ms_si.v
58.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
/************************************************************************\
* *
* Copyright (C) 1994, Silicon Graphics, Inc. *
* *
* These coded instructions, statements, and computer programs contain *
* unpublished proprietary information of Silicon Graphics, Inc., and *
* are protected by Federal copyright law. They may not be disclosed *
* to third parties or copied or duplicated in any form, in whole or *
* in part, without the prior written consent of Silicon Graphics, Inc. *
* *
\************************************************************************/
// $Id: ms_si.v,v 1.13 2003/01/24 23:07:37 berndt Exp $
// spanbuf interface for memspan
// this module is a framework around the spanbuf register file
// (which are two banks of 16 word x 72b memory, single ported)
//
// handles read/write data paths of rdram access, with fillcolor
// and writemask insertion as necessary;
// contains split spanbuf address iterator for the rdram access.
// also handles loads and copies data alignment;
// handles c/z read data supply, write data consume, to/from rdp blend
// it arbitrates rdp c/z r/w collisions and generates "stallrw" for
// such incidents. also, it generates "stallphase" for cases of these
// rdp read/write c/z events occuring during a rdram phase (rbphase=1).
// adding alpha compare and copy compare/bit shift enables
// split addressing for rdram access
// also add dither? maybe in ms_rp.v (rdp pipeline) where twophase also
// buffer ops so that load will work without trashing context:
// note also: for safety, count stage should also define validphase,
// and this not clobbered by load_en in rdctxt.....!
// define rbwe0, rbwe1;
// much later: diags (also affect ms_sm).
// must stall load of cbufw, zbufw as needed; therefore those reg's are
// stallable (feeders). **add gclock notion**
//NOTE: each 16b source value has lsb rep'd into lower 2b of 18b field in sbuf
//therefore ebus is concatenation of 2lsb's from each 18b field = 8bits.
//span/scanline proceeds L-R across each 144b spanbuf entry...
//NOTE: for pipe sync'ing, the LOAD data is provided AT SAME TIME AS
//read RDP depth data normally provided (tbd).
//and COPY data received ONE CLOCK BEFORE write RDP *depth* would have been
//copy: z writes, use cwmask. (tbd).
//load: z reads. (tbd). maybe need znum16?
//bytemask latest 10-12-94: left-most byte pertains to first 8byte word,
// and lsbit of this byte pertains to msbyte of data word, indep of xdec
//mods 10-13: rotate cwmask/zwmask for alignment with start word of span
//mods 10-20: revise for tristate driver outside module, shared io reg's
// and add input "load_dve" early version of load_dv for mux usage
// this changes timing of copy data, to ONE CLOCK BEFORE depth supplied
// 11-2-94: hack rbwe
// 11-8 stallrwen state machine now fn of stopgclock, fix deadlocked stalls
// 11-9 add transp latches, ldcbuf144, ldzbuf144
// 11-10 fix loadsend for case of ptr = 7; mod transp w: clk, r: !clk
// add extphaser; add inputs rdpcwptrsbc for transp
// 11-11 add delay to addr0/1 to spanbuf, fix hold time vs. we0/1....
// 11-12 fix phasing of rb mux data io, and add split address generation
// inc zrptr at loadsend mux by simple rewiring of mux inputs, loadtlut.
// add inports finishd1/2; killwe0/1a/b; add rdpzrptrd[2:0] for loadsend;
// 11-15 add wrcopymode for cwmask usage in z planes mode, nxtwmaskc, rotate;
// 11-16 derive copywen from copyoutd, compares....to ms_rp.v for cwmask.
// and input alphacompen, ccalpha, wrcsize8/16_buf/output copywen;
// 11-17 add inputs rbc/zwptrn for ldc/zbufwen for hold time (generate in ms_rp
// as half phase earlier, negedge clock registers, add addrxi toggling.
// kill selrbcw/rbzw activity for selcwmask/selzwmask high, for rbaddress.
