Boot.s
21.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
#include "regdef.h"
#include "asm.h"
#include <R4300.h>
#include <rcp.h>
#define MANUFACTURE_NEC 0x00000500
#define MANUFACTURE_TOSHIBA 0x00000200
#define NEC_RELEASE_C2
#ifdef NEC_RELEASE_C2
/* NEC Rev C2 mode enable/disable */
#define RDRAM_DISABLE 0xc0000000
#else
/* Non NEC Rev C2 mode enable/disable */
#define RDRAM_DISABLE 0xc4000000
#endif
/*********************************************************************
* Defines. *
*********************************************************************/
bulk_rom= 0xa600 #Bulk system ROM start address
cart_rom= 0xb000 #Cartridge ROM start address
#define rd_rams 0x80000000
#define game_addr 0x8
#ifndef _HW_VERSION_1
#define game_offset 0x1000
#define auto_calibration 0x40
#else
#define game_offset 0x2000
#define auto_calibration 0x10
#endif
#define game_size 0xfffff /* Real DMA size = game_size - 1 */
#define reserved_mem 0xa0000300
/* 16K of instruction cache and 8K of data cache */
#define icache_size 0x4000
#define dcache_size 0x2000
#define icache_linesize (8*4)
#define dcache_linesize (4*4)
clear_rsp = SP_SET_HALT|SP_CLR_BROKE|SP_CLR_INTR|SP_CLR_SSTEP|SP_CLR_SIG0|SP_CLR_SIG1|SP_CLR_SIG2|SP_CLR_SIG3|SP_CLR_SIG4|SP_CLR_SIG5|SP_CLR_SIG6|SP_CLR_SIG7|SP_CLR_INTR_BREAK
clear_in_mask = MI_INTR_MASK_CLR_SP|MI_INTR_MASK_CLR_SI|MI_INTR_MASK_CLR_AI|MI_INTR_MASK_CLR_VI|MI_INTR_MASK_CLR_PI|MI_INTR_MASK_CLR_DP
#*****register information
#s3 :bulk or cartridge ROM (0:cartridge ROM, 1:bulka)
# : This data is used in IPL3 or game program.
#s4 :TV type(1=standard NTSC, 0=standard PAL). This data is used
# in IPL3 or game program.
#s5 :reset type(1=NMI, 0=cold reset).
# This data is used in IPL3 or game program.
#s6 :CIC ID. This data is used in IPL3 or game program.
#s7 :version. This data is used in IPL3 or game program.
#define AUTOCC 1
#define MANUALCC 2
LEAF (IPL3) # Address = 0xa0000010.
#********<13 Initialize RD-RAM>
.set noreorder
mtc0 zero,C0_CAUSE # initialize cause register
mtc0 zero,C0_COUNT # initialize count register
mtc0 zero,C0_COMPARE # initialize compare register
# Check to see if NMI happen
la t0,PHYS_TO_K1(RI_BASE_REG)
lw t1,0xc(t0)
bnez t1, nmi
nop
# save global registers to stack
addiu sp,sp,-24
sw s3, 0(sp)
sw s4, 4(sp)
sw s5, 8(sp)
sw s6, 12(sp)
sw s7, 16(sp)
# Need to initialize RD-RAM in cold reset case
la t0,PHYS_TO_K1(RI_BASE_REG)
lui t2, 0xa3f8
lui t3, 0xa3f0
la t4, PHYS_TO_K1(MI_BASE_REG)
ori t1, zero, auto_calibration
sw t1, 0x0004(t0) # Enable RAC auto-calibration control
# Delay 4096 RCP clock cycles.
li s1,8000
wait_rac:
nop
addi s1, 0xffff # s1 = s1 - 1
bne s1,zero,wait_rac
nop
sw zero, 0x0008(t0) # Load current control regs.
