vurf.v 26.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
/*
*************************************************************************
*									*
*               Copyright (C) 1994, Silicon Graphics, Inc.		*
*									*
*  These coded instructions, statements, and computer programs  contain	*
*  unpublished  proprietary  information of Silicon Graphics, Inc., and	*
*  are protected by Federal copyright  law.  They  may not be disclosed	*
*  to  third  parties  or copied or duplicated in any form, in whole or	*
*  in part, without the prior written consent of Silicon Graphics, Inc.	*
*									*
*************************************************************************
*/

// $Id: vurf.v,v 1.1.1.1 2002/05/17 06:14:58 blythe Exp $

/*
*************************************************************************
*									*
*	Project Reality							*
*									*
*	Module:		vurf						*
*	Description:	Vector unit custom register file block where	*
*			the register file is implemented as a 32 word	*
*			by 128 monolithic structure.			*
*									*
*			which contain address decoding, address 	*
*			transpose logic for load/store addresses,	*
*			scalar muxing on VT read port and read data	*
*			registers for all three read ports.		*
*									*
*			This partitioning was decided upon for 		*
*			physical partitioning.				*
*									*
*			This version is for the standard cell		*
*			implementation of the datapath.			*
*									*
*	Designer:	Brian Ferguson					*
*	Date:		3/30/95						*
*									*
*************************************************************************
*/

// vurf.v: 	RSP vector unit register file 

`timescale 1ns / 10ps

module	vurf (	
		preclk_in0,
		preclk_in1,
		reset_l, 
		su_instvld_rd,

		su_vs_addr_rd,
		su_vt_addr_rd,
		su_vd_addr_wb,
		su_st_rnum_rd,
		su_xp_rnum_rd,
		su_ld_rnum_wb,

		su_sclrdatasl_rd,
		su_qrtdatasl_rd,
		su_hlfdatasl_rd,
		su_whldatasl_rd,

		vct_wbv_wr_en_wb,
		su_bwe_wb,
		su_xposeop_rd,
		su_xposeop_wb,

		vdp_datatristen_rd,
		vdp_rslt_data_wb,


		vrf_div_input_rd,
		vrf_vs_data_mu,
		vrf_vt_data_mu,
		su_data_to_from

	   ) ;


	input	preclk_in0;			/* pre-buffered clock for new clocking scheme */
	input	preclk_in1;			/* pre-buffered clock for new clocking scheme */
	input	reset_l;			/* vu active low reset */
	input	su_instvld_rd;			/* valid CP2 instruction for vu */

	input	[4:0]	su_vs_addr_rd;		/* register number for vs read */
	input	[4:0]	su_vt_addr_rd;		/* decoded register number for vt read */
	input	[4:0]	su_vd_addr_wb;		/* register number for datapath writeback */
	input	[4:0]	su_st_rnum_rd;		/* register number for stores */
	input	[4:0]	su_xp_rnum_rd;		/* register number for xpose stores */
	input	[4:0]	su_ld_rnum_wb;		/* register number for load */

	input   [3:0]	su_sclrdatasl_rd;	/* selcts for vector, quarter, half or whole scalar data */
	input   [1:0]	su_qrtdatasl_rd;	/* selects for scalar quarter data */
	input   [3:0]	su_hlfdatasl_rd;	/* selects for scalar half data */
	input   [7:0]	su_whldatasl_rd;	/* selects for scalar whole data */

	input	[7:0]	vct_wbv_wr_en_wb;	/* short word write enable for datapath results */
	input	[15:0]	su_bwe_wb;		/* load port byte write enable */
	input	su_xposeop_rd;			/* transpose op for rd stage (store) */
	input	su_xposeop_wb;			/* transpose op for ac stage (load) */

	input	vdp_datatristen_rd;		/* tristate enable for load/store data bus */

	input	[127:0]	vdp_rslt_data_wb;	/* VU computational result from data path */


/*
*	The following output signals are data from the register file.
*/

	output	[15:0]	vrf_div_input_rd;	/* data for divide unit */
	output	[127:0]	vrf_vs_data_mu;		/* read data for vs port */
	output	[127:0]	vrf_vt_data_mu;		/* read data for vt port after scalar muxes */

	inout	[127:0]	su_data_to_from;	/* data field to/from su */

/*
*	reg and wire variables for use within this module.
*/

	reg	[127:0]	vrf_vs_datarg_mu;	/* read data for vs port */
	reg	[127:0]	vrf_vt_datarg_mu;	/* read data for vt port after scalar muxes */
	reg	[127:0]	vrf_data_from_mu;	/* read data for store data port */

