_3[12]), .a1(rd_inst_high_n_buf[12]), .a2(ded_prev_stalled[12]), .a3(ded_sav[12]));
  nr03d0 nr03d0_leg3_13 (.zn(leg_3[13]), .a1(rd_inst_high_n_buf[13]), .a2(ded_prev_stalled[13]), .a3(ded_sav[13]));
  nr03d0 nr03d0_leg3_14 (.zn(leg_3[14]), .a1(rd_inst_high_n_buf[14]), .a2(ded_prev_stalled[14]), .a3(ded_sav[14]));
  nr03d0 nr03d0_leg3_15 (.zn(leg_3[15]), .a1(rd_inst_high_n_buf[15]), .a2(ded_prev_stalled[15]), .a3(ded_sav[15]));
  nr03d0 nr03d0_leg3_16 (.zn(leg_3[16]), .a1(rd_inst_high_n_buf[16]), .a2(ded_prev_stalled[16]), .a3(ded_sav[16]));
  nr03d0 nr03d0_leg3_17 (.zn(leg_3[17]), .a1(rd_inst_high_n_buf[17]), .a2(ded_prev_stalled[17]), .a3(ded_sav[17]));
  nr03d0 nr03d0_leg3_18 (.zn(leg_3[18]), .a1(rd_inst_high_n_buf[18]), .a2(ded_prev_stalled[18]), .a3(ded_sav[18]));
  nr03d0 nr03d0_leg3_19 (.zn(leg_3[19]), .a1(rd_inst_high_n_buf[19]), .a2(ded_prev_stalled[19]), .a3(ded_sav[19]));
  nr03d0 nr03d0_leg3_20 (.zn(leg_3[20]), .a1(rd_inst_high_n_buf[20]), .a2(ded_prev_stalled[20]), .a3(ded_sav[20]));
  nr03d0 nr03d0_leg3_21 (.zn(leg_3[21]), .a1(rd_inst_high_n_buf[21]), .a2(ded_prev_stalled[21]), .a3(ded_sav[21]));
  nr03d0 nr03d0_leg3_22 (.zn(leg_3[22]), .a1(rd_inst_high_n_buf[22]), .a2(ded_prev_stalled[22]), .a3(ded_sav[22]));
  nr03d0 nr03d0_leg3_23 (.zn(leg_3[23]), .a1(rd_inst_high_n_buf[23]), .a2(ded_prev_stalled[23]), .a3(ded_sav[23]));
  nr03d0 nr03d0_leg3_24 (.zn(leg_3[24]), .a1(rd_inst_high_n_buf[24]), .a2(ded_prev_stalled[24]), .a3(ded_sav[24]));
  nr03d0 nr03d0_leg3_25 (.zn(leg_3[25]), .a1(rd_inst_high_n_buf[25]), .a2(ded_prev_stalled[25]), .a3(ded_sav[25]));
  nr03d0 nr03d0_leg3_26 (.zn(leg_3[26]), .a1(rd_inst_high_n_buf[26]), .a2(ded_prev_stalled[26]), .a3(ded_sav[26]));
  nr03d0 nr03d0_leg3_27 (.zn(leg_3[27]), .a1(rd_inst_high_n_buf[27]), .a2(ded_prev_stalled[27]), .a3(ded_sav[27]));
  nr03d0 nr03d0_leg3_28 (.zn(leg_3[28]), .a1(rd_inst_high_n_buf[28]), .a2(ded_prev_stalled[28]), .a3(ded_sav[28]));
  nr03d0 nr03d0_leg3_29 (.zn(leg_3[29]), .a1(rd_inst_high_n_buf[29]), .a2(ded_prev_stalled[29]), .a3(ded_sav[29]));
  nr03d0 nr03d0_leg3_30 (.zn(leg_3[30]), .a1(rd_inst_high_n_buf[30]), .a2(ded_prev_stalled[30]), .a3(ded_sav[30]));
  nr03d0 nr03d0_leg3_31 (.zn(leg_3[31]), .a1(rd_inst_high_n_buf[31]), .a2(ded_prev_stalled[31]), .a3(ded_sav[31]));

