ew.c
29.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
/**************************************************************************
* *
* Copyright (C) 1994, Silicon Graphics, Inc. *
* *
* These coded instructions, statements, and computer programs contain *
* unpublished proprietary information of Silicon Graphics, Inc., and *
* are protected by Federal copyright law. They may not be disclosed *
* to third parties or copied or duplicated in any form, in whole or *
* in part, without the prior written consent of Silicon Graphics, Inc. *
* *
**************************************************************************/
/*
* Edge Walker Unit
*
*
* RJM 8/13/94
*/
#include <stdio.h>
#include <stdlib.h>
#include <bstring.h>
#include "ints.h"
#include "ew.h"
#define POSEDGE (save_clk && !save_clk_old)
#define NEGEDGE (!save_clk && save_clk_old)
#ifndef MAX
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#endif
#ifndef MIN
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
#endif
#define SIGN_EXTEND_27(x) (((x) & 0x4000000) ? (x) | ~0x3ffffff : (x))
#define SIGN_EXTEND_12(x) (((x) & 0x800) ? (x) | ~0xfff : (x))
#define SIGN_EXTEND_14(x) (((x) & 0x2000) ? (x) | ~0x3fff : (x))
/*
* G l o b a l s
*/
/* Debugging/checking */
static int ew_dump;
/* edge walker memory */
static unsigned int EwMemoryA[9]; /* attribute */
static unsigned int EwMemoryB[9]; /* da/de */
static int Trigger = 0;
/* =========================================================================
* An 18-word by 32-bit register file. Two writes at the same address
* at the same time is not allowed. Read and write to the same address at
* the same time is ?not allowed? The da/de memory can write data directly
* to the read register.
* =========================================================================
*/
static void
ew_reg_file( ew_t *p0, ew_t *p1,
int ld_a, int attr_adrs, int attr_we,
int de_adrs, int de_we,
int64 cs_ew_d)
{
if(attr_we)
EwMemoryA[attr_adrs] = ld_a ? cs_ew_d.word1 : p1->sum_att;
if(de_we)
EwMemoryB[de_adrs] = cs_ew_d.word1;
if((p1->cnt_span_attr == de_adrs) && de_we)
p0->rb_data = p1->ew_stall_attr ? p1->rb_data : cs_ew_d.word1;
else
p0->rb_data = p1->ew_stall_attr ? p1->rb_data : EwMemoryB[p1->cnt_span_attr];
p0->ra_data = p1->ew_stall_attr ? p1->ra_data : EwMemoryA[p1->cnt_span_attr];
}
/* =========================================================================
* ew_attr_adder - two 16-bit adders that step attributes along attribute
* edge. This function includes the sum register.
*
* =========================================================================
*/
static void
ew_attr_adder(ew_t *p0, ew_t *p1)
{
unsigned int in_attr, in_dade;
unsigned int sum_ls, sum_ms;
unsigned int ms_ci, ls_ci;
unsigned int ms_co, ls_co;
in_attr = p1->ra_data;
in_dade = p1->rb_data;
/* do LS adder */
ls_ci = p1->ls_co && !p1->add_clear;
sum_ls = (in_attr & 0xffff) + (in_dade & 0xffff) + ls_ci;
ls_co = (sum_ls & 0x10000) >> 16;
p0->ls_co = p1->ew_stall_attr ? p1->ls_co : ls_co;
/* do MS adder */
ms_ci = p1->add32b ? ls_co : p1->ms_co && !p1->add_clear;
sum_ms = ((in_attr >> 16) & 0xffff) + ((in_dade >> 16) & 0xffff) + ms_ci;
ms_co = (sum_ms & 0x10000) >> 16;
p0->ms_co = p1->ew_stall_attr ? p1->ms_co : ms_co;
/* save sum */
p0->sum_att = p1->ew_stall_attr ? p1->sum_att : ((sum_ms & 0xffff) << 16) | (sum_ls & 0xffff);
}
/* =========================================================================