	reg	[7:0] memsl0lo[0:31];		/* register file memory array low byte slice 0 */
	reg	[7:0] memsl0hi[0:31];		/* register file memory array high bye slice 0 */
	reg	[7:0] memsl1lo[0:31];		/* register file memory array low byte slice 1 */
	reg	[7:0] memsl1hi[0:31];		/* register file memory array high bye slice 1 */
	reg	[7:0] memsl2lo[0:31];		/* register file memory array low byte slice 2 */
	reg	[7:0] memsl2hi[0:31];		/* register file memory array high bye slice 2 */
	reg	[7:0] memsl3lo[0:31];		/* register file memory array low byte slice 3 */
	reg	[7:0] memsl3hi[0:31];		/* register file memory array high bye slice 3 */
	reg	[7:0] memsl4lo[0:31];		/* register file memory array low byte slice 4 */
	reg	[7:0] memsl4hi[0:31];		/* register file memory array high bye slice 4 */
	reg	[7:0] memsl5lo[0:31];		/* register file memory array low byte slice 5 */
	reg	[7:0] memsl5hi[0:31];		/* register file memory array high bye slice 5 */
	reg	[7:0] memsl6lo[0:31];		/* register file memory array low byte slice 6 */
	reg	[7:0] memsl6hi[0:31];		/* register file memory array high bye slice 6 */
	reg	[7:0] memsl7lo[0:31];		/* register file memory array low byte slice 7 */
	reg	[7:0] memsl7hi[0:31];		/* register file memory array high bye slice 7 */


	reg	[127:0]	vrf_vt_data_rd;		/* read data for vt port after scalar muxes */
	reg	[15:0]	vrf_qrtdata01_rd;	/* quarter data for slices 0 and 1 */
	reg	[15:0]	vrf_qrtdata23_rd;	/* quarter data for slices 2 and 3 */
	reg	[15:0]	vrf_qrtdata45_rd;	/* quarter data for slices 4 and 5 */
	reg	[15:0]	vrf_qrtdata67_rd;	/* quarter data for slices 6 and 7 */
	reg	[15:0]	vrf_hlfdata03_rd;	/* half data for slices 0,1,2 and 3 */
	reg	[15:0]	vrf_hlfdata47_rd;	/* half data for slices 4,5,6 and 7 */
	reg	[15:0]	vrf_whldata_rd;		/* whole data for all slices */

	reg	write_conflict;			/* flag warning of two writes to same location */

	wire	[127:0]	vrf_vs_rfout_rd;	/* vs read data port of register file */
	wire	clk;				/* vu clock */

	assign	clk =	preclk_in0;

/*
*	load write port functionality
*/

	wire	[4:0]	vrf_load_addrsl0_wb;	/* register number for write load data slice 0 */
	wire	[4:0]	vrf_load_addrsl1_wb;	/* register number for write load data slice 1 */
	wire	[4:0]	vrf_load_addrsl2_wb;	/* register number for write load data slice 2 */
	wire	[4:0]	vrf_load_addrsl3_wb;	/* register number for write load data slice 3 */
	wire	[4:0]	vrf_load_addrsl4_wb;	/* register number for write load data slice 4 */
	wire	[4:0]	vrf_load_addrsl5_wb;	/* register number for write load data slice 5 */
	wire	[4:0]	vrf_load_addrsl6_wb;	/* register number for write load data slice 6 */
	wire	[4:0]	vrf_load_addrsl7_wb;	/* register number for write load data slice 7 */


	assign	vrf_load_addrsl0_wb =	su_ld_rnum_wb ;

	assign	vrf_load_addrsl1_wb =	!su_xposeop_wb ? su_ld_rnum_wb 
						: { su_ld_rnum_wb[4:3],
						    (su_ld_rnum_wb[2:0] + 3'h1)&3'h7
						  } ;

	assign	vrf_load_addrsl2_wb =	!su_xposeop_wb ? su_ld_rnum_wb 
						: { su_ld_rnum_wb[4:3],
						    (su_ld_rnum_wb[2:0] + 3'h2)&3'h7
						  } ;

	assign	vrf_load_addrsl3_wb =	!su_xposeop_wb ? su_ld_rnum_wb 
						: { su_ld_rnum_wb[4:3],
						    (su_ld_rnum_wb[2:0] + 3'h3)&3'h7
						  } ;

	assign	vrf_load_addrsl4_wb =	!su_xposeop_wb ? su_ld_rnum_wb 
						: { su_ld_rnum_wb[4:3],
						    (su_ld_rnum_wb[2:0] + 3'h4)&3'h7
						  } ;

	assign	vrf_load_addrsl5_wb =	!su_xposeop_wb ? su_ld_rnum_wb 
						: { su_ld_rnum_wb[4:3],
						    (su_ld_rnum_wb[2:0] + 3'h5)&3'h7
						  } ;

	assign	vrf_load_addrsl6_wb =	!su_xposeop_wb ? su_ld_rnum_wb 
						: { su_ld_rnum_wb[4:3],
						    (su_ld_rnum_wb[2:0] + 3'h6)&3'h7
						  } ;

	assign	vrf_load_addrsl7_wb =	!su_xposeop_wb ? su_ld_rnum_wb 
						: { su_ld_rnum_wb[4:3],
						    (su_ld_rnum_wb[2:0] + 3'h7)&3'h7
						  } ;