ori t1, zero, 0x0014
sw t1, 0x000c(t0) # Set transmit and receive selects
sw zero,0(t0) # Reset all RDRAM devices
# Delay 100 RCP clock cycle
li s1,4
wait_rac1:
nop
addi s1, 0xffff # s1 = s1 - 1
bne s1,zero,wait_rac1
nop
ori t1, zero, 0x000e
sw t1,0(t0) # Enable RDRAM access
li s1,0x20
wait_rdram:
addi s1, 0xffff # s1 = s1 - 1
bne s1,zero,wait_rdram
ori t1, zero, 0x010f
sw t1, 0x0000(t4) # Initialize the delay register
li t1, 0x18082838
sw t1, 0x0008(t2)
sw zero, 0x14(t2) # Initialize Refrow regs.
lui t1, 0x8000
sw t1, 4(t2) # move all RDRAMs to top of address
# Place all RDRAMs at 2 Mbyte boundaries and determine the size
# of each RDRAM
move t5,zero # next_device = 0;
move t6,zero # next_id = 0;
lui t7,0xa3f0 # next_reg = 0x03f00000;
move t8,zero # next_1_id = 0;
lui t9,0xa3f0 # next_1_reg = 0x03f00000;
lui s6,0xa000 # next_1_mem = 0;
move s7,zero # next_2_id = 0;
lui a2,0xa3f0 # next_2_reg = 0x03f00000;
lui a3,0xa000 # next_2_mem = 0;
move s2,zero # multibank = 0;
lui s4,0xa000 # pdw_mem = 0;
addiu sp,sp,-72
move fp,sp # save sp location for next loop
lw s0,PHYS_TO_K1(MI_VERSION_REG)
la s1,0x01010101
bne s0,s1,rcp2
nop
li s0,0x200 # reg_step = 0x00000200;
ori s1,t3,0x4000 # reg_max = 0x03f04000
b loop1
nop
rcp2:
li s0,0x400 # reg_step = 0x00000400;
ori s1,t3,0x8000 # reg_max = 0x03f08000
loop1:
# move the next RDRAM to the next 2 MByte slot
sw t6,4(s1) # reg_max + 0x4 = next_id;
# enable the RDRAM
addiu s5,t7, 0xc # ccreg_address = next_reg+0xc
jal InitCCValue
nop
beqz v0,done_loop1
nop
sw v0,0(sp) # cc_value[next_device] = cc
# determine the RDRAM size
li t1,0x2000
sw t1,0(t4)
lw t3,0(t7)
lui t0,0xf0ff
and t3,t0
sw t3,4(sp) # device_type[next_device] =
# read_data & 0xf0ff0000;
addi sp,8
li t1,0x1000
sw t1,0(t4)
lui t0,0xb019
bne t3,t0,SM
nop
lui t0,0x0800
add t8,t0 # next_1_id = next_1_id + 0x08000000
add t9,s0
add t9,s0 # next_1_reg = next_1_reg + (reg_step*2)
lui t0,0x0020
add s6,t0
add s4,t0 # pdw_mem += 2M
sll s2,1
addi s2,1 # multibank = (multibank << 1) + 1
b LM
nop
SM:
lui t0,0x0010
add s4,t0 # pdw_mem += 1M
LM:
li t0,0x2000
sw t0,0(t4) # WriteWord(0x04300000, 0x00002000);
lw t1,0x24(t7) # read devicemanufacturer
lw k0,0(t7) # read devicetype
li t0,0x1000
sw t0,0(t4) # WriteWord(0x04300000, 0x00001000);
andi t1,0xffff
li t0,MANUFACTURE_NEC
bne t1,t0,toshiba
nop
li k1,0x01000000
and k0,k1
bnez k0,toshiba
nop
li t0,0x101c0a04
sw t0,0x18(t7) #WriteWord(next_reg + 0x18, 0x101c0a04)
b done_manufacture
toshiba:
li t0,0x080c1204
sw t0,0x18(t7) #WriteWord(next_reg + 0x18, 0x080c1204)
done_manufacture:
lui t0,0x0800
add t6,t0 # next_id = next_id + 0x08000000
add t7,s0
add t7,s0 # next_reg = next_reg + (reg_step * 2)