  nr03d0 nr03d0_final_0 (.zn(inst_a_unbuf[0]), .a1(leg_1[0]), .a2(leg_2[0]), .a3(leg_3[0])); 
  nr03d0 nr03d0_final_1 (.zn(inst_a_unbuf[1]), .a1(leg_1[1]), .a2(leg_2[1]), .a3(leg_3[1])); 
  nr03d0 nr03d0_final_2 (.zn(inst_a_unbuf[2]), .a1(leg_1[2]), .a2(leg_2[2]), .a3(leg_3[2])); 
  nr03d0 nr03d0_final_3 (.zn(inst_a_unbuf[3]), .a1(leg_1[3]), .a2(leg_2[3]), .a3(leg_3[3])); 
  nr03d0 nr03d0_final_4 (.zn(inst_a_unbuf[4]), .a1(leg_1[4]), .a2(leg_2[4]), .a3(leg_3[4])); 
  nr03d0 nr03d0_final_5 (.zn(inst_a_unbuf[5]), .a1(leg_1[5]), .a2(leg_2[5]), .a3(leg_3[5])); 
  nr03d0 nr03d0_final_6 (.zn(inst_a_unbuf[6]), .a1(leg_1[6]), .a2(leg_2[6]), .a3(leg_3[6])); 
  nr03d0 nr03d0_final_7 (.zn(inst_a_unbuf[7]), .a1(leg_1[7]), .a2(leg_2[7]), .a3(leg_3[7])); 
  nr03d0 nr03d0_final_8 (.zn(inst_a_unbuf[8]), .a1(leg_1[8]), .a2(leg_2[8]), .a3(leg_3[8])); 
  nr03d0 nr03d0_final_9 (.zn(inst_a_unbuf[9]), .a1(leg_1[9]), .a2(leg_2[9]), .a3(leg_3[9])); 
  nr03d0 nr03d0_final_10 (.zn(inst_a_unbuf[10]), .a1(leg_1[10]), .a2(leg_2[10]), .a3(leg_3[10])); 
  nr03d0 nr03d0_final_11 (.zn(inst_a_unbuf[11]), .a1(leg_1[11]), .a2(leg_2[11]), .a3(leg_3[11])); 
  nr03d0 nr03d0_final_12 (.zn(inst_a_unbuf[12]), .a1(leg_1[12]), .a2(leg_2[12]), .a3(leg_3[12])); 
  nr03d0 nr03d0_final_13 (.zn(inst_a_unbuf[13]), .a1(leg_1[13]), .a2(leg_2[13]), .a3(leg_3[13])); 
  nr03d0 nr03d0_final_14 (.zn(inst_a_unbuf[14]), .a1(leg_1[14]), .a2(leg_2[14]), .a3(leg_3[14])); 
  nr03d0 nr03d0_final_15 (.zn(inst_a_unbuf[15]), .a1(leg_1[15]), .a2(leg_2[15]), .a3(leg_3[15])); 
  nr03d0 nr03d0_final_16 (.zn(inst_a_unbuf[16]), .a1(leg_1[16]), .a2(leg_2[16]), .a3(leg_3[16])); 
  nr03d0 nr03d0_final_17 (.zn(inst_a_unbuf[17]), .a1(leg_1[17]), .a2(leg_2[17]), .a3(leg_3[17])); 
  nr03d0 nr03d0_final_18 (.zn(inst_a_unbuf[18]), .a1(leg_1[18]), .a2(leg_2[18]), .a3(leg_3[18])); 
  nr03d0 nr03d0_final_19 (.zn(inst_a_unbuf[19]), .a1(leg_1[19]), .a2(leg_2[19]), .a3(leg_3[19])); 
  nr03d0 nr03d0_final_20 (.zn(inst_a_unbuf[20]), .a1(leg_1[20]), .a2(leg_2[20]), .a3(leg_3[20])); 
  nr03d0 nr03d0_final_21 (.zn(inst_a_unbuf[21]), .a1(leg_1[21]), .a2(leg_2[21]), .a3(leg_3[21])); 
  nr03d0 nr03d0_final_22 (.zn(inst_a_unbuf[22]), .a1(leg_1[22]), .a2(leg_2[22]), .a3(leg_3[22])); 
  nr03d0 nr03d0_final_23 (.zn(inst_a_unbuf[23]), .a1(leg_1[23]), .a2(leg_2[23]), .a3(leg_3[23])); 
  nr03d0 nr03d0_final_24 (.zn(inst_a_unbuf[24]), .a1(leg_1[24]), .a2(leg_2[24]), .a3(leg_3[24])); 
  nr03d0 nr03d0_final_25 (.zn(inst_a_unbuf[25]), .a1(leg_1[25]), .a2(leg_2[25]), .a3(leg_3[25])); 
  nr03d0 nr03d0_final_26 (.zn(inst_a_unbuf[26]), .a1(leg_1[26]), .a2(leg_2[26]), .a3(leg_3[26])); 
  nr03d0 nr03d0_final_27 (.zn(inst_a_unbuf[27]), .a1(leg_1[27]), .a2(leg_2[27]), .a3(leg_3[27])); 
  nr03d0 nr03d0_final_28 (.zn(inst_a_unbuf[28]), .a1(leg_1[28]), .a2(leg_2[28]), .a3(leg_3[28])); 
  nr03d0 nr03d0_final_29 (.zn(inst_a_unbuf[29]), .a1(leg_1[29]), .a2(leg_2[29]), .a3(leg_3[29])); 
  nr03d0 nr03d0_final_30 (.zn(inst_a_unbuf[30]), .a1(leg_1[30]), .a2(leg_2[30]), .a3(leg_3[30])); 
  nr03d0 nr03d0_final_31 (.zn(inst_a_unbuf[31]), .a1(leg_1[31]), .a2(leg_2[31]), .a3(leg_3[31])); 