* ew_shuffle - swaps integer and fraction to make complete word (16.16)
*
* =========================================================================
*/
static void
ew_shuffle(ew_t *p0, ew_t *p1)
{
int int_shuffle, frac_shuffle;
int result;
p0->inta_1delay = (p1->ra_data >> 16) & 0xffff;
p0->fraca_1delay = p1->ra_data & 0xffff;
p0->fraca_2delay = p1->fraca_1delay;
p0->intd_1delay = (p1->rb_data >> 16) & 0xffff;
p0->fracd_1delay = p1->rb_data & 0xffff;
p0->fracd_2delay = p1->fracd_1delay;
int_shuffle = p1->shuffle ? p1->fraca_1delay : (p1->ra_data >> 16) & 0xffff;
frac_shuffle = p1->shuffle ? p1->fraca_2delay : p1->inta_1delay;
result = (p1->noshuffle ? p1->inta_1delay : int_shuffle) << 16;
result |= p1->noshuffle ? p1->fraca_1delay : frac_shuffle;
p0->att_out_s = result;
p0->att_out = p1->att_out_s >> 9; /* reduce to s,15.7 */
int_shuffle = p1->shuffle ? p1->fracd_1delay : (p1->rb_data >> 16) & 0xffff;
frac_shuffle = p1->shuffle ? p1->fracd_2delay : p1->intd_1delay;
result = (p1->noshuffle ? p1->intd_1delay : int_shuffle) << 16;
result |= p1->noshuffle ? p1->fracd_1delay : frac_shuffle;
p0->dade_out_s = result;
p0->dade_out = p1->dade_out_s >> 9; /* reduce to s,15.7 */
}
/* ======================================================================
* ew_offset():
*
* dade_out, att_out, dx_att, dy_att - s,15.7
* xfrac - 0.8
*
* s,15.7 * .8 = s,15.15
*
* Offset attribute as follows: A = A + 3/4(da/de - da/dy) - dx * xfrac;
*
*
* ======================================================================
*/
#define SIGN_EXTEND_22(x) (((x) & 0x400000) ? ((x) | ~0x7fffff) : (x))
static void
ew_offset(ew_t *p0, ew_t *p1, int dx_att, int dy_att)
{
int x_frac_ss, do_offset, de_offset, dy_offset;
int att;
p0->x_frac_s = p1->ld_x_frac ? p1->x_frac : p1->x_frac_s;
x_frac_ss = p1->x_frac_s & (!(p1->cycle_type == 2 || p1->load_cmd_offset) ? 0xff : 0x00);
do_offset = !(p1->sign_dxhdy_offset ^ p1->left_offset);
de_offset = do_offset ? p1->dade_out : 0x0;
dy_offset = do_offset ? dy_att : 0x0;
de_offset = SIGN_EXTEND_22(de_offset);
dy_offset = SIGN_EXTEND_22(dy_offset);
att = SIGN_EXTEND_22(p1->att_out);
dx_att = SIGN_EXTEND_22(dx_att);
/* result is s,15.15 */
p0->att_d_out = (att << 8) +
(de_offset << 7) + (de_offset << 6) -
(dy_offset << 7) - (dy_offset << 6) -
(dx_att * x_frac_ss);
#ifdef DUMB
if(p1->cnt_span_attr == 5 || p1->cnt_span_attr == 6 || p1->cnt_span_attr == 7
|| p1->cnt_span_attr == 8)
{
printf("cnt_attr: %d ew_ep_d = %08x att_out = %08x att = %08x, dx_att = %08x, de_off = %08x, de_y = %08x, x_frac = %02x\n", p1->cnt_span_attr, p0->ew_ep_d, p0->att_d_out, att, dx_att, de_offset, dy_offset, x_frac_ss);
}
#endif
p0->ew_ep_d = (p1->att_d_out >> 9) & 0x3fffff; /* s,15.6 */
}
/* ======================================================================
* ew_x_calc():
*
* Compute xh0, xh1, xh2, xh3, xm0, xm1, xm2, xm3
* for each span in a triangle or rectangle.
*
* ======================================================================
*/
static void
ew_x_calc(ew_t *p0, ew_t *p1, int ld_xmh, int switch_xl, int ld_dxmdy,
int ld_dxldy, int ld_dxhdy, int64 cs_ew_d)
{
int dxmdy, dxhdy, xm, xh, sum;
dxmdy = ld_xmh ? ((cs_ew_d.word0 >> 3) & 0x7ffffff) : p1->dxhdy;
dxhdy = switch_xl ? p1->dxldy : p1->dxmdy;
sum = SIGN_EXTEND_27(p1->dxhdy) + SIGN_EXTEND_27(p1->xh);
xm = ld_xmh ? (cs_ew_d.word1 >> 1) & 0x7ffffff : sum & 0x7ffffff;
xh = switch_xl ? p1->xl : p1->xm;
p0->dxmdy = ld_dxmdy ? dxmdy : p1->dxmdy;
