io_mem_dma.v 36.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
 /************************************************************************\
 *                                                                        *
 *               Copyright (C) 1994, Silicon Graphics, Inc.               *
 *                                                                        *
 *  These coded instructions, statements, and computer programs  contain  *
 *  unpublished  proprietary  information of Silicon Graphics, Inc., and  *
 *  are protected by Federal copyright  law.  They  may not be disclosed  *
 *  to  third  parties  or copied or duplicated in any form, in whole or  *
 *  in part, without the prior written consent of Silicon Graphics, Inc.  *
 *                                                                        *
 \************************************************************************/

// $Id: io_mem_dma.v,v 1.16 2003/06/06 01:59:41 whs Exp $


module io_mem_dma(clock, reset_l,
   cp0_enable, cbus_read_enable, cbus_write_enable, cbus_select, cbus_command,
   dma_start, dma_last, dma_grant, read_grant, cp0_cmd_select, cp0_address,
   cp0_read, cp0_write, set_broke, cmd_read, cmd_address, 
   dma_request, reg_read_request, mem_read_request, imem_select, mem_address,
   mem_read, mem_write, mem_mask, halt, single_step, dma_busy, cmd_ready,
   pc_write, pc_data, io_read_select, io_write_select, mem_load, io_load,
   interrupt,
	cp0_din, cp0_dout, cbus_din, cbus_dout);

`include "sp.vh"

input clock;											// system clock
input reset_l;											// system reset_l

input cp0_enable;										// enable cp0 tristate drivers
input cbus_read_enable;								// enable cbus read mux
input cbus_write_enable;							// enable cbus tristate drivers
input [1:0] cbus_select;		// cbus data select
input [2:0] cbus_command;	// cbus data type
input dma_start;										// dbus DMA data start
input dma_last;										// dbus DMA data end
input dma_grant;										// SP DMA request granted
input read_grant;										// SP read request granted
input cp0_cmd_select;								// sp selected
input [SP_REG_ADDRESS_SIZE-1:0] cp0_address;	// DMA register address
input cp0_read;										// enable register read
input cp0_write;										// enable register write
input set_broke;										// status from RSP
input cmd_read;										// DP DMEM read request
input [SP_MEM_ADDRESS_SIZE-1:0] cmd_address;	// DP DMEM read address

output dma_request;									// sp DMA request
output reg_read_request;							// reg read request
output mem_read_request;							// dmem/imem read request
output imem_select;									// enable IMEM read/write
output [SP_MEM_ADDRESS_SIZE-1:0] mem_address; // DMEM/IMEM address
output mem_read;										// read DMA in progress
output mem_write;										// write DMA in progress
output [SP_MEM_MASK_SIZE-1:0] mem_mask;		// DMA read/write byte mask
output halt;											// status to RSP
output single_step;									// status to RSP
output dma_busy;										// status to RSP
output cmd_ready;										// DP CMDBUF read ready
output pc_write;										// program counter write enable
output [SP_PC_SIZE-1:0] pc_data;					// program counter write data bus
output io_read_select;								// select high/low data
output io_write_select;								// select IO write data
output mem_load;										// load cbus reg from imem/dmem
output io_load;										// load cbus reg from cbus
output interrupt;										// rsp generated interrupt

input [CP0_DATA_SIZE-1:0] cp0_din;				// CP0 data bus
output [CP0_DATA_SIZE-1:0] cp0_dout;				// CP0 data bus
input [31:0] cbus_din;			// IO data bus
output [31:0] cbus_dout;			// IO data bus

mem_dma mem_dma(clock, reset_l,
   cp0_enable, cbus_read_enable, cbus_write_enable, cbus_select, cbus_command,
   dma_start, dma_last, dma_grant, read_grant, cp0_cmd_select, cp0_address,
   cp0_read, cp0_write, set_broke, cmd_read, cmd_address, 
   dma_request, reg_read_request, mem_read_request, imem_select, mem_address,
   mem_read, mem_write, mem_mask, halt, single_step, dma_busy, cmd_ready,
   pc_write, pc_data, io_read_select, io_write_select, mem_load, io_load,
   interrupt,
	cp0_din, cp0_dout, cbus_din, cbus_dout);

endmodule

module mem_dma(clock, reset_l,
   cp0_enable, cbus_read_enable, cbus_write_enable, cbus_select, cbus_command,
   dma_start, dma_last, dma_grant, read_grant, cp0_cmd_select, cp0_address,
   cp0_read, cp0_write, set_broke, cmd_read, cmd_address, 
   dma_request, reg_read_request, mem_read_request, imem_select, mem_address,
   mem_read, mem_write, mem_mask, halt, single_step, dma_busy, cmd_ready,
   pc_write, pc_data, io_read_select, io_write_select, mem_load, io_load,
   interrupt, 
   cp0_data_in, cp0_data, cbus_data_in, cbus_data);

`include "sp.vh"

input clock;											// system clock
input reset_l;											// system reset_l

input cp0_enable;										// enable cp0 tristate drivers
input cbus_read_enable;								// enable cbus read mux
input cbus_write_enable;							// enable cbus tristate drivers
input [1:0] cbus_select;		// cbus data select
input [2:0] cbus_command;	// cbus data type
input dma_start;										// dbus DMA data start
input dma_last;										// dbus DMA data end
input dma_grant;										// SP DMA request granted
input read_grant;										// SP read request granted
input cp0_cmd_select;								// sp selected
input [SP_REG_ADDRESS_SIZE-1:0] cp0_address;	// DMA register address
input cp0_read;										// enable register read
input cp0_write;										// enable register write
input set_broke;										// status from RSP
input cmd_read;										// DP DMEM read request
input [SP_MEM_ADDRESS_SIZE-1:0] cmd_address;	// DP DMEM read address