// 11-20 mod ccalpha to blendalpha for copymode; add dithalpha/dithalphaen in;
// 11-21 add stallwptr in, for killing rdpwe's;
// 11-22 reswizzle zwmask output;
// 11-28 mod right major cwmask swizzle; to do: zwmask;
// 11-29 mod rbaddr init to not overflow at prep time
// 12-1 mod stallrwen to hold if rbphase; add hold time to din/addr0,1
// 12-2 another mod to above, to hold after transition out of idle state; 3 way case
// also delay conflict resolution state machine until after stallptr;
// 12-6 mod phaseinvert to fix read c/z bugs right major;
// also add observation wires: din128, dout128, transp_c/zbufr128;
// also, create rdprcolorin, OR in 3b color !rmwenreadc for no readc case;
// 12-7 revise transp_c/zbufw for synopsys timing loop;
// 12-8 fix fields for 16b color reads; fix setting covg=7 for 8bI extraction;
// revise all 6 transparent latches for synopsys; (6x144b)
// 12-13 fix 32b RGB insertion fields;
// 12-14 mod copymode 8b alphacompare to mask if value is zero;
// 12-19 undo above, to allow arbitrary ref compare; add latches (mike)
// 12-27 cleanup of clock domains and add reset of regs startd/addrxdec/addrxi
// 1-3 mod rdprdepthd to force zread to blender to hex 3fff0 if !enzcompare;
// add inport rmwenreadz;
// 1-4 add inport test_mode1 to kill rdram we into spanbuf;
// 1-9 add wire extfn/instantiate extphaser negedge dff;
// 1-10 fix ordering of 4-way spanbuf c/z r/w conflict state machine;
// 1-24 test version for elimination of half cycle stopgclock path to ndff
// by changing 8/10b latches to be clock low transparent;
// 1-25 add delay to outputs ldc/zbufwen, c/zbufwin for sim skew reasons;
// 2-2 add inport start4ms, use to qualify extfn;
// SECOND TAPEOUT MODS
// 3-30-95 add new ports rp => si: limitcw, limitzw (timing paths);
// remove stallwptr port;
// replace ndff with ms_latch_l.v (timing path); add extphaserd;
// 4-4-94 add extphasere for delay (latch timing margin)
// 6-9-95 mod ms_latch8n/10n instantiations for hold time fix port changes;
`timescale 1ns/1ns
module ms_si(clock, start_gclk, reset_l, stopgclock,
rbphase, start, dma_read_en, rdpwcolor, rdpwdepth,
dout, selrbcr, selrbzr, selrbcw, selrbzw,
rmwenreadc, rmwenreadz, rmwrgbmode, dbus_din, ebus_din,
rdpreqcr, rdpreqzr, rdpreqcw, rdpreqzw, enrbwe, selcwmask, selzwmask,
wrfillcolor, rbcrptr, rbzrptr, rbcwptr, rbzwptr, rdcxi, rdzxi, rdxdec,
wrcxi, wrzxi, wrxdec, rmwcsize8, rmwcsize16, rmwcsize32,
wrfillmode, cwmask, wrcopymode_buf, rdpcwptrn, rdpzwptrn,
zwmask, wrcopymode, wrcsize8_buf, wrcsize16_buf,
rdpcrptrsb, rdpzrptrsb, rdpcwptrsbc, rdpzwptrsbc, rdprpixc, rdprpixz,
rdpwpixc, rdpwpixz, rmwcopymode, rmwloadtlut, load_dve,