addiu t5,1
sltiu t0,t5,8
bne t0,zero,loop1
nop
done_loop1:
# Reinitialize all the RDRAMs
li t0,RDRAM_DISABLE
sw t0,0xc(t2) # WriteWord(0x03f8000c, RDRAM_DISABLE)
lui t0,0x8000
sw t0,0x4(t2) # WriteWord(0x03f80004, 0x80000000)
# Group the RDRAMs in 1 Mbyte and 2 Mbyte blocks
move sp,fp # restore sp back
move v1,zero # i = 0
loop2:
lw t1,4(sp)
lui t0,0xb009
bne t1,t0,HM
nop
# Move the RDRAM to the next 1 Mbyte slot
sw t8,0x4(s1) # WriteWord(reg_max + 0x4, next_1_id)
addiu s5,t9, 0xc # ccreg_address = next_1_reg+0xc
lw a0,0(sp) # cc_value[i]
addi sp,8
li a1, AUTOCC
jal WriteCC
nop
# Tickle the RDRAM
lw t0,0(s6) #ReadWord(next_1_mem+0x00000,&read_data)
lui t0,0x8
add t0,s6
lw t1,0(t0) #ReadWord(next_1_mem+0x80000,&read_data)
lw t0,0(s6) #ReadWord(next_1_mem+0x00000,&read_data)
lui t0,0x8
add t0,s6
lw t1,0(t0) #ReadWord(next_1_mem+0x80000,&read_data)
lui t0,0x0400
add t6,t0 # next_1_id = next_1_id + 0x04000000
add t9,s0 # next_1_reg = next_1_reg + reg_step
lui t0,0x0010
add s6,t0
b done_loop2
HM:
# Move the RDRAM to the next 2 Mbyte slot
sw s7,0x4(s1) # WriteWord(reg_max + 0x4, next_2_id)
addiu s5,a2, 0xc # ccreg_address = next_2_reg+0xc
lw a0,0(sp) # cc_value[i]
addi sp,8
li a1, AUTOCC
jal WriteCC
nop
# Tickle the RDRAM
lw t0,0(a3) #ReadWord(next_2_mem+0x00000,&read_data)
lui t0,0x08
add t0,a3
lw t1,0(t0)
lui t0,0x10
add t0,a3
lw t1,0(t0)
lui t0,0x18
add t0,a3
lw t1,0(t0)
lw t0,0(a3) #ReadWord(next_2_mem+0x00000,&read_data)
lui t0,0x08
add t0,a3
lw t1,0(t0)
lui t0,0x10
add t0,a3
lw t1,0(t0)
lui t0,0x18
add t0,a3
lw t1,0(t0)
lui t0,0x0800
add s7,t0 # next_2_id = next_2_id + 0x08000000
add a2,s0
add a2,s0 # next_2_reg = next_2_reg+(reg_step * 2)
lui t0,0x0020
add a3,t0
done_loop2:
addiu v1,1
slt t0,v1,t5
bne t0,zero,loop2
nop
# enable refresh
lui t2, 0xa470 # Enable refresh
sll s2,19 # multibank << 19
li t1, 0x63634
or t1, s2 # 0x63634 | (multibank << 19)
sw t1, 0x0010(t2)
lw t1, 0x0010(t2)
# save osMemSize to reserved area
li t0,reserved_mem
li t1,0xfffffff
and s6,t1
sw s6,0x18(t0)
# restore global registers
move sp,fp # restore sp back
addiu sp,sp,72
lw s3, 0(sp)
lw s4, 4(sp)
lw s5, 8(sp)
lw s6, 12(sp)
lw s7, 16(sp)
addiu sp,sp,24
.set reorder
#*******<14 Initialize CPU cache>
# Invalidate I cache
.set reorder
la t0,K0BASE
addu t1,t0,ICACHE_SIZE
subu t1,ICACHE_LINESIZE
.set noreorder
mtc0 zero,C0_TAGLO
mtc0 zero,C0_TAGHI
init_icache:
cache CACH_PI|C_IST,0(t0) # use index invalidate
bltu t0,t1,init_icache # on entire cache
addu t0,ICACHE_LINESIZE
la t0,K0BASE
addu t1,t0,DCACHE_SIZE
subu t1,DCACHE_LINESIZE
# Invalidate D cache
init_dcache:
cache CACH_PD|C_IST,0(t0) # use index store tag to invalidate
bltu t0,t1,init_dcache # cache.