output dma_request;									// sp DMA request
output reg_read_request;							// reg read request
output mem_read_request;							// dmem/imem read request
output imem_select;									// enable IMEM read/write
output [SP_MEM_ADDRESS_SIZE-1:0] mem_address; // DMEM/IMEM address
output mem_read;										// read DMA in progress
output mem_write;										// write DMA in progress
output [SP_MEM_MASK_SIZE-1:0] mem_mask;		// DMA read/write byte mask
output halt;											// status to RSP
output single_step;									// status to RSP
output dma_busy;										// status to RSP
output cmd_ready;										// DP CMDBUF read ready
output pc_write;										// program counter write enable
output [SP_PC_SIZE-1:0] pc_data;					// program counter write data bus
output io_read_select;								// select high/low data
output io_write_select;								// select IO write data
output mem_load;										// load cbus reg from imem/dmem
output io_load;										// load cbus reg from cbus
output interrupt;										// rsp generated interrupt

input [CP0_DATA_SIZE-1:0] cp0_data_in;				// CP0 data bus
output [CP0_DATA_SIZE-1:0] cp0_data;				// CP0 data bus
input [31:0] cbus_data_in;			// IO data bus
output [31:0] cbus_data;			// IO data bus


// input/output registers
reg dma_request;
reg reg_read_request;
reg mem_read_request;
reg imem_select;
reg [SP_MEM_ADDRESS_SIZE-1:0] mem_address;
reg mem_read;
reg mem_write;
reg [SP_MEM_MASK_SIZE-1:0] mem_mask;
reg halt;
reg single_step;
reg dma_busy;
reg pc_write;
reg io_read_select;
reg io_write_select;
reg mem_load;
reg interrupt;
reg [2:0] cbus_command_reg;
reg [31:0] cbus_data_reg;

// output pseudo registers
reg [CP0_DATA_SIZE-1:0] cp0_data_out;

// SP access registers
reg master_imem_select;
reg [SP_MEM_ADDRESS_SIZE-1:0] master_address;
reg [SP_DMA_SLAVE_ADDRESS_SIZE-1:0] slave_address;
reg [SP_DMA_SKIP_SIZE-1:0] skip;
reg [SP_DMA_COUNT_SIZE-1:0] count;
reg [SP_DMA_LENGTH_SIZE-1:0] length;
reg read;
reg [SP_MEM_ADDRESS_SIZE+1:0] io_read_address;
reg [SP_MEM_ADDRESS_SIZE+1:0] io_write_address;
reg reg_select;
reg dma_full;
reg io_read_full;
reg io_write_full;
reg broke;
reg interrupt_on_break;

// request registers
reg [SP_MEM_ADDRESS_SIZE-1:0] master_address_sum;
reg [SP_DMA_SLAVE_ADDRESS_SIZE-1:0] slave_address_sum;
reg [SP_DMA_LENGTH_SIZE-1:0] length_sum;
reg [SP_DMA_COUNT_SIZE-1:0] count_sum;
reg [SP_DMA_SKIP_SIZE-1:0] skip_pl;
reg [SP_DMA_LENGTH_SIZE-1:0] length_pl;
reg read_pl;
reg [DMA_LENGTH_SIZE-1:0] transfer_length;
reg imem_select_pl;
reg dma_imem_select_pl;
reg [SP_MEM_ADDRESS_SIZE-1:0] dma_mem_address_pl;
reg dma_read_pl;
reg dma_valid;
reg io_valid;
reg cpu_semaphore_read;
reg cpu_semaphore_write;
reg cpu_semaphore;
reg semaphore;

// dma registers
reg [SP_MEM_ADDRESS_SIZE-1:0] mem_address_sum;
reg mem_busy;

reg [SP_SIGNAL_SIZE-1:0] signal;

// bus state machine
reg [1:0] bus_state;
parameter
   STATE_BUS_IDLE			= 0,
   STATE_BUS_REG_WRITE	= 1,
   STATE_BUS_REG_READ	= 2,
   STATE_BUS_MEM_READ	= 3;


// request state machine
reg [1:0] request_state;
parameter
   STATE_REQUEST_IDLE	= 0,
   STATE_REQUEST_IO		= 1,
   STATE_REQUEST_DMA		= 2,
   STATE_REQUEST_NEXT	= 3;


// DMA state machine
reg [2:0] dma_state;
parameter
   STATE_DMA_IDLE				= 0,
   STATE_WRITE_PRIMARY		= 1,
   STATE_WRITE_SECONDARY	= 2,
   STATE_READ_PRIMARY		= 3,
   STATE_READ_SECONDARY		= 4;


// CMD state machine
reg cmd_state;
parameter
   STATE_CMD_PRIMARY		= 0,
   STATE_CMD_SECONDARY	= 1;


// IO state machine
reg[2:0] io_state;
parameter
   STATE_IO_IDLE				= 0,
   STATE_IO_READ_1			= 1,
   STATE_IO_READ_2			= 2,
   STATE_IO_READ_3			= 3,
   STATE_IO_IMEM_WRITE_1	= 4,
   STATE_IO_IMEM_WRITE_2	= 5,
   STATE_IO_IMEM_WRITE_3	= 6,
   STATE_IO_WRITE				= 7;

// cbus tristate drivers (removed)
wire mem_cp0_enable = cp0_enable & ~cp0_cmd_select;
//cp0_driver cp0_driver_0(cp0_data_out, mem_cp0_enable, cp0_data);
wire [31:0] cp0_data = mem_cp0_enable ? cp0_data_out : {32{1'b0}};

wire [31:0] cbus_data = cbus_write_enable ? cbus_data_reg : 32'b0;