finishd1, finishd2, alphacompen, blendalpha, dithalpha, dithalphaen,
stallptr, test_mode1, start4ms, limitcw, limitzw,
copy_load,
dbus_dout, ebus_dout, din, dataload,
rdprcolor, rdprdepthd, addr0, addr1, we0, we1,
stallphase, stallrw, copywen);
`include "ms.vh"
input clock; // system clock
input start_gclk;
input reset_l; // system reset
input stopgclock;
input rbphase; //rdram memory usage phase
input start;
//add tristate stuff, from jeff
//input data_out_en;
input dma_read_en;
input [63:0] dbus_din;
input [7:0] ebus_din;
input [26:0] rdpwcolor; //delayed write color from ms_rp
input [17:0] rdpwdepth; //delayed write depth from ms_rp
input [143:0] dout; //data from spanbuf
input selrbcr; //address select/init
input selrbzr;
input selrbcw;
input selrbzw;
input rmwrgbmode;
input rmwenreadc;
input rmwenreadz;
input rdpreqcr; //actual rdp r/w requests to rf
input rdpreqzr;
input rdpreqcw;
input rdpreqzw;
input enrbwe; //enable we for rdram writes
input selcwmask;
input selzwmask;
input [31:0] wrfillcolor;
input [3:0] rbcrptr;
input [3:0] rbzrptr;
input [3:0] rbcwptr;
input [3:0] rbzwptr;
input [25:0] rdcxi; //want rdcxi[3:3] for wordsel
input [25:0] rdzxi;
input rdxdec;
input [25:0] wrcxi;
input [25:0] wrzxi;
input wrxdec;
input rmwcsize8;
input rmwcsize16;
input rmwcsize32;
input wrfillmode;
input [63:0] cwmask;
input [31:0] zwmask; //replicate in pairs for z
input [6:0] rdpcrptrsb; //byte ptrs for rdp r/w
input [6:0] rdpzrptrsb; //valid for spanbuf rd, or
input [6:0] rdpcwptrsbc; //write insert; as well as
input [6:0] rdpzwptrsbc; //rd extract and spanbuf wr
input [6:0] rdpcwptrn;
input [6:0] rdpzwptrn;
input rdprpixc; //validcycle & validphase at
input rdprpixz; //time r/w c/z spanbuf in pipe
input rdpwpixc; //also fn of enread/enwrite c/z?
input rdpwpixz;
input rmwcopymode; //copy mode opcode
input rmwloadtlut; //if load, tlut mode invoked
input load_dve;
input finishd2, finishd1;
input wrcopymode;
input alphacompen;
input [7:0] blendalpha, dithalpha;
input wrcopymode_buf, wrcsize8_buf, wrcsize16_buf;
input dithalphaen;
input stallptr;
input test_mode1;
input start4ms;
input limitcw, limitzw;
input [63:0] copy_load; //tristate bus load/copy data
output [63:0] dbus_dout;
output [7:0] ebus_dout;
output [143:0] din; //data to spanbuf
output [26:0] rdprcolor; //read color to blend unit
output [17:0] rdprdepthd; //read depth to blend unit
output [3:0] addr0; //address bank 0
output [3:0] addr1; //address bank 1
output we0; //write enable bank 0
output we1; //write enable bank 1
output stallphase; //stall for rdp r/w at rbphase
output stallrw; //stall at rdp r/w c/z conflict
output [63:0] dataload; //load data to tmem driver