addu t0,DCACHE_LINESIZE # some cache data for NMI case
b load_ipl3
nop
# We need to write back cache if NMI happen
nmi:
.set reorder
la t0,K0BASE
addu t1,t0,ICACHE_SIZE
subu t1,ICACHE_LINESIZE
.set noreorder
mtc0 zero,C0_TAGLO
mtc0 zero,C0_TAGHI
ninit_icache:
cache CACH_PI|C_IST,0(t0) # use index invalidate
bltu t0,t1,ninit_icache # on entire cache
addu t0,ICACHE_LINESIZE
la t0,K0BASE
addu t1,t0,DCACHE_SIZE
subu t1,DCACHE_LINESIZE
ninit_dcache:
cache CACH_PD|C_IWBINV,0(t0) # use index writeback invalidate
bltu t0,t1,ninit_dcache # on entire cache, so we can save
addu t0,DCACHE_LINESIZE # some cache data for NMI case
.set reorder
#********<15 Load IPL3 from IMEM to RD-RAM>
load_ipl3:
# relocate the current running program to RD-RAM
la t0,block17s # the beginning of relocated program
la t1,0xfffff
and t0,t1 # get offset address
la t2,PHYS_TO_K1(SP_DMEM_START) # convert to DMEM address
lui t3,0xfff0
and t2,t3 # get prefix address of DMEM
or t0, t2 # the current running pc
la t3,pifipl3e # the end of relocated program
and t3,t1 # convert pifipl3e address from rom
or t3,t2 # address base to DMEM base
la t1,K0_TO_K1(rd_rams) # load RD-RAM start address for IPL3
send2:
lw t5,0(t0) # load IPL3 from DMEM
sw t5,0(t1) # store IPL3 to RD-RAM
addiu t0,4 # add DMEM address
addiu t1,4 # add RD-RAM adress
bltu t0,t3,send2
#********<16 Jump to IPL3 in RD-RAM (cache enable)>
la t4,rd_rams
jr t4
#*******<17 Load game program to RD-RAM>
block17s:
# Send 1M byte game program from cartridge ROM
# ($19+game_offset ~ 19+game_offset+0xffffc) to RDRAM (0x80000400 ~ 0x801003fc)
# We need to reserve the first 1k for exception vector
lui t3,cart_rom #set source address of cartridge ROM
# beq s3,zero,cart #if (s3 == 0) goto cart
# lui t3,bulk_rom #set source address of bulk sys. ROM
cart:
li t2,0x1fffffff
lw t1,game_addr(t3)
and t1,t2 # game''s boot address
sw t1,PHYS_TO_K1(PI_DRAM_ADDR_REG)
waitread:
lw t0,PHYS_TO_K1(PI_STATUS_REG)
andi t0,PI_STATUS_IO_BUSY
bnez t0,waitread
la t0,game_offset # get rom address of the game
add t0,t3
and t0,t2
sw t0,PHYS_TO_K1(PI_CART_ADDR_REG)
la t2,game_size # DMA size
sw t2,PHYS_TO_K1(PI_WR_LEN_REG) # start DMA
# wait for DMA to finish
waitdma:
.set noreorder
.rept 0x1c
#ifdef __sgi__
.repeat 0x1c
#else
#endif
nop
.endr
.set reorder
lw t3,PHYS_TO_K1(PI_STATUS_REG)
andi t3,PI_STATUS_DMA_BUSY
bnez t3,waitdma
#*******<18 Autenticate game program>
#confidential
#this block size is 240 byte(it is temporary value in this version)
.set noreorder
#ifdef __sgi__
.repeat 0x40
#else
.rept 0x40
#endif
nop
.endr
.set reorder
#*******<19 Clear RCP status>
# Force nop instruction into IMEM at (pc-4) location
lw t1,PHYS_TO_K1(SP_PC_REG) # get pc
beq t1, zero,skip
li t2,SP_SET_SSTEP|SP_CLR_HALT # force to single step
sw t2,PHYS_TO_K1(SP_STATUS_REG)
sw zero,PHYS_TO_K1(SP_PC_REG) # set pc to zero
# TODO Clear RSP status register
skip:
li t3,clear_rsp
sw t3,PHYS_TO_K1(SP_STATUS_REG)
# Clear interrupt mask
li t0,clear_in_mask
sw t0,PHYS_TO_K1(MI_INTR_MASK_REG)