p0->dxldy = ld_dxldy ? (cs_ew_d.word0 >> 3) & 0x7ffffff : p1->dxldy;
p0->dxhdy = ld_dxhdy ? dxhdy : p1->dxhdy;
p0->xm = ld_dxmdy ? xm : p1->xm;
p0->xl = ld_dxldy ? (cs_ew_d.word1 >> 1) & 0x7ffffff : p1->xl;
p0->xh = ld_dxhdy ? xh : p1->xh;
p0->x_sticky = (p0->xh & 0x1fff) > 0;
}
/* ======================================================================
* ew_scissor_y(): counts and scissors y coordinate
*
* ======================================================================
*/
static void
ew_scissor_y(ew_t *p0, ew_t *p1, int ld_y, int count_y, int *end_prim_y, int64 cs_ew_d)
{
int yl_ismin_scymax;
int min_yl_scymax;
int yh_ismax;
int max_yh_scmin;
int xval0, xval1, xval2, xval3;
int x_invalid;
p0->ym = ld_y ? (cs_ew_d.word0 >> 16) & 0x3fff : p1->ym;
p0->yl = ld_y ? cs_ew_d.word1 & 0x3fff : p1->yl;
p0->yh = ld_y ? cs_ew_d.word0 & 0x3fff : p1->yh;
/* increment y counter */
p0->y_cur = ld_y ? cs_ew_d.word0 & 0x3ffc : p1->y_cur + count_y;
/* min(yl, scbox_ymax) to determine end of primitive */
if(p1->yl & 0x2000)
yl_ismin_scymax = 1;
else if(p1->yl & 0x1000)
yl_ismin_scymax = 0;
else
yl_ismin_scymax = (p1->yl & 0xfff) < p1->scbox_ymax;
/* Terminate primitive if current y >= min(yl, scbox_ymax) */
min_yl_scymax = (yl_ismin_scymax || p1->load_cmd_scissor) ? p1->yl : p1->scbox_ymax & 0xfff;
*end_prim_y = (SIGN_EXTEND_14(p1->y_cur) >= SIGN_EXTEND_14(min_yl_scymax)) || p1->flush;
/* cancel the span if current y < max(scbox_ymin, yh) */
if(p1->yh & 0x2000)
yh_ismax = 0;
else if (p1->yh & 0x1000)
yh_ismax = 1;
else
yh_ismax = p1->yh >= p1->scbox_ymin;
max_yh_scmin = (yh_ismax || p1->load_cmd_scissor) ? p1->yh : p1->scbox_ymin & 0xfff;
x_invalid = SIGN_EXTEND_14(p1->y_cur) < SIGN_EXTEND_14(max_yh_scmin);
p0->y_invalid = x_invalid || (*end_prim_y); /* used by ew controlto clear x_minor */
/* get xval */
xval0 = p1->xval & 1;
xval1 = (p1->xval >> 1) & 1;
xval2 = (p1->xval >> 2) & 1;
xval3 = (p1->xval >> 3) & 1;
p0->xval = (p1->cnt_span_x & 1) ? !((*end_prim_y) || x_invalid) : xval0;
p0->xval |= ((p1->cnt_span_x & 1) ? xval0 : xval1) << 1;
p0->xval |= ((p1->cnt_span_x & 1) ? xval1 : xval2) << 2;
p0->xval |= ((p1->cnt_span_x & 1) ? xval2 : xval3) << 3;
}
/* ======================================================================
* ew_scissor_x():
*
* Scissor X coordinates
*
* Scissored x, x_sc, should only use 13 LSBs outside this function.
* ======================================================================
*/
static void
ew_scissor_x(ew_t *p0, ew_t *p1, int ld_xmajor, int clear_allxgemax)
{
int x_unsc; /* s,11.8 */
int less_xmin;
int xsc_scmin; /* 11.2,sticky */
int allxlmin;
int ge_xmax;
int xsc_scmax;
int allxgemax;
int x_sc_maxnew;
int x_sc_max;
int x_sc_minnew;
int x_sc_min;
int xsc;
int xsc_m;
/*
* scissor with scbox_xmin, max(scbox_xmin, x_in)
* p1->xh is s,11.15
*/
x_unsc = (p1->xh >> 7) & 0xfffff;
if(x_unsc & 0x80000) /* x negative, out of scissor box */
less_xmin = 1;
else if(x_unsc & 0x40000) /* x out of maximum positive scissor box */
less_xmin = 0;
else /* check against scissor box min (10.2) */
less_xmin = (((x_unsc & 0x3ffc0) >> 5) | p1->x_sticky) < (p1->scbox_xmin << 1);
xsc_scmin = less_xmin ? (p1->scbox_xmin << 1) & 0x1ffe :
(((x_unsc & 0x7ffc0) >> 5) | p1->x_sticky);
allxlmin = (p1->allxlmin || clear_allxgemax) && less_xmin && !p1->load_cmd_scissor;
/*
* scissor with scbox_xmax, min(scbox_xmax, xsc_scmin)
* know that xsc_scmin is positive, 11.2,sticky.