//	always @(su_bwe_wb or su_data_to_from or
//		 vrf_load_addrsl0_wb or vrf_load_addrsl1_wb or
//		 vrf_load_addrsl2_wb or vrf_load_addrsl3_wb or
//		 vrf_load_addrsl4_wb or vrf_load_addrsl5_wb or
//		 vrf_load_addrsl6_wb or vrf_load_addrsl7_wb
//		)
	always @(negedge clk)
		begin
			if (su_bwe_wb[15] == 1'b0)
			    memsl0hi[vrf_load_addrsl0_wb] = memsl0hi[vrf_load_addrsl0_wb] ;
			else if (su_bwe_wb[15] == 1'b1)
				memsl0hi[vrf_load_addrsl0_wb] = su_data_to_from[127:120] ;
			     else
				memsl0hi[vrf_load_addrsl0_wb] = 8'hxx ;

			if (su_bwe_wb[14] == 1'b0)
			    memsl0lo[vrf_load_addrsl0_wb] = memsl0lo[vrf_load_addrsl0_wb] ;
			else if (su_bwe_wb[14] == 1'b1)
				memsl0lo[vrf_load_addrsl0_wb] = su_data_to_from[119:112] ;
			     else
				memsl0lo[vrf_load_addrsl0_wb] = 8'hxx ;

			if (su_bwe_wb[13] == 1'b0)
			    memsl1hi[vrf_load_addrsl1_wb] = memsl1hi[vrf_load_addrsl1_wb] ;
			else if (su_bwe_wb[13] == 1'b1)
				memsl1hi[vrf_load_addrsl1_wb] = su_data_to_from[111:104] ;
			     else
				memsl1hi[vrf_load_addrsl1_wb] = 8'hxx ;

			if (su_bwe_wb[12] == 1'b0)
			    memsl1lo[vrf_load_addrsl1_wb] = memsl1lo[vrf_load_addrsl1_wb] ;
			else if (su_bwe_wb[12] == 1'b1)
				memsl1lo[vrf_load_addrsl1_wb] = su_data_to_from[103:96] ;
			     else
				memsl1lo[vrf_load_addrsl1_wb] = 8'hxx ;

			if (su_bwe_wb[11] == 1'b0)
			    memsl2hi[vrf_load_addrsl2_wb] = memsl2hi[vrf_load_addrsl2_wb] ;
			else if (su_bwe_wb[11] == 1'b1)
				memsl2hi[vrf_load_addrsl2_wb] = su_data_to_from[95:88] ;
			     else
				memsl2hi[vrf_load_addrsl2_wb] = 8'hxx ;

			if (su_bwe_wb[10] == 1'b0)
			    memsl2lo[vrf_load_addrsl2_wb] = memsl2lo[vrf_load_addrsl2_wb] ;
			else if (su_bwe_wb[10] == 1'b1)
				memsl2lo[vrf_load_addrsl2_wb] = su_data_to_from[87:80] ;
			     else
				memsl2lo[vrf_load_addrsl2_wb] = 8'hxx ;

			if (su_bwe_wb[9] == 1'b0)
			    memsl3hi[vrf_load_addrsl3_wb] = memsl3hi[vrf_load_addrsl3_wb] ;
			else if (su_bwe_wb[9] == 1'b1)
				memsl3hi[vrf_load_addrsl3_wb] = su_data_to_from[79:72] ;
			     else
				memsl3hi[vrf_load_addrsl3_wb] = 8'hxx ;

			if (su_bwe_wb[8] == 1'b0)
			    memsl3lo[vrf_load_addrsl3_wb] = memsl3lo[vrf_load_addrsl3_wb] ;
			else if (su_bwe_wb[8] == 1'b1)
				memsl3lo[vrf_load_addrsl3_wb] = su_data_to_from[71:64] ;
			     else
				memsl3lo[vrf_load_addrsl3_wb] = 8'hxx ;

			if (su_bwe_wb[7] == 1'b0)
			    memsl4hi[vrf_load_addrsl4_wb] = memsl4hi[vrf_load_addrsl4_wb] ;
			else if (su_bwe_wb[7] == 1'b1)
				memsl4hi[vrf_load_addrsl4_wb] = su_data_to_from[63:56] ;
			     else
				memsl4hi[vrf_load_addrsl4_wb] = 8'hxx ;

			if (su_bwe_wb[6] == 1'b0)
			    memsl4lo[vrf_load_addrsl4_wb] = memsl4lo[vrf_load_addrsl4_wb] ;
			else if (su_bwe_wb[6] == 1'b1)
				memsl4lo[vrf_load_addrsl4_wb] = su_data_to_from[55:48] ;
			     else
				memsl4lo[vrf_load_addrsl4_wb] = 8'hxx ;

			if (su_bwe_wb[5] == 1'b0)
			    memsl5hi[vrf_load_addrsl5_wb] = memsl5hi[vrf_load_addrsl5_wb] ;
			else if (su_bwe_wb[5] == 1'b1)
				memsl5hi[vrf_load_addrsl5_wb] = su_data_to_from[47:40] ;
			     else
				memsl5hi[vrf_load_addrsl5_wb] = 8'hxx ;

			if (su_bwe_wb[4] == 1'b0)
			    memsl5lo[vrf_load_addrsl5_wb] = memsl5lo[vrf_load_addrsl5_wb] ;
			else if (su_bwe_wb[4] == 1'b1)
				memsl5lo[vrf_load_addrsl5_wb] = su_data_to_from[39:32] ;
			     else
				memsl5lo[vrf_load_addrsl5_wb] = 8'hxx ;