//cbus_driver cbus_driver_0(cbus_data_reg, cbus_write_enable, cbus_data);

// Program counter write data
assign pc_data = cbus_data_reg >> SP_PC_OFFSET;

// DP CMDBUF DMA ready logic
assign cmd_ready = ~io_valid & ~mem_busy;

// IO select logic
wire [SP_MEM_ADDRESS_SIZE+1:0] next_io_address;
wire [BUS_ID_SIZE-1:0] next_id_select;
wire [SP_DEVICE_SIZE-1:0] next_device_select;
wire next_sp_select;
wire next_mem_select;
wire next_cp0_select;
wire next_reg_select;
wire next_write_command;
wire next_read_command;
assign next_io_address = cbus_data_reg >> IO_OFFSET_SIZE;
assign next_id_select = cbus_data_reg >> BUS_ID_OFFSET;
assign next_device_select = cbus_data_reg >> SP_DEVICE_OFFSET;
assign next_sp_select = next_id_select == `CBUS_SP;
assign next_mem_select = next_device_select == SP_DEVICE_MEM;
assign next_cp0_select = next_device_select == SP_DEVICE_CP0;
assign next_reg_select = next_device_select == SP_DEVICE_REG;
assign next_write_command
  = (cbus_command_reg == `CBUS_CMD_WRITE) && next_sp_select;
assign next_read_command
  = (cbus_command_reg == `CBUS_CMD_READ) && next_sp_select;

assign io_load = next_write_command && next_mem_select;

wire [31:0] read_status;
assign read_status = {signal, interrupt_on_break, single_step,
  io_write_full, dma_full, dma_busy, broke, halt};

// DMA register read
always @(cp0_address or imem_select_pl or master_address_sum
 or slave_address_sum or skip_pl or count_sum or length_sum
 or read_status or dma_full or dma_busy or semaphore or cpu_semaphore_write)
	case (cp0_address)
		SP_DMA_MASTER_ADDRESS :
		  cp0_data_out = {imem_select_pl, master_address_sum, 3'b0};
		SP_DMA_SLAVE_ADDRESS :
		  cp0_data_out = {slave_address_sum, 3'b0};
		SP_DMA_READ_LENGTH, SP_DMA_WRITE_LENGTH :
		   cp0_data_out = {skip_pl, 3'b0, count_sum, length_sum, 3'b0};
		SP_DMA_STATUS :
			cp0_data_out = read_status;
		SP_DMA_FULL :
			cp0_data_out = dma_full;
		SP_DMA_BUSY :
			cp0_data_out = dma_busy;
		SP_DMA_SEMAPHORE :
			cp0_data_out = semaphore && !cpu_semaphore_write;
		default :
		   cp0_data_out = 'bx;
		endcase


always @(posedge clock) begin : cbus_block
	reg [DMA_ADDRESS_SIZE-1:0] address;
	reg [DMA_LENGTH_SIZE-1:0] length;
	reg [DMA_DELAY_SIZE-1:0] delay;
	reg [31:0] cbus_data_out;

	address = {slave_address_sum, 3'b000};
	length = {transfer_length, 3'b111};
	delay = read_pl ? 2 : -5;

	case (cbus_select)
		`CBUS_SEL_ADDR :
		  cbus_data_out = address;
		`CBUS_SEL_LEN :
		  cbus_data_out = {`CBUS_DEV_SP, delay, read_pl, length};
		`CBUS_SEL_DATA :
			if (reg_select) case (io_read_address[SP_REG_ADDRESS_SIZE-1:0])
				SP_REG_PC :
				  cbus_data_out = cp0_data_in[SP_PC_SIZE-1:0] << SP_PC_OFFSET;
				default :
				   cbus_data_out = 'bx;
				endcase
			else case (io_read_address[SP_REG_ADDRESS_SIZE-1:0])
				SP_DMA_MASTER_ADDRESS :
				  cbus_data_out = {imem_select_pl, master_address_sum, 3'b0};
				SP_DMA_SLAVE_ADDRESS :
				  cbus_data_out = {slave_address_sum, 3'b0};
				SP_DMA_READ_LENGTH, SP_DMA_WRITE_LENGTH :
				  cbus_data_out = {skip_pl, 3'b0, count_sum, length_sum, 3'b0};
				SP_DMA_STATUS :
				  cbus_data_out = read_status;
				SP_DMA_FULL :
					cbus_data_out = dma_full;
				SP_DMA_BUSY :
					cbus_data_out = dma_busy;
				SP_DMA_SEMAPHORE :
					cbus_data_out = cpu_semaphore;
				default :
				   cbus_data_out = 'bx;
				endcase
		default :
		  cbus_data_out = 'bx;
		endcase

	cbus_command_reg <= cbus_command;
	cbus_data_reg <= cbus_read_enable ? cbus_data_in : cbus_data_out;
	end


always @(posedge clock) begin
	if (reset_l == 1'b0) begin
		// resetable registers
		dma_request <= LOW;
		reg_read_request <= LOW;
		mem_read_request <= LOW;
		mem_read <= LOW;
		mem_write <= LOW;
		mem_mask <= 0;
		halt <= HIGH;
		single_step <= LOW;
		dma_busy <= LOW;
		pc_write <= LOW;
		mem_load <= LOW;
		interrupt <= LOW;
		dma_full <= LOW;
		io_read_full <= LOW;
		io_write_full <= LOW;
		broke <= LOW;
		interrupt_on_break <= LOW;
		dma_valid <= LOW;
		io_valid <= LOW;
		mem_busy <= LOW;
		master_imem_select <= 0;
		master_address <= 0;
		slave_address <= 0;
		skip <= 0;
		count <= 0;
		length <= 0;
		read <= LOW;
		signal <= 0;