*/
if(xsc_scmin & 0x2000)
ge_xmax = 1;
else
ge_xmax = (xsc_scmin & 0x1fff) >= (p1->scbox_xmax << 1);
xsc_scmax = ge_xmax ? (p1->scbox_xmax << 1) & 0x1ffe : xsc_scmin;
allxgemax = (p1->allxgemax || clear_allxgemax) && ge_xmax && !p1->load_cmd_scissor;
xsc = p1->load_cmd_scissor ? ((x_unsc & 0xfffc0) >> 5) : xsc_scmax;
/* xsc_m = (p1->cnt_span_x & 8) ? p1->xval & 0xf : xsc; */
p0->allxlmin = p1->ew_stall_x ? p1->allxlmin : allxlmin;
p0->allxgemax = p1->ew_stall_x ? p1->allxgemax : allxgemax;
p0->x_sc = p1->ew_stall_x ? p1->x_sc : xsc;
p0->ew_cv_d = p1->sel_xval ? p1->xval & 0xf : p1->x_sc & 0x1fff;
if (ew_dump&0x1) {
static int dump_num=0,dump_last=0,dump_stall=0,dump_yval;
static int dump_x[8] =
{ 0xDEAD, 0xDEAD, 0xDEAD, 0xDEAD, 0xDEAD, 0xDEAD, 0xDEAD, 0xDEAD };
dump_num++;
if (p1->cnt_span_x >0) {
dump_x[p1->cnt_span_x-1]=p0->ew_cv_d;
dump_last=0;
if (p1->cnt_span_x==1) {
dump_stall++;
dump_yval=p1->y_cur;
if (dump_yval & 0x2000) dump_yval |= ~0x3FFF;
}
} else {
if (!dump_last) {
if (!p1->sel_xval)
printf("ew: {FUNNY:sel_xval!=0 when cnt_span==0}");
printf("ew[%d]: ",dump_num);
if (dump_stall>2) printf("S ");
else printf("n ");
dump_stall=0;
printf("ycur=%04i.%X ",dump_yval>>2, (dump_yval&0x3)<<2);
printf("x0h-x1m: ");
printf("%04i(%i)_%04i(%i) ",(int) (dump_x[0]>>3),(int) (dump_x[0]&7),(int) (dump_x[1]>>3),(int) (dump_x[1]&7));
printf("%04i(%i)_%04i(%i) ",(int) (dump_x[2]>>3),(int) (dump_x[2]&7),(int) (dump_x[3]>>3),(int) (dump_x[3]&7));
printf("%04i(%i)_%04i(%i) ",(int) (dump_x[4]>>3),(int) (dump_x[4]&7),(int) (dump_x[5]>>3),(int) (dump_x[5]&7));
printf("%04i(%i)_%04i(%i) ",(int) (dump_x[6]>>3),(int) (dump_x[6]&7),(int) (dump_x[7]>>3),(int) (dump_x[7]&7));
printf("val=%X ",p0->ew_cv_d);
printf("\n");
dump_last=1;
}
}
}
p0->x_major_1d = ld_xmajor ? x_unsc : p1->x_major_1d;
p0->ew_cv_start_x = (p0->x_major_1d >> 8) & 0xfff; /* no frac bits needed */
p0->x_frac_m = p1->x_major_1d & 0xff;
p0->x_frac_mm = p1->x_frac_m;
p0->x_frac = p1->x_frac_mm;
/*
* Find the scissored x_max(x_right) x_min(x_left)
* These values are used in the memory span unit to calculate span address
*/
if(p1->reset_l == 0)
{
p0->x_sc_max = 0;
p0->x_sc_min = 0;
}
else
{
/* Compute x_max with no fraction bits */
x_sc_maxnew = !p1->clear_xminor ? p1->x_sc_max : 0;
x_sc_max = (((p1->x_sc >> 3) & 0xfff) >= x_sc_maxnew) && !p1->y_invalid ?
(p1->x_sc >> 3) & 0xfff : x_sc_maxnew;
p0->x_sc_max = p1->ew_stall_x ? p1->x_sc_max : x_sc_max;
/* compute x_min with no fraction bits */
x_sc_minnew = p1->clear_xminor ? 0xfff : p1->x_sc_min;
x_sc_min = (((p1->x_sc >> 3) & 0xfff) < x_sc_minnew) && !p1->y_invalid ?
(p1->x_sc >> 3) & 0xfff : x_sc_minnew;
p0->x_sc_min = p1->ew_stall_x ? p1->x_sc_min : x_sc_min;
}
/* mux for x_sc_major, x_minor not implemented here, were used? */
}
/* ======================================================================
* ew_ms_adrs():
*
* Calculate addresses for span, to mem span unit
*
*
* ======================================================================
*/
static void
ew_ms_adrs( ew_t *p0, ew_t *p1)
{
int mult;
int add_zero;
int sel_mult;
int ld_addr;
int sel_addr;
int yh_cur;
int a_adder;
int b_adder_m;
int b_adder;
int sum;
int a_adder_m;
int b_adder_a;
int posy_sel;
int ycur;
ycur = p1->y_cur >> 2; /* s,11.0 */
if(p1->reset_l == 0)
{
p0->cnt_mult = 0;
p0->cnt_addr = 0;
p0->posy_state = 0;
}
else
{
p0->cnt_mult = (p1->cnt_prim == 2) || !((p1->cnt_mult == 0xa) || (p1->cnt_mult == 0x0)) ?