output [7:0] copywen;
// input/output registers
// clock domain
reg [71:0] rbdataio; //input rdram read word
// gclock domain
reg [26:0] rdprcolorin;
reg [17:0] rdprdepth; //depth out from extraction
reg [17:0] rdprdepthd; //depth out to blend, delayed
// internal registers
// clock domain
reg extphase; //state of rdram phase start
//reg extphaser;
reg extphaserd;
reg phaseinvert; //odd word initialization
reg [3:0] rbaddr0;
reg [3:0] rbaddr1;
reg encw;
reg enzw;
reg encr;
reg enzr;
reg stallrwen;
reg killwe0a, killwe1a;
reg killwe0b, killwe1b;
reg startd, addrxdec, addrxi;
reg [143:0] rdpdataw_d; //XXX
//RDP SPANBUF ACCESS CONFLICT RESOLUTION STATE MACHINE
reg [3:0] statec;
parameter
state_firstwr =4'h1,
state_wrz =4'h2,
state_rdc =4'h4,
state_rdz =4'h8;
// synopsys translate_off
`ifdef MSPAN_MON
reg [7:0] firstwr_arcs;
reg [3:0] wrz_arcs;
reg [2:0] rdc_arcs;
`endif
// synopsys translate_on
// gclock domain
reg [63:0] loadsave;
reg [63:0] loadsend;
reg [63:0] copybuf;
reg [2:0] rdpzrptrd;
reg [63:0] copyout;
reg [63:0] copyoutd;
reg [7:0] copywen;
// pseudo registers
reg [26:0] rdprcolor; //color out to blend
reg [31:0] zwmask3;
reg [3:0] addr0;
reg [3:0] addr1;
reg [3:0] rdpaddr;
reg stallrw;
reg stallphase;
wire rbwe0;
wire rbwe1;
reg rdpwe;
reg ldcbufr;
reg ldzbufr;
reg [143:0] rdpdataw;
reg [35:0] cpixw;
reg [15:0] ldcbufw;
reg [15:0] ldzbufw;
reg [15:0] ldcbufwen;
reg [15:0] ldzbufwen;
reg [143:0] cbufwin;
reg [143:0] zbufwin;
reg [63:0] loadsavein;
reg [0:63] cwmask3;
reg [63:0] cwmask2;
reg [35:0] cpixr;
reg [31:0] zwmask2;
reg [7:0] ebus_dout;
reg [63:0] dbus_dout;
reg [63:0] dataload, copydin;
reg [6:0] rdpcrptr, rdpzrptr, rdpcwptr, rdpzwptr;
wire extphasere;
wire extfn; //added for negedge dff input assign
//reg [143:0] ldcbuf144, ldzbuf144;
// transparent latches got replaced;
wire [143:0] transp_doutd; //ld=rbphase in=dout input: spanbuf read to rbwrite
wire [71:0] transp_rb_hi; //ld=!extphase in=rbdataio hi
wire [71:0] transp_rb_lo; //ld=extphase in=rbdataio low
wire [143:0] transp_cbufw; //ld=ldcbufwen in=cpixw
wire [143:0] transp_zbufw; //ld=ldzbufwen in=zpixw //use for copy also
wire [143:0] transp_cbufr; //ld=ldcbufr in=dout
wire [143:0] transp_zbufr; //ld=ldzbufr in=dout //used for load, too
//wires
//the following wires and assigns are just for ease of observability,
//by allowing copy data of bytes versus rdram data of nytes...
wire [63:0] rbdataio64;
wire [127:0] transp_doutd128, transp_cbufw128, transp_zbufw128;
wire [127:0] din128, dout128, transp_zbufr128, transp_cbufr128;
wire extphaser = extfn;
assign rbdataio64 = {rbdataio[71:56], rbdataio[53:38],
rbdataio[35:20], rbdataio[17:2]};