		bus_state <= STATE_BUS_IDLE;
		request_state <= STATE_REQUEST_IDLE;
		dma_state <= STATE_DMA_IDLE;
		cmd_state <= STATE_CMD_PRIMARY;
		io_state <= STATE_IO_IDLE;

		imem_select <= 0;
		mem_address <= 0;
		io_read_select <= LOW;
		io_write_select <= LOW;
		io_read_address <= 0;
		io_write_address <= 0;
		reg_select <= LOW;
		master_address_sum <= 0;
		slave_address_sum <= 0;
		length_sum <= 0;
		count_sum <= 0;
		skip_pl <= 0;
		length_pl <= 0;
		read_pl <= LOW;
		transfer_length <= 0;
		imem_select_pl <= 0;
		dma_imem_select_pl <= 0;
		dma_mem_address_pl <= 0;
		dma_read_pl <= LOW;
		mem_address_sum <= 0;
		cpu_semaphore_read <= LOW;
		cpu_semaphore_write <= LOW;
		cpu_semaphore <= LOW;
		semaphore <= LOW;
		end
	else begin : main_block
		reg [SP_REG_ADDRESS_SIZE-1:0] reg_address;
		reg [SP_REG_DATA_SIZE-1:0] reg_data;
		reg dma_reg_write;
		reg io_status_reg_write;
		reg cp0_status_reg_write;
		reg [SP_MEM_MASK_SIZE-1:0] next_mem_mask;
		reg next_pc_write;
		reg next_mem_write;
		reg next_mem_read;
		reg set_interrupt;
		reg clear_interrupt;
		reg set_single_step;
		reg clear_single_step;
		reg clear_broke;
		reg set_halt;
		reg clear_halt;
		reg set_interrupt_on_break;
		reg clear_interrupt_on_break;
		reg [SP_SIGNAL_SIZE-1:0] set_signal;
		reg [SP_SIGNAL_SIZE-1:0] clear_signal;
		reg next_reg_read_request;
		reg next_mem_read_request;
		reg next_mem_load;
		reg next_mem_busy;
		reg next_cpu_semaphore_read;
		reg next_cpu_semaphore_write;
		reg load_io_mem_address;
		reg load_dma_mem_address;
		reg load_count;
		reg decrement_count;
		reg [7:0] max_page;
		reg [SP_DMA_SLAVE_ADDRESS_SIZE-1:0] slave_address_adder0;
		reg [SP_DMA_SLAVE_ADDRESS_SIZE-1:0] slave_address_adder1;
		reg slave_address_adder2;
		reg [SP_MEM_ADDRESS_SIZE-1:0] master_address_adder0;
		reg [SP_MEM_ADDRESS_SIZE-1:0] master_address_adder1;
		reg [SP_DMA_LENGTH_SIZE-1:0] length_adder0;
		reg [SP_DMA_LENGTH_SIZE-1:0] length_adder1;
		reg next_dma_full;
		reg next_dma_busy;
		reg next_io_imem_select;
		reg [SP_MEM_ADDRESS_SIZE-1:0] next_io_mem_address;
		reg next_io_word_select;
		reg cp0_semaphore_select;
		reg cp0_semaphore_read;
		reg cp0_semaphore_write;

		next_mem_mask = 0;
		next_pc_write = LOW;
		next_mem_write = LOW;
		next_mem_read = LOW;
		next_reg_read_request = LOW;
		next_mem_read_request = LOW;
		next_mem_load = LOW;
		next_mem_busy = LOW;
		next_dma_full = dma_full;
		next_dma_busy = LOW;
		next_cpu_semaphore_read = LOW;
		next_cpu_semaphore_write = LOW;
		load_io_mem_address = LOW;
		load_dma_mem_address = LOW;
		load_count = LOW;
		decrement_count = LOW;
		set_interrupt = LOW;
		clear_interrupt = LOW;
		set_single_step = LOW;
		clear_single_step = LOW;
		clear_broke = LOW;
		set_halt = LOW;
		clear_halt = LOW;
		set_interrupt_on_break = LOW;
		clear_interrupt_on_break = LOW;
		set_signal = 0;
		clear_signal = 0;

		slave_address_adder0 = slave_address_sum;
		slave_address_adder1 = 0;
		slave_address_adder2 = LOW;
		master_address_adder0 = master_address_sum;
		master_address_adder1 = -1;
		length_adder0 = length_sum;
		length_adder1 = -1;

		{next_io_imem_select, next_io_mem_address, next_io_word_select} =
		  io_write_full ? io_write_address : io_read_address;

		reg_address = cp0_address;
		reg_data = cp0_data_in;
		dma_reg_write = LOW;
		io_status_reg_write = LOW;
		cp0_status_reg_write = LOW;

		// semaphore control
		cp0_semaphore_select = cp0_address == SP_DMA_SEMAPHORE;
		cp0_semaphore_read = cp0_read && cp0_semaphore_select;
		cp0_semaphore_write = cp0_write && cp0_semaphore_select;

		if (cp0_write && !cp0_cmd_select) begin
			if (cp0_address[SP_REG_ADDRESS_SIZE-1:0] == SP_DMA_STATUS) begin
				cp0_status_reg_write = HIGH;
				end
			else begin
				dma_reg_write = HIGH;
				end
			end