			if (su_bwe_wb[3] == 1'b0)
			    memsl6hi[vrf_load_addrsl6_wb] = memsl6hi[vrf_load_addrsl6_wb] ;
			else if (su_bwe_wb[3] == 1'b1)
				memsl6hi[vrf_load_addrsl6_wb] = su_data_to_from[31:24] ;
			     else
				memsl6hi[vrf_load_addrsl6_wb] = 8'hxx ;

			if (su_bwe_wb[2] == 1'b0)
			    memsl6lo[vrf_load_addrsl6_wb] = memsl6lo[vrf_load_addrsl6_wb] ;
			else if (su_bwe_wb[2] == 1'b1)
				memsl6lo[vrf_load_addrsl6_wb] = su_data_to_from[23:16] ;
			     else
				memsl7lo[vrf_load_addrsl6_wb] = 8'hxx ;

			if (su_bwe_wb[1] == 1'b0)
			    memsl7hi[vrf_load_addrsl7_wb] = memsl7hi[vrf_load_addrsl7_wb] ;
			else if (su_bwe_wb[1] == 1'b1)
				memsl7hi[vrf_load_addrsl7_wb] = su_data_to_from[15:8] ;
			     else
				memsl7hi[vrf_load_addrsl7_wb] = 8'hxx ;

			if (su_bwe_wb[0] == 1'b0)
			    memsl7lo[vrf_load_addrsl7_wb] = memsl7lo[vrf_load_addrsl7_wb] ;
			else if (su_bwe_wb[0] == 1'b1)
				memsl7lo[vrf_load_addrsl7_wb] = su_data_to_from[7:0] ;
			     else
				memsl7lo[vrf_load_addrsl7_wb] = 8'hxx ;

		end
	
/*
*	vd write port functionality
*/

//	always @(vct_wbv_wr_en_wb or su_vd_addr_wb or vdp_rslt_data_wb)

	always @(negedge clk)
		begin
			if (vct_wbv_wr_en_wb[7] == 1'b0)
			    begin
			    	memsl0hi[su_vd_addr_wb] = memsl0hi[su_vd_addr_wb] ;
			    	memsl0lo[su_vd_addr_wb] = memsl0lo[su_vd_addr_wb] ;
			    end
			else if (vct_wbv_wr_en_wb[7] == 1'b1)
				begin
				    memsl0hi[su_vd_addr_wb] = vdp_rslt_data_wb[127:120] ;
				    memsl0lo[su_vd_addr_wb] = vdp_rslt_data_wb[119:112] ;
				end
			     else
				begin
				    memsl0hi[su_vd_addr_wb] = 8'hxx ;
				    memsl0lo[su_vd_addr_wb] = 8'hxx ;
				end

			if (vct_wbv_wr_en_wb[6] == 1'b0)
			    begin
			    	memsl1hi[su_vd_addr_wb] = memsl1hi[su_vd_addr_wb] ;
			    	memsl1lo[su_vd_addr_wb] = memsl1lo[su_vd_addr_wb] ;
			    end
			else if (vct_wbv_wr_en_wb[6] == 1'b1)
				begin
				    memsl1hi[su_vd_addr_wb] = vdp_rslt_data_wb[111:104] ;
				    memsl1lo[su_vd_addr_wb] = vdp_rslt_data_wb[103:96] ;
				end
			     else
				begin
				    memsl1hi[su_vd_addr_wb] = 8'hxx ;
				    memsl1lo[su_vd_addr_wb] = 8'hxx ;
				end

			if (vct_wbv_wr_en_wb[5] == 1'b0)
			    begin
			    	memsl2hi[su_vd_addr_wb] = memsl2hi[su_vd_addr_wb] ;
			    	memsl2lo[su_vd_addr_wb] = memsl2lo[su_vd_addr_wb] ;
			    end
			else if (vct_wbv_wr_en_wb[5] == 1'b1)
				begin
				    memsl2hi[su_vd_addr_wb] = vdp_rslt_data_wb[95:88] ;
				    memsl2lo[su_vd_addr_wb] = vdp_rslt_data_wb[87:80] ;
				end
			     else
				begin
				    memsl2hi[su_vd_addr_wb] = 8'hxx ;
				    memsl2lo[su_vd_addr_wb] = 8'hxx ;
				end

			if (vct_wbv_wr_en_wb[4] == 1'b0)
			    begin
			    	memsl3hi[su_vd_addr_wb] = memsl3hi[su_vd_addr_wb] ;
			    	memsl3lo[su_vd_addr_wb] = memsl3lo[su_vd_addr_wb] ;
			    end
			else if (vct_wbv_wr_en_wb[4] == 1'b1)
				begin
				    memsl3hi[su_vd_addr_wb] = vdp_rslt_data_wb[79:72] ;
				    memsl3lo[su_vd_addr_wb] = vdp_rslt_data_wb[71:64] ;
				end
			     else
				begin
				    memsl3hi[su_vd_addr_wb] = 8'hxx ;
				    memsl3lo[su_vd_addr_wb] = 8'hxx ;
				end