p1->cnt_mult + 1 : 0;
p0->cnt_addr = (((p1->cnt_span_x == 8)) || ((p1->cnt_addr & 0x3) != 0)) ? p1->cnt_addr + 1 : 0;
posy_sel = ((p1->cnt_prim == 2) << 3) | ((p1->cnt_span_x == 8) << 2) | ((!((ycur & 0x800) ||
(ycur & 0x400))) << 1) | p1->posy_state;
switch(posy_sel)
{
case 0x0:
case 0x2:
case 0x4:
case 0x8:
case 0x9:
case 0xc:
case 0xd: p0->posy_state = 0; break;
default: p0->posy_state = 1; break;
}
}
switch(p1->cnt_mult)
{
case 0x1: yh_cur = ycur & 0x200; break;
case 0x2: yh_cur = ycur & 0x100; break;
case 0x3: yh_cur = ycur & 0x080; break;
case 0x4: yh_cur = ycur & 0x040; break;
case 0x5: yh_cur = ycur & 0x020; break;
case 0x6: yh_cur = ycur & 0x010; break;
case 0x7: yh_cur = ycur & 0x008; break;
case 0x8: yh_cur = ycur & 0x004; break;
case 0x9: yh_cur = ycur & 0x002; break;
case 0xa: yh_cur = ycur & 0x001; break;
default: yh_cur = ycur & 0x001; break;
}
mult = (p1->cnt_mult != 0);
add_zero = (ycur & 0x800) || (ycur & 0x400) || !yh_cur;
sel_mult = (p1->cnt_mult != 0x0) && (p1->cnt_mult != 0x1);
ld_addr = (p1->cnt_mult != 0x0) || (p1->cnt_addr == 0x3);
sel_addr = p1->posy_state ? p1->cnt_addr : 0;
if(p1->reset_l == 0)
{
p0->addr_scanline = 0;
}
else
{
a_adder_m = add_zero ? 0 : (p1->load_cmd_image ? p1->width_timage : p1->width_cimage);
a_adder = mult ? a_adder_m : p1->addr_scanline;
b_adder_m = sel_mult ? (p1->addr_scanline & 0x7ffff) << 1 : 0;
switch (sel_addr)
{
case 0: b_adder_a = 0; break;
case 1: b_adder_a = p1->left_xminor ? p1->x_sc_min : p1->x_sc_max; break;
case 2: b_adder_a = p1->left_xminor ? p1->x_sc_max : p1->x_sc_min; break;
case 3: b_adder_a = (p1->load_cmd_image ? p1->width_timage : p1->width_cimage); break;
}
b_adder = mult ? b_adder_m : b_adder_a;
sum = a_adder + b_adder + (1 & ((mult && !add_zero) || (p1->posy_state && ((p1->cnt_addr == 3) && !mult))));
p0->addr_scanline = ld_addr ? sum : p1->addr_scanline;
p0->ew_ms_addr = sum;
}
#ifdef DEBUG
{
static ew_debug_count=0;
fprintf(stderr,"ew[%d]: addr_scanline=0x%X ew_ms_addr=0x%X sum=%X a_adder=%X b_adder=%X mult=%X add_zero=%X sel_addr=%X cnt_mult=%X cnt_addr=%X ycur=%X\n",
ew_debug_count++,p0->addr_scanline,p0->ew_ms_addr,sum,a_adder,b_adder,mult,add_zero,sel_addr,p1->cnt_mult,p1->cnt_addr,ycur);
fprintf(stderr," cnt_prim=%X cnt_span_x=%X posy_state%X\n",p1->cnt_prim,p1->cnt_span_x,p1->posy_state);
}
#endif /* DEBUG */
}
/* ======================================================================
* ew(): main interface for the edge walker unit.
*
* WARNING: This code is order dependent. Be careful when rearranging
* code sections.
* ======================================================================
*/
void
ew(ew_t **pp0, ew_t **pp1)
{
ew_t *p0, *p1;
int save_clk, save_clk_old;
/* intermediate variables */
int ld_y;
int count_y;
int end_prim_y;
int span_valid;
int ld_xmh;
int ld_dxmdy;
int ld_dxhdy;
int ld_dxldy;
int switch_xl;
int end_x;
int ld_xmajor;
int clear_allxgemax;
int ld_a;
int attr_adrs;
int attr_we;
int de_adrs;
int de_we;
int dx_att;
int dy_att;
int get_ew_stall;
int larger_x;
int smaller_x;
int num_shift;
int num_pixel;
int num_cycles_new;
int num_cycles;
int comp_value;
int stall_decr;
/*
* These inputs come from pins which have logic between the output register
* and the pin. So we re-grab these inputs on the non-used (negative) edge
* of the clock, and recalculate the module.