		// CBUS read/write
		case (bus_state)
			STATE_BUS_IDLE : begin
				if (next_write_command) begin
					// IO write

					io_write_address <= next_io_address;
					reg_select <= next_reg_select;

					case (HIGH) // 
						next_mem_select : begin
							if (io_write_full) begin
								// synopsys translate_off
								$display("Panic!  MEM write register overflow");
								//$finish;
								// synopsys translate_on
							end else
								io_write_full <= HIGH;
							bus_state <= STATE_BUS_IDLE;
							end

						next_cp0_select : begin
							bus_state <= STATE_BUS_REG_WRITE;
							end

						next_reg_select : begin
							next_pc_write =
							  next_io_address[SP_REG_ADDRESS_SIZE-1:0] == SP_REG_PC;
							bus_state <= STATE_BUS_REG_WRITE;
							end

						default : begin
							bus_state <= STATE_BUS_IDLE;
							end
						endcase
					end
				else if (next_read_command) begin
					// IO read

					io_read_address <= next_io_address;
					reg_select <= next_reg_select;

					case (HIGH) // 
						next_mem_select : begin
							if (io_read_full) begin
								// synopsys translate_off
								$display("Panic!  MEM read register overflow");
								//$finish;
								// synopsys translate_on
							end else
								io_read_full <= HIGH;
							bus_state <= STATE_BUS_MEM_READ;
							end

						next_cp0_select : begin
							next_cpu_semaphore_read =
							  next_io_address[SP_REG_ADDRESS_SIZE-1:0]
							  == SP_DMA_SEMAPHORE;
							next_reg_read_request = HIGH;
							bus_state <= STATE_BUS_REG_READ;
								end

						next_reg_select : begin
							next_reg_read_request = HIGH;
							bus_state <= STATE_BUS_REG_READ;
							end

						default : begin
							bus_state <= STATE_BUS_IDLE;
							end
						endcase
					end
				else begin
					bus_state <= STATE_BUS_IDLE;
					end
				end

			STATE_BUS_REG_WRITE : begin
				if (reg_select) begin
					end
				else begin
					case (io_write_address[SP_REG_ADDRESS_SIZE-1:0])
						SP_DMA_STATUS : begin
							io_status_reg_write = HIGH;
							end
						SP_DMA_SEMAPHORE : begin
							next_cpu_semaphore_write = HIGH;
							end
						SP_DMA_MASTER_ADDRESS, SP_DMA_SLAVE_ADDRESS,
						SP_DMA_READ_LENGTH, SP_DMA_WRITE_LENGTH : begin
							reg_address = io_write_address;
							reg_data = cbus_data_reg;
							dma_reg_write = HIGH;
							end
						endcase
					end
				bus_state <= STATE_BUS_IDLE;
				end

			STATE_BUS_REG_READ : begin
				if (read_grant) begin
					bus_state <= STATE_BUS_IDLE;
					end
				else begin
					next_reg_read_request = HIGH;
					bus_state <= STATE_BUS_REG_READ;
					end
				end

			STATE_BUS_MEM_READ : begin
				if (io_read_full) begin
					// wait for read data
					bus_state <= STATE_BUS_MEM_READ;
					end
				else if (read_grant) begin
					// read is complete
					bus_state <= STATE_BUS_IDLE;
					end
				else begin
					// begin or continue IO read request
					next_mem_read_request = HIGH;
					bus_state <= STATE_BUS_MEM_READ;
					end
				end

			default : begin
				bus_state <= 'bx;
				end
			endcase

		if (dma_reg_write) begin
			// write to a DMA register
			case (reg_address)
				SP_DMA_MASTER_ADDRESS : begin
					if (dma_full) begin
						// synopsys translate_off
						// set error bit
						$display("Panic!  DMA register double buffer overflow");
						//$finish;
						// synopsys translate_on
					end else begin
						// write the SP master address register
						{master_imem_select, master_address} <= reg_data >> DMA_OFFSET_SIZE;
					end
				end

				SP_DMA_SLAVE_ADDRESS : begin
					if (dma_full) begin
						// synopsys translate_off
						// set error bit
						$display("Panic!  DMA register double buffer overflow");
						//$finish;
						// synopsys translate_on
					end else begin
						// write the RDRAM slave address register
						slave_address <= reg_data >> DMA_OFFSET_SIZE;
					end
				end

				SP_DMA_READ_LENGTH : begin
					if (dma_full) begin
						// synopsys translate_off
						// set error bit
						$display("Panic!  DMA register double buffer overflow");
						//$finish;
						// synopsys translate_on
					end else begin
						// write skip, length, and count register
						// and begin a DMA read
						next_dma_full = HIGH;
						length <= reg_data >> DMA_OFFSET_SIZE;
						count <= reg_data
						  	>> (DMA_OFFSET_SIZE + SP_DMA_LENGTH_SIZE);
						skip <= reg_data
						  	>> (DMA_OFFSET_SIZE*2 + SP_DMA_LENGTH_SIZE
						  	+ SP_DMA_COUNT_SIZE);
						read <= HIGH;
					end
				end

				SP_DMA_WRITE_LENGTH : begin
					if (dma_full) begin
						// synopsys translate_off
						// set error bit
						$display("Panic!  DMA register double buffer overflow");
						//$finish;
						// synopsys translate_on
					end else begin
						// write skip, length, and count register
						// and begin a DMA write
						next_dma_full = HIGH;
						length <= reg_data >> DMA_OFFSET_SIZE;
						count <= reg_data
						  	>> (DMA_OFFSET_SIZE + SP_DMA_LENGTH_SIZE);
						skip <= reg_data
						  	>> (DMA_OFFSET_SIZE*2 + SP_DMA_LENGTH_SIZE
						  + SP_DMA_COUNT_SIZE);
						read <= LOW;
					end
				end

				endcase
			end

		if (io_status_reg_write) begin : io_status_block
			reg next_set_interrupt_on_break, next_clear_interrupt_on_break;
			reg [SP_SIGNAL_SIZE-1:0] next_set_signal, next_clear_signal;
			reg next_set_single_step, next_clear_single_step;
			reg next_set_interrupt, next_clear_interrupt;
			reg next_clear_broke;
			reg next_set_halt, next_clear_halt;