			if (vct_wbv_wr_en_wb[3] == 1'b0)
			    begin
			    	memsl4hi[su_vd_addr_wb] = memsl4hi[su_vd_addr_wb] ;
			    	memsl4lo[su_vd_addr_wb] = memsl4lo[su_vd_addr_wb] ;
			    end
			else if (vct_wbv_wr_en_wb[3] == 1'b1)
				begin
				    memsl4hi[su_vd_addr_wb] = vdp_rslt_data_wb[63:56] ;
				    memsl4lo[su_vd_addr_wb] = vdp_rslt_data_wb[55:48] ;
				end
			     else
				begin
				    memsl4hi[su_vd_addr_wb] = 8'hxx ;
				    memsl4lo[su_vd_addr_wb] = 8'hxx ;
				end

			if (vct_wbv_wr_en_wb[2] == 1'b0)
			    begin
			    	memsl5hi[su_vd_addr_wb] = memsl5hi[su_vd_addr_wb] ;
			    	memsl5lo[su_vd_addr_wb] = memsl5lo[su_vd_addr_wb] ;
			    end
			else if (vct_wbv_wr_en_wb[2] == 1'b1)
				begin
				    memsl5hi[su_vd_addr_wb] = vdp_rslt_data_wb[47:40] ;
				    memsl5lo[su_vd_addr_wb] = vdp_rslt_data_wb[39:32] ;
				end
			     else
				begin
				    memsl5hi[su_vd_addr_wb] = 8'hxx ;
				    memsl5lo[su_vd_addr_wb] = 8'hxx ;
				end

			if (vct_wbv_wr_en_wb[1] == 1'b0)
			    begin
			    	memsl6hi[su_vd_addr_wb] = memsl6hi[su_vd_addr_wb] ;
			    	memsl6lo[su_vd_addr_wb] = memsl6lo[su_vd_addr_wb] ;
			    end
			else if (vct_wbv_wr_en_wb[1] == 1'b1)
				begin
				    memsl6hi[su_vd_addr_wb] = vdp_rslt_data_wb[31:24] ;
				    memsl6lo[su_vd_addr_wb] = vdp_rslt_data_wb[23:16] ;
				end
			     else
				begin
				    memsl6hi[su_vd_addr_wb] = 8'hxx ;
				    memsl6lo[su_vd_addr_wb] = 8'hxx ;
				end

			if (vct_wbv_wr_en_wb[0] == 1'b0)
			    begin
			    	memsl7hi[su_vd_addr_wb] = memsl7hi[su_vd_addr_wb] ;
			    	memsl7lo[su_vd_addr_wb] = memsl7lo[su_vd_addr_wb] ;
			    end
			else if (vct_wbv_wr_en_wb[0] == 1'b1)
				begin
				    memsl7hi[su_vd_addr_wb] = vdp_rslt_data_wb[15:8] ;
				    memsl7lo[su_vd_addr_wb] = vdp_rslt_data_wb[7:0] ;
				end
			     else
				begin
				    memsl7hi[su_vd_addr_wb] = 8'hxx ;
				    memsl7lo[su_vd_addr_wb] = 8'hxx ;
				end
		end

/*
*	Collision detection if two write ports try to write the same address.
*	Write x data and set error flag if writes collide.
*/


	always @(negedge clk)
		begin

		    write_conflict = 0;

			if ( (vct_wbv_wr_en_wb[7] == 1'b1) && 
			     ( (su_bwe_wb[15] == 1'b1) || (su_bwe_wb[14] == 1'b1) ) &&
			     ( su_vd_addr_wb == vrf_load_addrsl0_wb )
			   )
			    begin
				memsl0hi[su_vd_addr_wb] = 8'hxx ;
				memsl0lo[su_vd_addr_wb] = 8'hxx ;
				write_conflict = 1;
				$display($time,"  ERROR:Write Conflict slice 0 for 3R/2W regfile"); 
			    end

			if ( (vct_wbv_wr_en_wb[6] == 1'b1) && 
			     ( (su_bwe_wb[13] == 1'b1) || (su_bwe_wb[12] == 1'b1) ) &&
			     ( su_vd_addr_wb == vrf_load_addrsl1_wb )
			   )
			    begin
				memsl1hi[su_vd_addr_wb] = 8'hxx ;
				memsl1lo[su_vd_addr_wb] = 8'hxx ;
				write_conflict = 1;
				$display($time,"  ERROR:Write Conflict slice 1 for 3R/2W regfile"); 
			    end

			if ( (vct_wbv_wr_en_wb[5] == 1'b1) && 
			     ( (su_bwe_wb[11] == 1'b1) || (su_bwe_wb[10] == 1'b1) ) &&
			     ( su_vd_addr_wb == vrf_load_addrsl2_wb )
			   )
			    begin
				memsl2hi[su_vd_addr_wb] = 8'hxx ;
				memsl2lo[su_vd_addr_wb] = 8'hxx ;
				write_conflict = 1;
				$display($time,"  ERROR:Write Conflict slice 2 for 3R/2W regfile"); 
			    end