# SP, PI and VI interrupts have been cleared.
# Now, clear the rest of interrupts
sw zero,PHYS_TO_K1(SI_STATUS_REG) # clear SI interrupt
sw zero,PHYS_TO_K1(AI_STATUS_REG) # clear AI interrupt
li t1,MI_CLR_DP_INTR
sw t1,PHYS_TO_K1(MI_MODE_REG) # clear DP interrupt
li t1, PI_STATUS_CLR_INTR
sw t1, PHYS_TO_K1(PI_STATUS_REG) # clear PI interrupt
# save reserved registers to RDRAM
li t0,reserved_mem
sw s4,0(t0) # save osTvType
sw s3,4(t0) # savw osRomType
sw s5,0xc(t0) # save osResetType
# sw s6,0x10(t0) #save osCicId
sw s7,0x14(t0) # save osVersion
beq s3,zero,rom
la t1,PHYS_TO_K1(PI_DOM1_ADDR1)
b 1f
rom:
la t1,PHYS_TO_K1(PI_DOM1_ADDR2)
1:
sw t1,8(t0) # save osRomBase
#********<20 Delete IPL(DMEM,IMEM)>
# clear DMEM
la t0,PHYS_TO_K1(SP_DMEM_START) # DMEM start address
addi t1,t0,0x1000 # DMEM end address
del_dmem:
sw zero,0(t0)
addiu t0,4
bne t0,t1,del_dmem
# clear IMEM
la t0,PHYS_TO_K1(SP_IMEM_START)
addi t1,t0,0x1000
del_imem:
sw zero,0(t0)
addiu t0,4
bne t0,t1,del_imem
#********<21 Jump to game program in RD-RAM>
lui t3,cart_rom #set source address of cartridge ROM
# beq s3,zero,game #if (s3 == 0) goto cart
# lui t3,bulk_rom #set source address of bulk sys. ROM
game:
lw t1,game_addr(t3)
jr t1
pifipl3e:
.set noreorder
nop
.set reorder
END (IPL3)
#define DERWMASK 0x02000000
#define ASRWMASK 0x04000000
#define X2RWMASK 0x40000000
#define CERWMASK 0x80000000
#define C0RMASK 0x00000040
#define C1RMASK 0x00004000
#define C2RMASK 0x00400000
#define C3RMASK 0x00000080
#define C4RMASK 0x00008000
#define C5RMASK 0x00800000
#define C0WMASK 0x00000001
#define C1WMASK 0x00000002
#define C2WMASK 0x00000004
#define C3WMASK 0x00000008
#define C4WMASK 0x00000010
#define C5WMASK 0x00000020
#define C0SHIFT 6
#define C1SHIFT 13
#define C2SHIFT 20
#define C3SHIFT 4
#define C4SHIFT 11
#define C5SHIFT 18
#define PASSES 4
#define SHIFPASSES 2
#define MAXTRYS 10
#define CHECKSHIFT 16
#define CCMASK 0x3f
#define MULT 22
#define MFAC 10
#define NTRY 10
#define BITS 8
#define TRYBITS (NTRY*BITS)
LEAF(InitCCValue)
addiu sp,sp,-160
# save all the registers
sw v0,0(sp)
sw v1,4(sp)
sw a0,8(sp)
sw a1,12(sp)
sw a2,16(sp)
sw a3,20(sp)
sw t0,24(sp)
sw t1,28(sp)
sw t2,32(sp)
sw t3,36(sp)