			{
			  next_set_signal[7], next_clear_signal[7],
			  next_set_signal[6], next_clear_signal[6],
			  next_set_signal[5], next_clear_signal[5],
			  next_set_signal[4], next_clear_signal[4],
			  next_set_signal[3], next_clear_signal[3],
			  next_set_signal[2], next_clear_signal[2],
			  next_set_signal[1], next_clear_signal[1],
			  next_set_signal[0], next_clear_signal[0],
			  next_set_interrupt_on_break, next_clear_interrupt_on_break,
			  next_set_single_step, next_clear_single_step,
			  next_set_interrupt, next_clear_interrupt,
			  next_clear_broke,
			  next_set_halt, next_clear_halt
			} = cbus_data_reg;

			set_interrupt_on_break
			  = next_set_interrupt_on_break | set_interrupt_on_break;
			clear_interrupt_on_break
			  = next_clear_interrupt_on_break | clear_interrupt_on_break;
			set_signal = next_set_signal | set_signal;
			clear_signal = next_clear_signal | clear_signal;
			set_single_step = next_set_single_step | set_single_step;
			clear_single_step = next_clear_single_step | clear_single_step;
			set_interrupt = next_set_interrupt | set_interrupt;
			clear_interrupt = next_clear_interrupt | clear_interrupt;
			clear_broke = next_clear_broke | clear_broke;
			set_halt = next_set_halt | set_halt;
			clear_halt = next_clear_halt | clear_halt;
			end

		if (cp0_status_reg_write) begin : cp0_status_block
			reg next_set_interrupt_on_break, next_clear_interrupt_on_break;
			reg [SP_SIGNAL_SIZE-1:0] next_set_signal, next_clear_signal;
			reg next_set_single_step, next_clear_single_step;
			reg next_set_interrupt, next_clear_interrupt;
			reg next_clear_broke;
			reg next_set_halt, next_clear_halt;

			{
			  next_set_signal[7], next_clear_signal[7],
			  next_set_signal[6], next_clear_signal[6],
			  next_set_signal[5], next_clear_signal[5],
			  next_set_signal[4], next_clear_signal[4],
			  next_set_signal[3], next_clear_signal[3],
			  next_set_signal[2], next_clear_signal[2],
			  next_set_signal[1], next_clear_signal[1],
			  next_set_signal[0], next_clear_signal[0],
			  next_set_interrupt_on_break, next_clear_interrupt_on_break,
			  next_set_single_step, next_clear_single_step,
			  next_set_interrupt, next_clear_interrupt,
			  next_clear_broke,
			  next_set_halt, next_clear_halt
			} = cp0_data_in;

			set_interrupt_on_break
			  = next_set_interrupt_on_break | set_interrupt_on_break;
			clear_interrupt_on_break
			  = next_clear_interrupt_on_break | clear_interrupt_on_break;
			set_signal = next_set_signal | set_signal;
			clear_signal = next_clear_signal | clear_signal;
			set_single_step = next_set_single_step | set_single_step;
			clear_single_step = next_clear_single_step | clear_single_step;
			set_interrupt = next_set_interrupt | set_interrupt;
			clear_interrupt = next_clear_interrupt | clear_interrupt;
			clear_broke = next_clear_broke | clear_broke;
			set_halt = next_set_halt | set_halt;
			clear_halt = next_clear_halt | clear_halt;
			end


		// caluculate the length of the DMA, assuming a 2K byte page boundary
		// and a 16 cycle block boundary
		// Note: transfer_length = # bytes to transfer - 1
		//       max_page = # bytes left on RDRAM page - 1
		//       SP_DMA_MAX_BLOCK = max number of DMA clocks - 1
		max_page = ~slave_address_sum;
		if (length_sum > SP_DMA_MAX_BLOCK) begin
			if (SP_DMA_MAX_BLOCK > max_page) begin
				transfer_length <= max_page;
				end
			else begin
				transfer_length <= SP_DMA_MAX_BLOCK;
				end
			end
		else begin
			if (length_sum > max_page) begin
				transfer_length <= max_page;
				end
			else begin
				transfer_length <= length_sum;
				end
			end


		// DMA request state machine
		case (request_state)
			STATE_REQUEST_IDLE : begin
				if (io_read_full || io_write_full) begin
					io_valid <= HIGH;
					request_state <= STATE_REQUEST_IO;
					end
				else if (dma_full) begin
					slave_address_adder0 = slave_address;
					slave_address_adder1 = 0;
					slave_address_adder2 = LOW;
					master_address_adder0 = master_address;
					master_address_adder1 = -1;
					length_adder0 = length;
					length_adder1 = -1;
					load_count = HIGH;
					next_dma_full = LOW;
					next_dma_busy = HIGH;

					skip_pl <= skip;
					length_pl <= length;
					read_pl <= read;
					imem_select_pl <= master_imem_select;

					dma_request <= HIGH;
					request_state <= STATE_REQUEST_DMA;
					end
				else begin
					request_state <= STATE_REQUEST_IDLE;
					end
				end

			STATE_REQUEST_IO : begin
				// wait for IO to complete
				if (io_valid) begin
					request_state <= STATE_REQUEST_IO;
					end
				else begin
					request_state <= STATE_REQUEST_IDLE;
					end
				end

			STATE_REQUEST_DMA : begin
				// request the cbus if the slave device is ready
				// Note: we will be in this state for at lease two cycles, so
				//       transfer_length will be valid before it is needed
				next_dma_busy = HIGH;
		