			if ( (vct_wbv_wr_en_wb[4] == 1'b1) && 
			     ( (su_bwe_wb[9] == 1'b1) || (su_bwe_wb[8] == 1'b1) ) &&
			     ( su_vd_addr_wb == vrf_load_addrsl3_wb )
			   )
			    begin
				memsl3hi[su_vd_addr_wb] = 8'hxx ;
				memsl3lo[su_vd_addr_wb] = 8'hxx ;
				write_conflict = 1;
				$display($time,"  ERROR:Write Conflict slice 3 for 3R/2W regfile"); 
			    end

			if ( (vct_wbv_wr_en_wb[3] == 1'b1) && 
			     ( (su_bwe_wb[7] == 1'b1) || (su_bwe_wb[6] == 1'b1) ) &&
			     ( su_vd_addr_wb == vrf_load_addrsl4_wb )
			   )
			    begin
				memsl4hi[su_vd_addr_wb] = 8'hxx ;
				memsl4lo[su_vd_addr_wb] = 8'hxx ;
				write_conflict = 1;
				$display($time,"  ERROR:Write Conflict slice 4 for 3R/2W regfile"); 
			    end

			if ( (vct_wbv_wr_en_wb[2] == 1'b1) && 
			     ( (su_bwe_wb[5] == 1'b1) || (su_bwe_wb[4] == 1'b1) ) &&
			     ( su_vd_addr_wb == vrf_load_addrsl5_wb )
			   )
			    begin
				memsl5hi[su_vd_addr_wb] = 8'hxx ;
				memsl5lo[su_vd_addr_wb] = 8'hxx ;
				write_conflict = 1;
				$display($time,"  ERROR:Write Conflict slice 5 for 3R/2W regfile"); 
			    end

			if ( (vct_wbv_wr_en_wb[1] == 1'b1) && 
			     ( (su_bwe_wb[3] == 1'b1) || (su_bwe_wb[2] == 1'b1) ) &&
			     ( su_vd_addr_wb == vrf_load_addrsl6_wb )
			   )
			    begin
				memsl6hi[su_vd_addr_wb] = 8'hxx ;
				memsl6lo[su_vd_addr_wb] = 8'hxx ;
				write_conflict = 1;
				$display($time,"  ERROR:Write Conflict slice 6 for 3R/2W regfile"); 
			    end

			if ( (vct_wbv_wr_en_wb[0] == 1'b1) && 
			     ( (su_bwe_wb[1] == 1'b1) || (su_bwe_wb[0] == 1'b1) ) &&
			     ( su_vd_addr_wb == vrf_load_addrsl7_wb )
			   )
			    begin
				memsl7hi[su_vd_addr_wb] = 8'hxx ;
				memsl7lo[su_vd_addr_wb] = 8'hxx ;
				write_conflict = 1;
				$display($time,"  ERROR:Write Conflict slice 7 for 3R/2W regfile"); 
			    end

		end

/*
*	vt read port data access including scalar mux functionality
*/


	always @(clk or su_vt_addr_rd or su_sclrdatasl_rd or
		 su_qrtdatasl_rd or su_hlfdatasl_rd or su_whldatasl_rd
		)
		begin

		    case ( su_qrtdatasl_rd )

			2'h1: begin
				vrf_qrtdata01_rd = {memsl0hi[su_vt_addr_rd],memsl0lo[su_vt_addr_rd]} ;
				vrf_qrtdata23_rd = {memsl2hi[su_vt_addr_rd],memsl2lo[su_vt_addr_rd]} ;
				vrf_qrtdata45_rd = {memsl4hi[su_vt_addr_rd],memsl4lo[su_vt_addr_rd]} ;
				vrf_qrtdata67_rd = {memsl6hi[su_vt_addr_rd],memsl6lo[su_vt_addr_rd]} ;
			      end

			2'h2: begin
				vrf_qrtdata01_rd = {memsl1hi[su_vt_addr_rd],memsl1lo[su_vt_addr_rd]} ;
				vrf_qrtdata23_rd = {memsl3hi[su_vt_addr_rd],memsl3lo[su_vt_addr_rd]} ;
				vrf_qrtdata45_rd = {memsl5hi[su_vt_addr_rd],memsl5lo[su_vt_addr_rd]} ;
				vrf_qrtdata67_rd = {memsl7hi[su_vt_addr_rd],memsl7lo[su_vt_addr_rd]} ;
			      end

			default :
			      begin
				vrf_qrtdata01_rd = 16'hxxxx ;
				vrf_qrtdata23_rd = 16'hxxxx ;
				vrf_qrtdata45_rd = 16'hxxxx ;
				vrf_qrtdata67_rd = 16'hxxxx ;
			      end

		    endcase  // su_qrtdatasl_rd


		    case ( su_hlfdatasl_rd )

			4'h1: begin
				vrf_hlfdata03_rd = {memsl0hi[su_vt_addr_rd],memsl0lo[su_vt_addr_rd]} ;
				vrf_hlfdata47_rd = {memsl4hi[su_vt_addr_rd],memsl4lo[su_vt_addr_rd]} ;
			      end

			4'h2: begin
				vrf_hlfdata03_rd = {memsl1hi[su_vt_addr_rd],memsl1lo[su_vt_addr_rd]} ;
				vrf_hlfdata47_rd = {memsl5hi[su_vt_addr_rd],memsl5lo[su_vt_addr_rd]} ;
			      end