*/
int64 cs_ew_d;
int cs_ew_newprim;
/* get initial pointers */
p0 = *pp0;
p1 = *pp1;
save_clk = p0->gclk;
save_clk_old = p1->gclk_old;
if(NEGEDGE)
{
cs_ew_d = p0->cs_ew_d;
cs_ew_newprim = p0->cs_ew_newprim;
}
if(POSEDGE)
{
/* transfer all next-clock register values to register outputs. */
*pp0 = p1; /* swap */
*pp1 = p0;
p0 = *pp0; /* fix pointers */
p1 = *pp1;
}
if(POSEDGE || NEGEDGE)
{
/* Update all next-clock register values */
/* controls for Y's */
ld_y = p1->cnt_prim == 1;
count_y = ((p1->cnt_span_x == 1) || (p1->cnt_span_x == 3) ||
(p1->cnt_span_x == 5) || (p1->cnt_span_x == 8)) &&
!( (p1->cnt_prim == 1) || (p1->cnt_prim == 2) ||
(p1->cnt_prim == 3) || (p1->cnt_prim == 4)) &&
!p1->ew_stall_x && p1->span_valid_x;
/*
* Scissor Y coordinates
*
*/
ew_scissor_y(p0, p1, ld_y, count_y, &end_prim_y, cs_ew_d);
/*
* Edge Walker Control, derive control signals before
* calling other units.
*/
if(p1->reset_l == 0)
{
p0->cnt_prim = 0;
p0->cnt_span_x = 0;
p0->cnt_span_attr = 0;
p0->end_ew = 0;
p0->span_valid_s = 0;
p0->span_valid_x = 0;
}
else
{
if(cs_ew_newprim && (p1->cnt_prim == 0x16))
p0->cnt_prim = 1;
else
p0->cnt_prim = (!cs_ew_newprim) ? 0 : (p1->cnt_prim + cs_ew_newprim);
p0->cnt_span_x = ((p1->cnt_span_x == 0x8) || (p1->cnt_prim == 0x4)) ? 0 :
(p1->cnt_span_x + (!p1->ew_stall_x));
p0->cnt_span_attr = ((p1->cnt_span_attr == 0x8) || (p1->cnt_prim == 0xd)) ? 0 :
(p1->cnt_span_attr + (!p1->ew_stall_attr));
p0->end_ew = end_prim_y && (p1->cnt_span_x == 8);
p0->span_valid_x = (p1->cnt_prim == 0x4) || (p1->span_valid_x &&
!(end_prim_y && (p1->cnt_span_x == 0x8)));
p0->span_valid_x_s = p1->span_valid_x;
p0->sc_field_s = (p1->cnt_prim == 0xc) ? p1->sc_field : p1->sc_field_s;
p0->odd_line_s = (p1->cnt_prim == 0xc) ? p1->odd_line : p1->odd_line_s;
}
/* general control */
span_valid = p1->span_valid_x && !p1->flush && (p1->xval != 0) &&
!p1->allxlmin && !p1->allxgemax &&
(!p1->sc_field_s || (p1->load_cmd_scissor & 1) || (p1->sc_field_s &&
!(((p1->y_cur & 0x4)>>2) ^ p1->odd_line_s)));
if(p1->reset_l)
p0->span_valid_s = span_valid;
p0->ew_cv_newspan = (p1->cnt_span_x == 8) && span_valid;
p0->ew_ep_startspan_m = p1->ew_cv_newspan;
p0->ew_ep_startspan = p1->ew_ep_startspan_m;
/* controls for X's */
ld_xmh = (p1->cnt_prim == 3) || (p1->cnt_prim == 4);
ld_dxmdy = (!(p1->cnt_span_x == 0x7) && !p1->ew_stall_x) || ld_xmh;
ld_dxhdy = ld_dxmdy;
/**** DEBUG ****/
p0->ld_dxhdy = ld_dxhdy;
ld_dxldy = (p1->cnt_prim == 2);
switch_xl = (p1->y_cur == p1->ym) && !(p1->cnt_span_x & 1) && !(p1->cnt_span_x & 8) && !ld_xmh;
end_x = (p1->cnt_span_x == 8);
/*
* EW X coordinate Calculation. Computes four X values, one for each
* subpixel Y increment, for the left and right sides of a span.