sw t4,40(sp)
sw t5,44(sp)
sw t6,48(sp)
sw t7,52(sp)
sw t8,56(sp)
sw t9,60(sp)
sw s0,64(sp)
sw s1,68(sp)
sw s2,72(sp)
sw s3,76(sp)
sw s4,80(sp)
sw s5,84(sp)
sw s6,88(sp)
sw s7,92(sp)
sw fp,96(sp)
sw ra,100(sp)
move s0,zero # i
move s1,zero # sumccv
CCloop1:
jal FindCC
addiu s0,1
addu s1,v0
slti t1,s0,PASSES
bne t1,zero,CCloop1
srl a0,s1,SHIFPASSES
li a1, AUTOCC
jal WriteCC
srl v0,s1,SHIFPASSES # return accv
#restore all the registers
lw v1,4(sp)
lw a0,8(sp)
lw a1,12(sp)
lw a2,16(sp)
lw a3,20(sp)
lw t0,24(sp)
lw t1,28(sp)
lw t2,32(sp)
lw t3,36(sp)
lw t4,40(sp)
lw t5,44(sp)
lw t6,48(sp)
lw t7,52(sp)
lw t8,56(sp)
lw t9,60(sp)
lw s0,64(sp)
lw s1,68(sp)
lw s2,72(sp)
lw s3,76(sp)
lw s4,80(sp)
lw s5,84(sp)
lw s6,88(sp)
lw s7,92(sp)
lw fp,96(sp)
lw ra,100(sp)
addiu sp,sp,160
jr ra
END (InitCCValue)
LEAF(FindCC)
addiu sp,sp,-32
sw ra,28(sp)
move t1,zero #i_prepass
move t3,zero #i_sumv
move t4,zero #j
prepass_loop:
slti k0,t4,64
beq k0,zero,done_findcc #j > 63
move a0,t4
jal TestCCValue
blez v0,next_pass #i_pass < 0
subu k0,v0,t1 # i_pass-i_prevpass
multu k0,t4 # j*(i_pass-i_prevpass)
mflo k0
addu t3,k0 # i_sumv += j*(i_pass-i_prevpass)
move t1,v0 # i_prevpass = i_pass
next_pass:
addiu t4,1 # j++
slti k0,t1,TRYBITS #i_prevpass < TRYBITS
bne k0,zero,prepass_loop
sll a0,t3,2 #i_sumv * 4
subu a0,t3 #i_sumv * 3
sll a0,2 #i_sumv * 12
subu a0,t3 #i_sumv * 11
sll a0,1 #i_sumv * 22
addiu a0,-880 #MULT*(i_sumv - (TRYBITS/2))
jal ConvertManualToAuto
b return_findcc
done_findcc:
move v0,zero # no memory
return_findcc:
lw ra,28(sp)
addiu sp,sp,32
jr ra
END(FindCC)
LEAF(TestCCValue)
addiu sp,sp,-40
sw ra,28(sp)
move v0,zero # i_passcount
li a1,MANUALCC
jal WriteCC
move fp,zero # j=0
jloop:
li k0,-1
sw k0,0(s4) # dgWriteWord(pdw_mem, 0xffffffff);
sw k0,0(s4) # dgWriteWord(pdw_mem, 0xffffffff);
sw k0,4(s4) #dgWriteWord(pdw_mem+mgi_readoffset, 0xffffffff)
lw v1,4(s4) #dgReadWord(pdw_mem+mgi_readoffset, &dw_value)
srl v1,CHECKSHIFT # dw_value = (dw_value >>CHECKSHIFT)
move gp,zero # k = 0
kloop:
andi k0,v1,1 # dw_value&0x00000001
beq k0,zero,no_passcount
addiu v0,1 #i_passcount++
no_passcount:
srl v1,1 # dw_value>>1
addiu gp,1 # k++
slti k0,gp,BITS
bne k0,zero,kloop
addiu fp,1 # j++