assign transp_doutd128 = {transp_doutd[143:128], transp_doutd[125:110], transp_doutd[107:92], transp_doutd[89:74], transp_doutd[71:56], transp_doutd[53:38], transp_doutd[35:20], transp_doutd[17:2]};
assign transp_cbufw128 = {transp_cbufw[143:128], transp_cbufw[125:110], transp_cbufw[107:92], transp_cbufw[89:74], transp_cbufw[71:56], transp_cbufw[53:38], transp_cbufw[35:20], transp_cbufw[17:2]};
assign transp_zbufw128 = {transp_zbufw[143:128], transp_zbufw[125:110], transp_zbufw[107:92], transp_zbufw[89:74], transp_zbufw[71:56], transp_zbufw[53:38], transp_zbufw[35:20], transp_zbufw[17:2]};
assign din128 = {din[143:128], din[125:110], din[107:92], din[89:74], din[71:56], din[53:38], din[35:20], din[17:2]};
assign dout128 = {dout[143:128], dout[125:110], dout[107:92], dout[89:74], dout[71:56], dout[53:38], dout[35:20], dout[17:2]};
assign transp_cbufr128 = {transp_cbufr[143:128], transp_cbufr[125:110], transp_cbufr[107:92], transp_cbufr[89:74], transp_cbufr[71:56], transp_cbufr[53:38], transp_cbufr[35:20], transp_cbufr[17:2]};
assign transp_zbufr128 = {transp_zbufr[143:128], transp_zbufr[125:110], transp_zbufr[107:92], transp_zbufr[89:74], transp_zbufr[71:56], transp_zbufr[53:38], transp_zbufr[35:20], transp_zbufr[17:2]};
//BUS IO CONNECTIVITY
always @(loadsend) begin
dataload <= loadsend;
copydin <= loadsend;
end
always @(rdprcolorin or rmwenreadc) begin
rdprcolor <= rdprcolorin | {24'b0, {3{!rmwenreadc}}};
end
always @(rdpcrptrsb or rdpzrptrsb or rdpcwptrsbc or rdpzwptrsbc) begin
rdpcrptr <= rdpcrptrsb;
rdpzrptr <= rdpzrptrsb;
rdpcwptr <= rdpcwptrsbc;
rdpzwptr <= rdpzwptrsbc;
end
//WRITEMASK BYTE ROTATE for starting span address
always @(cwmask or wrcxi or wrzxi or wrcopymode) begin
case ((wrcxi[5:3] & {3{~wrcopymode}} |
wrzxi[5:3] & {3{wrcopymode}}))
3'h0: cwmask2 <= {cwmask[63:0]};
3'h1: cwmask2 <= {cwmask[55:0], cwmask[63:56]};
3'h2: cwmask2 <= {cwmask[47:0], cwmask[63:48]};
3'h3: cwmask2 <= {cwmask[39:0], cwmask[63:40]};
3'h4: cwmask2 <= {cwmask[31:0], cwmask[63:32]};
3'h5: cwmask2 <= {cwmask[23:0], cwmask[63:24]};
3'h6: cwmask2 <= {cwmask[15:0], cwmask[63:16]};
3'h7: cwmask2 <= {cwmask[7:0], cwmask[63:8]};
endcase
end
always @(cwmask2 or wrxdec) begin
if (!wrxdec) begin
cwmask3 <= {cwmask2[7:0], cwmask2[15:8], cwmask2[23:16], cwmask2[31:24],
cwmask2[39:32], cwmask2[47:40], cwmask2[55:48], cwmask2[63:56]};
end
else begin
cwmask3 <= {cwmask2[55:48], cwmask2[47:40], cwmask2[39:32],
cwmask2[31:24], cwmask2[23:16], cwmask2[15:8], cwmask2[7:0],
cwmask2[63:56]};
end
end
always @(zwmask or wrxdec) begin
if (wrxdec) begin
zwmask3 <= {zwmask[3:0], zwmask[7:4],
zwmask[11:8], zwmask[15:12], zwmask[19:16], zwmask[23:20],