*/
ew_x_calc(p0, p1, ld_xmh, switch_xl, ld_dxmdy, ld_dxldy, ld_dxhdy, cs_ew_d);
/* controls for X scissor */
ld_xmajor = (p1->left_xmajor ^ p1->sign_dxhdy_xmajor) ? (p1->cnt_span_x == 0) : (p1->cnt_span_x == 6);
clear_allxgemax = (p1->cnt_span_x == 0);
p0->clear_xminor = p1->ew_stall_x ? p1->clear_xminor : (p1->cnt_span_x == 0);
/*
* Scissor X coordinates
*
*/
ew_scissor_x(p0, p1, ld_xmajor, clear_allxgemax);
/*
* Register control signals
*/
if(p1->reset_l == 0)
{
/* generate ew_stall_attr */
p0->ew_stall_attr0d = 0;
p0->ew_stall_attr1d = 0;
p0->ew_stall_attr2d = 0;
p0->ew_stall_attr3d = 0;
p0->ew_stall_attr4d = 0;
p0->ew_stall_attr5d = 0;
p0->ew_stall_attr6d = 0;
p0->ew_stall_attr7d = 0;
p0->ew_stall_attr8d = 0;
p0->ew_stall_attr = 0;
p0->sel_xval = 0;
}
else /* no reset_l */
{
p0->sel_xval = (p1->cnt_span_x & 0x8) == 0x8;
p0->wa_addr_m = p1->ew_stall_attr ? p1->wa_addr_m : p1->cnt_span_attr;
p0->wa_addr_s = p1->ew_stall_attr ? p1->wa_addr_s : p1->wa_addr_m;
p0->add_clear = p1->ew_stall_attr ? p1->add_clear :
!(p1->cnt_span_attr & 1);
p0->add32b = p1->ew_stall_attr ? p1->add32b : (p1->cnt_span_attr & 8) == 8;
p0->shuffle_m = p1->ew_stall_attr ? p1->shuffle_m : p1->cnt_span_attr & 1;
p0->shuffle = p1->shuffle_m;
p0->noshuffle_m = p1->ew_stall_attr ? p1->noshuffle_m : (p1->cnt_span_attr & 8) == 8;
p0->noshuffle = p1->noshuffle_m;
p0->sel_dydx_m = p1->ew_stall_attr ? p1->sel_dydx_m : p1->cnt_span_attr;
p0->sel_dydx_mm = p1->sel_dydx_m;
p0->sel_dydx_mmm = p1->sel_dydx_mm;
p0->sel_dydx = p1->sel_dydx_mmm;
p0->ld_x_frac_m = p1->cnt_span_x == 8;
p0->ld_x_frac_mm = p1->ld_x_frac_m;
p0->ld_x_frac_mmm = p1->ld_x_frac_mm;
p0->ld_x_frac = p1->ld_x_frac_mmm;
/* generate ew_stall_attr */
p0->ew_stall_attr0d = p1->ew_stall_x;
p0->ew_stall_attr1d = p1->ew_stall_attr0d;
p0->ew_stall_attr2d = p1->ew_stall_attr1d;
p0->ew_stall_attr3d = p1->ew_stall_attr2d;
p0->ew_stall_attr4d = p1->ew_stall_attr3d;
p0->ew_stall_attr5d = p1->ew_stall_attr4d;
p0->ew_stall_attr6d = p1->ew_stall_attr5d;
p0->ew_stall_attr7d = p1->ew_stall_attr6d;
p0->ew_stall_attr8d = p1->ew_stall_attr7d;
p0->ew_stall_attr = p1->ew_stall_attr7d;
}
/* ew offset control */
ld_a = (p1->cnt_prim == 0x5) || (p1->cnt_prim == 0x6) ||
(p1->cnt_prim == 0x7) || (p1->cnt_prim == 0x8) ||
(p1->cnt_prim == 0x9) || (p1->cnt_prim == 0xa) ||
(p1->cnt_prim == 0xb) || (p1->cnt_prim == 0xc) ||
(p1->cnt_prim == 0xd);
attr_adrs = ld_a ? (p1->cnt_prim - 0x5) & 0xf : p1->wa_addr_s;
de_adrs = (p1->cnt_prim - 0xe) & 0xf;
de_we = (p1->cnt_prim == 0xe) || (p1->cnt_prim == 0xf) ||
(p1->cnt_prim == 0x10) || (p1->cnt_prim == 0x11) ||
(p1->cnt_prim == 0x12) || (p1->cnt_prim == 0x13) ||
(p1->cnt_prim == 0x14) || (p1->cnt_prim == 0x15) ||
(p1->cnt_prim == 0x16);
attr_we = !((p1->cnt_prim == 0xe) || (p1->cnt_prim == 0xf)) &&
(!p1->ew_stall_attr);
/*
* EW Attribute Offset Data Path
*/
ew_reg_file( p0, p1, ld_a, attr_adrs, attr_we, de_adrs, de_we, cs_ew_d );
ew_attr_adder( p0, p1 );
ew_shuffle( p0, p1 );
/* select dx/dy attribute */
switch(p1->sel_dydx)
{
case 0: dx_att = p1->dxw; dy_att = p1->dyw; break;
case 1: dx_att = p1->dxl; dy_att = p1->dyl; break;
case 2: dx_att = p1->dxs; dy_att = p1->dys; break;
case 3: dx_att = p1->dxt; dy_att = p1->dyt; break;
case 4: dx_att = p1->dxr; dy_att = p1->dyr; break;