slti k0,fp,NTRY # j < NTRY
bne k0,zero,jloop
lw ra,28(sp)
addiu sp,sp,40
jr ra
END(TestCCValue)
LEAF(ConvertManualToAuto)
addiu sp,sp,-40
sw ra,28(sp)
sw a0,32(sp)
move t0,zero # i_readccval = 0
move t2,zero # i_minccval = 0
li t5,64*MFAC*TRYBITS # i_delccval = 64*MFAC*TRYBITS
sb zero,39(sp) # b_readccval = 0
move t6,zero # i_accval = 0
big_loop:
slti k0,t6,64
bne k0,zero,coverloop # i_accval < 64
move v0,zero # return (0)
b convert_done
coverloop:
move a0,t6
li a1,AUTOCC
jal WriteCC
/*
* Now read back the calibrated value. The read of this register is
* done 2 times and the last value is the one that is used.
* A "dummy" transaction is required (for NEC Rev D parts) for the
* calibrated current control value to be loaded for a read.
*/
/* The first ReadCC below is a dummy transaction read: the results of
the read are not used. In the assembly code, optimize for this case
*/
addiu a0,sp,39
jal ReadCC
addiu a0,sp,39
jal ReadCC
lbu k0,39(sp) # b_readccval
li k1,MFAC*TRYBITS
multu k0,k1 # (MFAC*TRYBITS)*b_readccval
mflo t0 #i_readccval=(MFAC*TRYBITS)*b_readccval
lw a0,32(sp) # i_ccvalue
subu k0,t0,a0 # i_readccval-i_ccvalue
bgez k0,pos # i_dccv = abs(i_readccval-i_ccvalue)
subu k0,a0,t0
pos:
slt k1,k0,t5 # i_dccv < i_delccval
beq k1,zero,compare_done
move t5,k0 # i_delccval = i_dccv
move t2,t6 # i_minccval = i_accval
compare_done:
lw a0,32(sp) # i_ccvalue
slt k1,t0,a0
beq k1,zero,return_value # i_readccval>=i_ccvalue
addiu t6,1 # i_accval++
slti k1,t6,65 # i_accval < 65
bne k1,zero,big_loop
return_value:
addu v0,t2,t6 # i_minccval+i_accval
srl v0,1 # (i_minccval+i_accval)/2
convert_done:
lw ra,28(sp)
addiu sp,sp,40
jr ra
END(ConvertManualToAuto)
LEAF(WriteCC)
addiu sp,sp,-40
sw ra,28(sp)
#ifdef NEC_RELEASE_C2
li t7,DERWMASK|X2RWMASK # dw_value = (DERWMASK|X2RWMASK)
#else
li t7,DERWMASK|X2RWMASK|ASRWMASK
#endif
andi a0,0xff
xori a0,CCMASK # b_value ^= (CCMASK)
li k1,AUTOCC
bne a1,k1,non_auto # b_auto != AUTOCC
li k0,CERWMASK
or t7,k0 # dw_value |= CERWMASK
non_auto:
andi k0,a0,C0WMASK #b_value&C0WMASK
sll k0,C0SHIFT # (b_value&C0WMASK)<<C0SHIFT
or t7,k0 # dw_value |=(b_value&C0WMASK)<<C0SHIFT
andi k0,a0,C1WMASK #b_value&C1WMASK
sll k0,C1SHIFT # (b_value&C1WMASK)<<C1SHIFT