  big_inv_bufs_32 inst_a_bufs (inst_a, inst_a_unbuf);

endmodule


module big_inv_bufs_32 (out_n_buf, in);

`timescale 1ns / 10ps

  output [31:0] out_n_buf; input [31:0] in; 

  in01d5 in01d5_32_0_0 (.zn(out_n_buf[0]), .i(in[0]));
  in01d5 in01d5_32_0_1 (.zn(out_n_buf[1]), .i(in[1]));
  in01d5 in01d5_32_0_2 (.zn(out_n_buf[2]), .i(in[2]));
  in01d5 in01d5_32_0_3 (.zn(out_n_buf[3]), .i(in[3]));
  in01d5 in01d5_32_0_4 (.zn(out_n_buf[4]), .i(in[4]));
  in01d5 in01d5_32_0_5 (.zn(out_n_buf[5]), .i(in[5]));
  in01d5 in01d5_32_0_6 (.zn(out_n_buf[6]), .i(in[6]));
  in01d5 in01d5_32_0_7 (.zn(out_n_buf[7]), .i(in[7]));
  in01d5 in01d5_32_0_8 (.zn(out_n_buf[8]), .i(in[8]));
  in01d5 in01d5_32_0_9 (.zn(out_n_buf[9]), .i(in[9]));
  in01d5 in01d5_32_0_10 (.zn(out_n_buf[10]), .i(in[10]));
  in01d5 in01d5_32_0_11 (.zn(out_n_buf[11]), .i(in[11]));
  in01d5 in01d5_32_0_12 (.zn(out_n_buf[12]), .i(in[12]));
  in01d5 in01d5_32_0_13 (.zn(out_n_buf[13]), .i(in[13]));
  in01d5 in01d5_32_0_14 (.zn(out_n_buf[14]), .i(in[14]));
  in01d5 in01d5_32_0_15 (.zn(out_n_buf[15]), .i(in[15]));
  in01d5 in01d5_32_0_16 (.zn(out_n_buf[16]), .i(in[16]));
  in01d5 in01d5_32_0_17 (.zn(out_n_buf[17]), .i(in[17]));
  in01d5 in01d5_32_0_18 (.zn(out_n_buf[18]), .i(in[18]));
  in01d5 in01d5_32_0_19 (.zn(out_n_buf[19]), .i(in[19]));
  in01d5 in01d5_32_0_20 (.zn(out_n_buf[20]), .i(in[20]));
  in01d5 in01d5_32_0_21 (.zn(out_n_buf[21]), .i(in[21]));
  in01d5 in01d5_32_0_22 (.zn(out_n_buf[22]), .i(in[22]));
  in01d5 in01d5_32_0_23 (.zn(out_n_buf[23]), .i(in[23]));
  in01d5 in01d5_32_0_24 (.zn(out_n_buf[24]), .i(in[24]));
  in01d5 in01d5_32_0_25 (.zn(out_n_buf[25]), .i(in[25]));
  in01d5 in01d5_32_0_26 (.zn(out_n_buf[26]), .i(in[26]));
  in01d5 in01d5_32_0_27 (.zn(out_n_buf[27]), .i(in[27]));
  in01d5 in01d5_32_0_28 (.zn(out_n_buf[28]), .i(in[28]));
  in01d5 in01d5_32_0_29 (.zn(out_n_buf[29]), .i(in[29]));
  in01d5 in01d5_32_0_30 (.zn(out_n_buf[30]), .i(in[30]));
  in01d5 in01d5_32_0_31 (.zn(out_n_buf[31]), .i(in[31]));

endmodule