case 5: dx_att = p1->dxg; dy_att = p1->dyg; break;
case 6: dx_att = p1->dxb; dy_att = p1->dyb; break;
case 7: dx_att = p1->dxa; dy_att = p1->dya; break;
case 8:
default: dx_att = p1->dxz; dy_att = p1->dyz; break;
}
ew_offset(p0, p1, dx_att, dy_att);
/*
* Edge Walker Stall Logic
*/
p0->get_new_stall = ((p1->cnt_span_x & 8) == 8) && span_valid;
get_ew_stall = p1->get_new_stall || p1->ew_stall_x;
if(p1->reset_l == 0)
{
p0->ew_stall_x = 0;
p0->cnt_stall = 0;
p0->end_prim_state = 0;
}
else
{
larger_x = p1->left_xminor ? p1->x_sc_max : (p1->x_major_1d >> 8);
smaller_x = p1->left_xminor ? (p1->x_major_1d >> 8) : p1->x_sc_min;
num_pixel = SIGN_EXTEND_12(larger_x) - SIGN_EXTEND_12(smaller_x);
p0->ew_ms_length = num_pixel;
if(!p1->load_cmd_ewstall)
{
switch(p1->cycle_type)
{
case 0: num_shift = 0; comp_value = 8; break;
case 1: num_shift = 1; comp_value = 6; break;
case 2: num_shift = 2; comp_value = 7; break;
case 3:
comp_value = 7;
switch(p1->pixel_size)
{
case 0: num_shift = 4; break;
case 1: num_shift = 3; break;
case 2: num_shift = 2; break;
case 3: num_shift = 1; break;
}
break;
}
}
else
{
if(p1->load_cmd_tlut)
{
comp_value = 8;
num_shift = 0;
}
else
{
comp_value = 7;
switch(p1->texel_size)
{
case 0: num_shift = 4; break;
case 1: num_shift = 3; break;
case 2: num_shift = 2; break;
case 3: num_shift = 1; break;
}
}
}
if(!p1->load_cmd_ewstall && (p1->cycle_type == 1))
num_cycles_new = num_pixel << num_shift;
else
num_cycles_new = num_pixel >> num_shift;
num_cycles = p1->get_new_stall ? num_cycles_new : p1->cnt_stall;
p0->ew_stall_x = get_ew_stall ? (num_cycles > comp_value) : p1->ew_stall_x;
stall_decr = p1->get_new_stall ? (num_cycles_new - 1) : (p1->cnt_stall - 1);
if(p1->ew_stall_x || (p1->get_new_stall && (num_cycles != 0)))
p0->cnt_stall = stall_decr;
else if(num_cycles == 0)
p1->cnt_stall = 0;
else
p0->cnt_stall = stall_decr;
switch(p1->end_prim_state)
{
case 0:
if(p0->cs_ew_newprim) /* negedge signal */
p0->end_prim_state = 3;
else
p0->end_prim_state = 0;
break;
case 1:
if(p0->cs_ew_newprim) /* negedge signal */
p0->end_prim_state = 3;
else
p0->end_prim_state = 1;
break;
case 2:
if(p1->cnt_stall == 0)
p0->end_prim_state = 1;
else
p0->end_prim_state = 2;
break;
case 3:
/* newprim negedge signal */
if(p0->cs_ew_newprim && p1->end_ew && p1->span_valid_s && (num_cycles > 8))
p0->end_prim_state = 2;
else if(p0->cs_ew_newprim)
p0->end_prim_state = 3;
else if(!p1->span_valid_x_s)
p0->end_prim_state = 1;
else if(p1->end_ew && p1->span_valid_s && (num_cycles > 0))
p0->end_prim_state = 2;
else if(p1->end_ew && !p1->span_valid_s)
p0->end_prim_state = 1;
else if(p1->end_ew && (num_cycles == 0))
p0->end_prim_state = 1;
else
p0->end_prim_state = 3;
break;
}
p0->ew_cs_busy = (p0->end_prim_state >> 1) & 1;
}
/*
* Mem Span Address Calculation
*/
ew_ms_adrs(p0, p1);
}
/*
* Save clock
*/
p0->gclk_old = p1->gclk_old = save_clk;
}
/* ======================================================================
* ew_init(): main initialization routine for the edge walker unit.
*
* ======================================================================
*/
void
ew_init(ew_t *p0, ew_t *p1)
{
p0->gclk = p1->gclk = 0;
p0->gclk_old = p1->gclk_old = 0;
{
char *ew_dump_str;
if (ew_dump_str=getenv("EDGEWALK_DUMP")) {
if (!(sscanf(ew_dump_str,"%i",&ew_dump)))
ew_dump=0;
} else
ew_dump=0;
}
}