zwmask[27:24], zwmask[31:28]};
end
else begin
zwmask3 <= zwmask;
end
end
always @(zwmask3 or wrzxi or wrxdec) begin
case (wrzxi[5:3] ^ {3{wrxdec}})
3'h0: zwmask2 <= {zwmask3[31:0]};
3'h1: zwmask2 <= {zwmask3[27:0], zwmask3[31:28]};
3'h2: zwmask2 <= {zwmask3[23:0], zwmask3[31:24]};
3'h3: zwmask2 <= {zwmask3[19:0], zwmask3[31:20]};
3'h4: zwmask2 <= {zwmask3[15:0], zwmask3[31:16]};
3'h5: zwmask2 <= {zwmask3[11:0], zwmask3[31:12]};
3'h6: zwmask2 <= {zwmask3[7:0], zwmask3[31:8]};
3'h7: zwmask2 <= {zwmask3[3:0], zwmask3[31:4]};
endcase
end
//C PIXEL EXTRACTION (to register rdprcolorin) part I
//32b case: only take 8883 out of 8 10 8 10 fields
//first extract 36b field into cpixr, then do formatting into rdprcolorin
always @(rmwcsize32 or rmwcsize16 or rdpcrptr or transp_cbufr) begin
if (rmwcsize32) begin
if (rdpcrptr[3:2] == 'h0) begin
cpixr <= transp_cbufr[143:108];
end
else if (rdpcrptr[3:2] == 'h1) begin
cpixr <= transp_cbufr[107:72];
end
else if (rdpcrptr[3:2] == 'h2) begin
cpixr <= transp_cbufr[71:36];
end
else if (rdpcrptr[3:2] == 'h3) begin
cpixr <= transp_cbufr[35:0];
end
else begin
cpixr <= 36'bx;
end
end
//16b IA case: only take 8 3 out of 8 10 and rep into 8 8 8 3
//extract 8 10 into cpixr[17:0], then format into rdprcolorin later
//16b RGB case: similar except formatting step at end
else if (rmwcsize16) begin
if (rdpcrptr[3:1] == 'h0) begin
cpixr <= transp_cbufr[143:126];
end
else if (rdpcrptr[3:1] == 'h1) begin
cpixr <= {transp_cbufr[125:108]};
end
else if (rdpcrptr[3:1] == 'h2) begin
cpixr <= {transp_cbufr[107:90]};
end
else if (rdpcrptr[3:1] == 'h3) begin
cpixr <= {transp_cbufr[89:72]};
end
else if (rdpcrptr[3:1] == 'h4) begin
cpixr <= {transp_cbufr[71:54]};
end
else if (rdpcrptr[3:1] == 'h5) begin
cpixr <= {transp_cbufr[53:36]};
end
else if (rdpcrptr[3:1] == 'h6) begin
cpixr <= {transp_cbufr[35:18]};
end
else if (rdpcrptr[3:1] == 'h7) begin
cpixr <= {transp_cbufr[17:0]};
end
else begin
cpixr <= 36'bx;
end
end
else begin
if (rdpcrptr[3:0] == 'h0) begin
cpixr <= transp_cbufr[143:136];
end
else if (rdpcrptr[3:0] == 'h1) begin
cpixr <= transp_cbufr[135:128];
end
else if (rdpcrptr[3:0] == 'h2) begin
cpixr <= transp_cbufr[125:118];
end
else if (rdpcrptr[3:0] == 'h3) begin
cpixr <= transp_cbufr[117:110];
end
else if (rdpcrptr[3:0] == 'h4) begin
cpixr <= transp_cbufr[107:100];
end
else if (rdpcrptr[3:0] == 'h5) begin
cpixr <= transp_cbufr[99:92];
end
else if (rdpcrptr[3:0] == 'h6) begin
cpixr <= transp_cbufr[89:82];
end
else if (rdpcrptr[3:0] == 'h7) begin
cpixr <= transp_cbufr[81:74];
end
else if (rdpcrptr[3:0] == 'h8) begin
cpixr <= transp_cbufr[71:64];
end
else if (rdpcrptr[3:0] == 'h9) begin
cpixr <= transp_cbufr[63:56];