				// wait for the cbus to be granted
				if (dma_grant) begin
					// calculate the start of the next DMA
					slave_address_adder0 = slave_address_sum;
					slave_address_adder1 = transfer_length;
					slave_address_adder2 = HIGH;
					master_address_adder0 = master_address_sum;
					master_address_adder1 = transfer_length;
					length_adder0 = length_sum;
					length_adder1 = transfer_length;
					next_mem_busy = HIGH;

					dma_imem_select_pl <= imem_select_pl;
					dma_mem_address_pl <= master_address_sum;
					dma_read_pl <= read_pl;
					dma_valid <= HIGH;

					dma_request <= LOW;
					request_state <= STATE_REQUEST_NEXT;
					end
				else begin
					dma_request <= HIGH;
					request_state <= STATE_REQUEST_DMA;
					end
				end

			STATE_REQUEST_NEXT : begin
				if (~&length_sum) begin
					// generate a new DMA request which continues the current span
					next_dma_busy = HIGH;
					request_state <= STATE_REQUEST_DMA;
					end
				else if (count_sum > 0) begin
					// generate a new DMA request for the next span
					next_dma_busy = HIGH;
	
					// advance the DMA address
					slave_address_adder0 = slave_address_sum;
					slave_address_adder1 = skip_pl;
					slave_address_adder2 = LOW;
					length_adder0 = length_pl;
					length_adder1 = -1;
					decrement_count = HIGH;
	
					request_state <= STATE_REQUEST_DMA;
					end
				else if (io_read_full || io_write_full) begin
					io_valid <= HIGH;
					request_state <= STATE_REQUEST_IO;
					end
				else if (dma_full) begin
					slave_address_adder0 = slave_address;
					slave_address_adder1 = 0;
					slave_address_adder2 = LOW;
					master_address_adder0 = master_address;
					master_address_adder1 = -1;
					length_adder0 = length;
					length_adder1 = -1;
					load_count = HIGH;
					next_dma_full = LOW;
					next_dma_busy = HIGH;

					skip_pl <= skip;
					length_pl <= length;
					read_pl <= read;
					imem_select_pl <= master_imem_select;

					dma_request <= HIGH;
					request_state <= STATE_REQUEST_DMA;
					end
				else begin
					request_state <= STATE_REQUEST_IDLE;
					end
				end

			default : begin
				request_state <= 'bx;

				// synopsys translate_off
				$display("Panic! Unknown MSP request state - <%d>", request_state);
				//$finish;
				// synopsys translate_on
				end
			endcase


		// DMA transfer state machine
		case (dma_state)
			STATE_DMA_IDLE : begin
				if (dma_valid) begin
					next_mem_busy = HIGH;
					if (dma_start) begin
						load_dma_mem_address = HIGH;
						dma_valid <= LOW;
						if (dma_read_pl) begin
							next_mem_write = HIGH;
							next_mem_mask = -1;
							if (dma_last) begin
								if (dma_valid) begin
									next_dma_busy = HIGH;
									end
								dma_state <= STATE_DMA_IDLE;
								end
							else begin
								next_dma_busy = HIGH;
								dma_state <= STATE_READ_SECONDARY;
								end
							end
						else begin
							next_mem_read = HIGH;
							if (dma_last) begin
								if (dma_valid) begin
									next_dma_busy = HIGH;
									end
								dma_state <= STATE_DMA_IDLE;
								end
							else begin
								next_dma_busy = HIGH;
								dma_state <= STATE_WRITE_SECONDARY;
								end
							end
						end
					else begin
						next_dma_busy = HIGH;
						dma_state <= STATE_DMA_IDLE;
						end
					end
				else begin
					dma_state <= STATE_DMA_IDLE;
					end
				end

			STATE_WRITE_PRIMARY : begin
				next_mem_read = HIGH;
				next_mem_busy = HIGH;

				if (dma_last) begin
					if (dma_valid) begin
						next_dma_busy = HIGH;
						end
					dma_state <= STATE_DMA_IDLE;
					end
				else begin
					next_dma_busy = HIGH;
					dma_state <= STATE_WRITE_SECONDARY;
					end
				end

			STATE_WRITE_SECONDARY : begin
				if (imem_select) begin
					next_mem_read = HIGH;
					end

				if (dma_last) begin
					if (dma_valid) begin
						next_dma_busy = HIGH;
						next_mem_busy = HIGH;
						end
					dma_state <= STATE_DMA_IDLE;
					end
				else begin
					next_dma_busy = HIGH;
					next_mem_busy = HIGH;
					dma_state <= STATE_WRITE_PRIMARY;
					end
				end

			STATE_READ_PRIMARY : begin
				next_mem_write = HIGH;
				next_mem_mask = -1;
				next_mem_busy = HIGH;

				if (dma_last) begin
					if (dma_valid) begin
						next_dma_busy = HIGH;
						end
					dma_state <= STATE_DMA_IDLE;
					end
				else begin
					next_dma_busy = HIGH;
					dma_state <= STATE_READ_SECONDARY;
					end
				end

			STATE_READ_SECONDARY : begin
				next_mem_mask = -1;

				if (imem_select) begin
					next_mem_write = HIGH;
					end
				
				if (dma_last) begin
					if (dma_valid) begin
						next_dma_busy = HIGH;
						next_mem_busy = HIGH;
						end
					dma_state <= STATE_DMA_IDLE;
					end
				else begin
					next_dma_busy = HIGH;
					next_mem_busy = HIGH;
					dma_state <= STATE_READ_PRIMARY;
					end
				end

			default: begin
				dma_state <= 'bx;
				// synopsys translate_off
				$display("Panic! Unknown MSP DMA state - <%d>", dma_state);
				//$finish;
				// synopsys translate_on
				end
			endcase