or t7,k0 # dw_value |=(b_value&C1WMASK)<<C1SHIFT
andi k0,a0,C2WMASK #b_value&C2WMASK
sll k0,C2SHIFT # (b_value&C2WMASK)<<C2SHIFT
or t7,k0 # dw_value |=(b_value&C2WMASK)<<C2SHIFT
andi k0,a0,C3WMASK #b_value&C3WMASK
sll k0,C3SHIFT # (b_value&C3WMASK)<<C3SHIFT
or t7,k0 # dw_value |=(b_value&C3WMASK)<<C3SHIFT
andi k0,a0,C4WMASK #b_value&C4WMASK
sll k0,C4SHIFT # (b_value&C4WMASK)<<C4SHIFT
or t7,k0 # dw_value |=(b_value&C4WMASK)<<C4SHIFT
andi k0,a0,C5WMASK #b_value&C5WMASK
sll k0,C5SHIFT # (b_value&C5WMASK)<<C5SHIFT
or t7,k0 # dw_value |=(b_value&C5WMASK)<<C5SHIFT
sw t7,0(s5) # dgWriteWord(ccreg_address, dw_value)
/*
* In auto-mode, introduce a delay of 512 (Rambus bus) clocks to ensure
* that the auto current control circuitry calibrates to the new value
* Code this as a simple delay loop that delays for about 2048ns.
*/
li k1,AUTOCC
bne a1,k1,write_done
lui k0,0xa430 #
sw zero,0(k0) # dgWriteWord(0x04300000, 0x00000000)
write_done:
lw ra,28(sp)
addiu sp,sp,40
jr ra
END(WriteCC)
LEAF(ReadCC)
addiu sp,sp,-40
sw ra,28(sp)
move fp,zero # dw_value = 0
li k0,0x2000
lui k1,0xa430
sw k0,0(k1) # dgWriteWord(0x04300000, 0x00002000)
lw fp,0(s5) # dgReadWord(ccreg_address, &dw_value)
li k0,0x1000
sw k0,0(k1) # dgWriteWord(0x04300000, 0x00001000)
move k0,zero # dw_tmp = 0
li k1,C0RMASK
and k1,fp # dw_value&C0RMASK
srl k1,C0SHIFT # (dw_value&C0RMASK)>>C0SHIFT
or k0,k1 # dw_tmp |= (dw_value&C0RMASK)>>C0SHIFT
li k1,C1RMASK
and k1,fp # dw_value&C1RMASK
srl k1,C1SHIFT # (dw_value&C1RMASK)>>C1SHIFT
or k0,k1 # dw_tmp |= (dw_value&C1RMASK)>>C1SHIFT
li k1,C2RMASK
and k1,fp # dw_value&C2RMASK
srl k1,C2SHIFT # (dw_value&C2RMASK)>>C2SHIFT
or k0,k1 # dw_tmp |= (dw_value&C2RMASK)>>C2SHIFT
li k1,C3RMASK
and k1,fp # dw_value&C3RMASK
srl k1,C3SHIFT # (dw_value&C3RMASK)>>C3SHIFT
or k0,k1 # dw_tmp |= (dw_value&C3RMASK)>>C3SHIFT
li k1,C4RMASK
and k1,fp # dw_value&C4RMASK
srl k1,C4SHIFT # (dw_value&C4RMASK)>>C4SHIFT
or k0,k1 # dw_tmp |= (dw_value&C4RMASK)>>C4SHIFT
li k1,C5RMASK
and k1,fp # dw_value&C5RMASK
srl k1,C5SHIFT # (dw_value&C5RMASK)>>C5SHIFT
or k0,k1 # dw_tmp |= (dw_value&C5RMASK)>>C5SHIFT
sb k0,0(a0) # *b_value = (unsigned char) dw_tmp
lw ra,28(sp)
addiu sp,sp,40
jr ra
END(ReadCC)