			4'h4: begin
				vrf_hlfdata03_rd = {memsl2hi[su_vt_addr_rd],memsl2lo[su_vt_addr_rd]} ;
				vrf_hlfdata47_rd = {memsl6hi[su_vt_addr_rd],memsl6lo[su_vt_addr_rd]} ;
			      end

			4'h8: begin
				vrf_hlfdata03_rd = {memsl3hi[su_vt_addr_rd],memsl3lo[su_vt_addr_rd]} ;
				vrf_hlfdata47_rd = {memsl7hi[su_vt_addr_rd],memsl7lo[su_vt_addr_rd]} ;
			      end

			default :
			      begin
				vrf_hlfdata03_rd = 16'hxxxx ;
				vrf_hlfdata47_rd = 16'hxxxx ;
			      end

		    endcase  // su_hlfdatasl_rd


		    case ( su_whldatasl_rd )

			8'h01: begin
				vrf_whldata_rd = {memsl0hi[su_vt_addr_rd],memsl0lo[su_vt_addr_rd]} ;
			       end

			8'h02: begin
				vrf_whldata_rd = {memsl1hi[su_vt_addr_rd],memsl1lo[su_vt_addr_rd]} ;
			       end

			8'h04: begin
				vrf_whldata_rd = {memsl2hi[su_vt_addr_rd],memsl2lo[su_vt_addr_rd]} ;
			       end

			8'h08: begin
				vrf_whldata_rd = {memsl3hi[su_vt_addr_rd],memsl3lo[su_vt_addr_rd]} ;
			       end

			8'h10: begin
				vrf_whldata_rd = {memsl4hi[su_vt_addr_rd],memsl4lo[su_vt_addr_rd]} ;
			       end

			8'h20: begin
				vrf_whldata_rd = {memsl5hi[su_vt_addr_rd],memsl5lo[su_vt_addr_rd]} ;
			       end

			8'h40: begin
				vrf_whldata_rd = {memsl6hi[su_vt_addr_rd],memsl6lo[su_vt_addr_rd]} ;
			       end

			8'h80: begin
				vrf_whldata_rd = {memsl7hi[su_vt_addr_rd],memsl7lo[su_vt_addr_rd]} ;
			       end

			default :
			      begin
				vrf_whldata_rd = 16'hxxxx ;
			      end

		    endcase  // su_whldatasl_rd


		    case ( su_sclrdatasl_rd )

			4'h1: vrf_vt_data_rd = {
						memsl0hi[su_vt_addr_rd], memsl0lo[su_vt_addr_rd],
						memsl1hi[su_vt_addr_rd], memsl1lo[su_vt_addr_rd],
						memsl2hi[su_vt_addr_rd], memsl2lo[su_vt_addr_rd],
						memsl3hi[su_vt_addr_rd], memsl3lo[su_vt_addr_rd],
						memsl4hi[su_vt_addr_rd], memsl4lo[su_vt_addr_rd],
						memsl5hi[su_vt_addr_rd], memsl5lo[su_vt_addr_rd],
						memsl6hi[su_vt_addr_rd], memsl6lo[su_vt_addr_rd],
						memsl7hi[su_vt_addr_rd], memsl7lo[su_vt_addr_rd]
					       } ;

			4'h2: vrf_vt_data_rd = {
						vrf_qrtdata01_rd, vrf_qrtdata01_rd,
						vrf_qrtdata23_rd, vrf_qrtdata23_rd,
						vrf_qrtdata45_rd, vrf_qrtdata45_rd,
						vrf_qrtdata67_rd, vrf_qrtdata67_rd
					       } ;

			4'h4: vrf_vt_data_rd = {
						vrf_hlfdata03_rd, vrf_hlfdata03_rd,
						vrf_hlfdata03_rd, vrf_hlfdata03_rd,
						vrf_hlfdata47_rd, vrf_hlfdata47_rd,
						vrf_hlfdata47_rd, vrf_hlfdata47_rd
					       } ;

			4'h8: vrf_vt_data_rd = {
						vrf_whldata_rd, vrf_whldata_rd,
						vrf_whldata_rd, vrf_whldata_rd,
						vrf_whldata_rd, vrf_whldata_rd,
						vrf_whldata_rd, vrf_whldata_rd
					       } ;

			default :	vrf_vt_data_rd = 128'hxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ;
		    endcase  // su_sclrdatasl_rd

		end

	assign vrf_div_input_rd =  vrf_whldata_rd[15:0];


	always @(posedge clk)
		begin
			vrf_vt_datarg_mu <= !reset_l ? 128'h0
						: su_instvld_rd ? vrf_vt_data_rd
								: vrf_vt_datarg_mu ;
 		end

	assign	vrf_vt_data_mu =	vrf_vt_datarg_mu ;