		// CMDBUF state machine
		case (cmd_state)
			STATE_CMD_PRIMARY : begin
				if (cmd_read && cmd_ready) begin
					// read from DMEM into CMDBUF
					next_mem_read = HIGH;
					cmd_state <= STATE_CMD_SECONDARY;
					end
				else begin
					cmd_state <= STATE_CMD_PRIMARY;
					end
				end

			STATE_CMD_SECONDARY : begin
				cmd_state <= STATE_CMD_PRIMARY;
				end

			default : begin
				cmd_state <= 'bx;
				end
			endcase


		// IO MEM read/write state machine
		// An IO read may occur during an IO write, but not vice-versa.
		// Therefore, if we always give IO write preference, we will
		// always execute in-order without preemption.  Also, a write
		// will not occur during a write nor will a read occur during
		// a read.

		case (io_state)
			STATE_IO_IDLE : begin
				if (io_valid && !mem_busy) begin
					load_io_mem_address = HIGH;
					if (io_write_full) begin
						if (next_io_imem_select) begin
							next_mem_read = HIGH;
							io_state <= STATE_IO_IMEM_WRITE_1;
							end
						else begin
							next_mem_write = HIGH;
							if (next_io_word_select) begin
								next_mem_mask = 2'b01;
								end
							else begin
								next_mem_mask = 2'b10;
								end
							io_state <= STATE_IO_WRITE;
							end
						end
					else begin
						next_mem_read = HIGH;
						io_state <= STATE_IO_READ_1;
						end
					end
				else begin
					io_state <= STATE_IO_IDLE;
					end
				end

			STATE_IO_READ_1 : begin
				io_valid <= LOW;
				io_read_full <= LOW;
				io_state <= STATE_IO_READ_2;
				end

			STATE_IO_READ_2 : begin
				io_state <= STATE_IO_READ_3;
				end

			STATE_IO_READ_3 : begin
				next_mem_load = HIGH;
				io_state <= STATE_IO_IDLE;
				end

			STATE_IO_IMEM_WRITE_1 : begin
				io_state <= STATE_IO_IMEM_WRITE_2;
				end

			STATE_IO_IMEM_WRITE_2 : begin
				io_state <= STATE_IO_IMEM_WRITE_3;
				end

			STATE_IO_IMEM_WRITE_3 : begin
				load_io_mem_address = HIGH;
				next_mem_write = HIGH;
				io_state <= STATE_IO_WRITE;
				end

			STATE_IO_WRITE : begin
				io_valid <= LOW;
				io_write_full <= LOW;
				io_state <= STATE_IO_IDLE;
				end

			default : begin
				io_state <= 'bx;
				end
			endcase

		pc_write <= next_pc_write;
		mem_read <= next_mem_read;
		mem_write <= next_mem_write;
		mem_load <= next_mem_load;
		dma_full <= next_dma_full;
		dma_busy <= next_dma_busy || next_dma_full;
		mem_busy <= next_mem_busy;
		cpu_semaphore_read <= next_cpu_semaphore_read;
		cpu_semaphore_write <= next_cpu_semaphore_write;

		semaphore <= cp0_semaphore_read || cpu_semaphore_read
		  || (!cp0_semaphore_write && !cpu_semaphore_write && semaphore);

		if (cpu_semaphore_read) begin
			cpu_semaphore <= (semaphore && !cp0_semaphore_write)
			  || cp0_semaphore_read;
			end

		case ({set_broke, clear_broke})
			2'b10 : begin
				broke <= HIGH;
				set_halt = HIGH;
				if (interrupt_on_break) begin
					set_interrupt = HIGH;
					end
				end
			2'b01 : broke <= LOW;
			endcase

		case ({set_halt, clear_halt})
			2'b10 : halt <= HIGH;
			2'b01 : halt <= LOW;
			endcase

		case ({set_interrupt, clear_interrupt})
			2'b10 : interrupt <= HIGH;
			2'b01 : interrupt <= LOW;
			endcase

		case ({set_single_step, clear_single_step})
			2'b10 : single_step <= HIGH;
			2'b01 : single_step <= LOW;
			endcase

		begin : signal_block
			integer i;
			for (i = 0; i < SP_SIGNAL_SIZE; i = i + 1) begin
				case ({set_signal[i], clear_signal[i]})
					2'b10 : signal[i] <= HIGH;
					2'b01 : signal[i] <= LOW;
					endcase
				end
			end

		case ({set_interrupt_on_break, clear_interrupt_on_break})
			2'b10 : interrupt_on_break <= HIGH;
			2'b01 : interrupt_on_break <= LOW;
			endcase

		reg_read_request <= next_reg_read_request;
		mem_read_request <= next_mem_read_request;

		master_address_sum <= master_address_adder0+master_address_adder1+1;

		slave_address_sum <= slave_address_adder0
		  + slave_address_adder1
		  + slave_address_adder2;
	

		length_sum <= length_adder0 + ~length_adder1;

		mem_address <= mem_address_sum;

		if (load_count) begin
			count_sum <= count;
			end
		else if (decrement_count) begin
			count_sum <= count_sum - 1;
			end
	
		// dma adders
		if (cmd_read && cmd_ready) begin
			imem_select <= LOW;
			mem_address_sum <= cmd_address;
			end
		else if (load_io_mem_address) begin
			io_write_select <= HIGH;
			io_read_select <= next_io_word_select;
			imem_select <= next_io_imem_select;
			mem_address_sum <= next_io_mem_address;
			end
		else if (load_dma_mem_address) begin
			io_write_select <= LOW;
			imem_select <= dma_imem_select_pl;
			mem_address_sum <= dma_mem_address_pl;
			end
		else begin
			mem_address_sum <= mem_address_sum + 1;
			end
	
		// dmem write mask
		mem_mask <= next_mem_mask;
		end
	end

endmodule