end
else if (rdpcrptr[3:0] == 'ha) begin
cpixr <= transp_cbufr[53:46];
end
else if (rdpcrptr[3:0] == 'hb) begin
cpixr <= transp_cbufr[45:38];
end
else if (rdpcrptr[3:0] == 'hc) begin
cpixr <= transp_cbufr[35:28];
end
else if (rdpcrptr[3:0] == 'hd) begin
cpixr <= transp_cbufr[27:20];
end
else if (rdpcrptr[3:0] == 'he) begin
cpixr <= transp_cbufr[17:10];
end
else if (rdpcrptr[3:0] == 'hf) begin
cpixr <= transp_cbufr[9:2];
end
else begin
cpixr <= 36'bx;
end
end
end
// SPANBUF ADDRESS MUX
//******handle load of tex load buffer later**********
always @(rdpreqcr or rdpreqzr or rdpreqcw or rdpreqzw or
rdpcwptr or rdpzwptr or rdpcrptr or rdpzrptr or
transp_cbufw or transp_zbufw or
encw or enzw or encr or enzr or limitcw or limitzw) begin
if (rdpreqcw & encw) begin
rdpaddr <= {1'b0, rdpcwptr[6:4]};
rdpwe <= !limitcw;
ldcbufr <= low;
ldzbufr <= low;
rdpdataw <= transp_cbufw;
end
else if (rdpreqzw & enzw) begin
rdpaddr <= {1'b1, rdpzwptr[6:4]};
rdpwe <= !limitzw;
ldcbufr <= low;
ldzbufr <= low;
rdpdataw <= transp_zbufw;
end
else if (rdpreqcr & encr) begin
rdpaddr <= {1'b0, rdpcrptr[6:4]};
rdpwe <= low;
ldcbufr <= high;
ldzbufr <= low;
rdpdataw <= 144'bx;
end
else if (rdpreqzr & enzr) begin
rdpaddr <= {1'b1, rdpzrptr[6:4]};
rdpwe <= low;
ldcbufr <= low;
ldzbufr <= high;
rdpdataw <= 144'bx;
end
else begin
rdpaddr <= 4'bx;
rdpwe <= low;
ldcbufr <= low;
ldzbufr <= low;
rdpdataw <= 144'bx;
end
end
//transparent latches, here we come:
//SPANBUF DATA, WE MUXING
assign rbwe0 = enrbwe & !((killwe0a || killwe0b) & finishd2 & rbphase) & !test_mode1;
assign rbwe1 = enrbwe & !((killwe1a || killwe1b) & finishd2 & rbphase) & !test_mode1;
assign din = rbphase? rdpdataw_d : {transp_rb_hi, transp_rb_lo};
assign we0 = rbphase? rbwe0 : rdpwe;
assign we1 = rbphase? rbwe1 : rdpwe;
ms_latch144 transp_doutd_lat (.d_out(transp_doutd), .clk(clock), .g(rbphase),
.d_in(dout));
ms_latch72 transp_rb_lo_lat (.d_out(transp_rb_lo), .clk(clock), .g(~extphaserd),
.d_in(rbdataio[71:0]));
ms_latch72 transp_rb_hi_lat (.d_out(transp_rb_hi), .clk(clock), .g(extphaserd),
.d_in(rbdataio[71:0]));
ms_latch8n transp_zbufw_lat8_15(.d_out(transp_zbufw[143:136]), .clk(clock),
.g(ldzbufwen[15]), .d_in(zbufwin[143:136]));
ms_latch10n transp_zbufw_lat10_14(.d_out(transp_zbufw[135:126]), .clk(clock),
.g(ldzbufwen[14]), .d_in(zbufwin[135:126]));
ms_latch8n transp_zbufw_lat8_13(.d_out(transp_zbufw[125:118]), .clk(clock),
.g(ldzbufwen[13]), .d_in(zbufwin[125:118]));
ms_latch10n transp_zbufw_lat10_12(.d_out(transp_zbufw[117:108]), .clk(clock),
.g(ldzbufwen[12]), .d_in(zbufwin[117:108]));
ms_latch8n transp_zbufw_lat8_11(.d_out(transp_zbufw[107:100]), .clk(clock),