/*
*	vs read port read data access
*/

	assign vrf_vs_rfout_rd = {	memsl0hi[su_vs_addr_rd], memsl0lo[su_vs_addr_rd],
					memsl1hi[su_vs_addr_rd], memsl1lo[su_vs_addr_rd],
					memsl2hi[su_vs_addr_rd], memsl2lo[su_vs_addr_rd],
					memsl3hi[su_vs_addr_rd], memsl3lo[su_vs_addr_rd],
					memsl4hi[su_vs_addr_rd], memsl4lo[su_vs_addr_rd],
					memsl5hi[su_vs_addr_rd], memsl5lo[su_vs_addr_rd],
					memsl6hi[su_vs_addr_rd], memsl6lo[su_vs_addr_rd],
					memsl7hi[su_vs_addr_rd], memsl7lo[su_vs_addr_rd]
			       } ;

	always @(posedge clk)
		begin

		  vrf_vs_datarg_mu <= !reset_l ? 128'h0
						: su_instvld_rd	? vrf_vs_rfout_rd
								: vrf_vs_datarg_mu ;
 		end


	assign vrf_vs_data_mu =	vrf_vs_datarg_mu ;


/*
*	Store read port read data access
*/

	wire	[4:0]	vrf_store_addrsl0_rd;	/* register number for store read data slice 0 */
	wire	[4:0]	vrf_store_addrsl1_rd;	/* register number for store read data slice 1 */
	wire	[4:0]	vrf_store_addrsl2_rd;	/* register number for store read data slice 2 */
	wire	[4:0]	vrf_store_addrsl3_rd;	/* register number for store read data slice 3 */
	wire	[4:0]	vrf_store_addrsl4_rd;	/* register number for store read data slice 4 */
	wire	[4:0]	vrf_store_addrsl5_rd;	/* register number for store read data slice 5 */
	wire	[4:0]	vrf_store_addrsl6_rd;	/* register number for store read data slice 6 */
	wire	[4:0]	vrf_store_addrsl7_rd;	/* register number for store read data slice 7 */

	assign	vrf_store_addrsl0_rd =	!su_xposeop_rd ? su_st_rnum_rd 
						: su_xp_rnum_rd ;

	assign	vrf_store_addrsl1_rd =	!su_xposeop_rd ? su_st_rnum_rd 
						: { su_xp_rnum_rd[4:3],
						    (su_xp_rnum_rd[2:0] + 3'h1)&3'h7
						  } ;

	assign	vrf_store_addrsl2_rd =	!su_xposeop_rd ? su_st_rnum_rd 
						: { su_xp_rnum_rd[4:3],
						    (su_xp_rnum_rd[2:0] + 3'h2)&3'h7
						  } ;

	assign	vrf_store_addrsl3_rd =	!su_xposeop_rd ? su_st_rnum_rd 
						: { su_xp_rnum_rd[4:3],
						    (su_xp_rnum_rd[2:0] + 3'h3)&3'h7
						  } ;

	assign	vrf_store_addrsl4_rd =	!su_xposeop_rd ? su_st_rnum_rd 
						: { su_xp_rnum_rd[4:3],
						    (su_xp_rnum_rd[2:0] + 3'h4)&3'h7
						  } ;

	assign	vrf_store_addrsl5_rd =	!su_xposeop_rd ? su_st_rnum_rd 
						: { su_xp_rnum_rd[4:3],
						    (su_xp_rnum_rd[2:0] + 3'h5)&3'h7
						  } ;

	assign	vrf_store_addrsl6_rd =	!su_xposeop_rd ? su_st_rnum_rd 
						: { su_xp_rnum_rd[4:3],
						    (su_xp_rnum_rd[2:0] + 3'h6)&3'h7
						  } ;

	assign	vrf_store_addrsl7_rd =	!su_xposeop_rd ? su_st_rnum_rd 
						: { su_xp_rnum_rd[4:3],
						    (su_xp_rnum_rd[2:0] + 3'h7)&3'h7
						  } ;


	always @(posedge clk)
	    begin
		vrf_data_from_mu <= {	memsl0hi[vrf_store_addrsl0_rd], memsl0lo[vrf_store_addrsl0_rd],
					memsl1hi[vrf_store_addrsl1_rd], memsl1lo[vrf_store_addrsl1_rd],
					memsl2hi[vrf_store_addrsl2_rd], memsl2lo[vrf_store_addrsl2_rd],
					memsl3hi[vrf_store_addrsl3_rd], memsl3lo[vrf_store_addrsl3_rd],
					memsl4hi[vrf_store_addrsl4_rd], memsl4lo[vrf_store_addrsl4_rd],
					memsl5hi[vrf_store_addrsl5_rd], memsl5lo[vrf_store_addrsl5_rd],
					memsl6hi[vrf_store_addrsl6_rd], memsl6lo[vrf_store_addrsl6_rd],
					memsl7hi[vrf_store_addrsl7_rd], memsl7lo[vrf_store_addrsl7_rd]
				   } ;
	    end

/*
*	Tristate control for su_data_to_from bus.
*/

	wire	vrf_datatristen_mu;	/* tristate enable for load/store data bus */

	asdff #(1, 0)	vrfdatatristenffmu (vrf_datatristen_mu, vdp_datatristen_rd, clk, reset_l );

	assign	su_data_to_from[127:0] = vrf_datatristen_mu ? vrf_data_from_mu[127:0]
							    : 128'hzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz ;


endmodule  // vurf