.g(ldzbufwen[11]), .d_in(zbufwin[107:100]));
ms_latch10n transp_zbufw_lat10_10(.d_out(transp_zbufw[99:90]), .clk(clock),
.g(ldzbufwen[10]), .d_in(zbufwin[99:90]));
ms_latch8n transp_zbufw_lat8_9(.d_out(transp_zbufw[89:82]), .clk(clock),
.g(ldzbufwen[9]), .d_in(zbufwin[89:82]));
ms_latch10n transp_zbufw_lat10_8(.d_out(transp_zbufw[81:72]), .clk(clock),
.g(ldzbufwen[8]), .d_in(zbufwin[81:72]));
ms_latch8n transp_zbufw_lat8_7(.d_out(transp_zbufw[71:64]), .clk(clock),
.g(ldzbufwen[7]), .d_in(zbufwin[71:64]));
ms_latch10n transp_zbufw_lat10_6(.d_out(transp_zbufw[63:54]), .clk(clock),
.g(ldzbufwen[6]), .d_in(zbufwin[63:54]));
ms_latch8n transp_zbufw_lat8_5(.d_out(transp_zbufw[53:46]), .clk(clock),
.g(ldzbufwen[5]), .d_in(zbufwin[53:46]));
ms_latch10n transp_zbufw_lat10_4(.d_out(transp_zbufw[45:36]), .clk(clock),
.g(ldzbufwen[4]), .d_in(zbufwin[45:36]));
ms_latch8n transp_zbufw_lat8_3(.d_out(transp_zbufw[35:28]), .clk(clock),
.g(ldzbufwen[3]), .d_in(zbufwin[35:28]));
ms_latch10n transp_zbufw_lat10_2(.d_out(transp_zbufw[27:18]), .clk(clock),
.g(ldzbufwen[2]), .d_in(zbufwin[27:18]));
ms_latch8n transp_zbufw_lat8_1(.d_out(transp_zbufw[17:10]), .clk(clock),
.g(ldzbufwen[1]), .d_in(zbufwin[17:10]));
ms_latch10n transp_zbufw_lat10_0(.d_out(transp_zbufw[9:0]), .clk(clock),
.g(ldzbufwen[0]), .d_in(zbufwin[9:0]));
ms_latch8n transp_cbufw_lat8_15(.d_out(transp_cbufw[143:136]),
.clk(clock),
.g(ldcbufwen[15]), .d_in(cbufwin[143:136]));
ms_latch10n transp_cbufw_lat10_14(.d_out(transp_cbufw[135:126]),
.clk(clock),
.g(ldcbufwen[14]), .d_in(cbufwin[135:126]));
ms_latch8n transp_cbufw_lat8_13(.d_out(transp_cbufw[125:118]),
.clk(clock),
.g(ldcbufwen[13]), .d_in(cbufwin[125:118]));
ms_latch10n transp_cbufw_lat10_12(.d_out(transp_cbufw[117:108]),
.clk(clock),
.g(ldcbufwen[12]), .d_in(cbufwin[117:108]));
ms_latch8n transp_cbufw_lat8_11(.d_out(transp_cbufw[107:100]),
.clk(clock),
.g(ldcbufwen[11]), .d_in(cbufwin[107:100]));
ms_latch10n transp_cbufw_lat10_10(.d_out(transp_cbufw[99:90]),
.clk(clock),
.g(ldcbufwen[10]), .d_in(cbufwin[99:90]));
ms_latch8n transp_cbufw_lat8_9(.d_out(transp_cbufw[89:82]),
.clk(clock),
.g(ldcbufwen[9]), .d_in(cbufwin[89:82]));
ms_latch10n transp_cbufw_lat10_8(.d_out(transp_cbufw[81:72]),
.clk(clock),
.g(ldcbufwen[8]), .d_in(cbufwin[81:72]));
ms_latch8n transp_cbufw_lat8_7(.d_out(transp_cbufw[71:64]),
.clk(clock),
.g(ldcbufwen[7]), .d_in(cbufwin[71:64]));
ms_latch10n transp_cbufw_lat10_6(.d_out(transp_cbufw[63:54]),
.clk(clock),
.g(ldcbufwen[6]), .d_in(cbufwin[63:54]));
ms_latch8n transp_cbufw_lat8_5(.d_out(transp_cbufw[53:46]),
.clk(clock),
.g(ldcbufwen[5]), .d_in(cbufwin[53:46]));
ms_latch10n transp_cbufw_lat10_4(.d_out(transp_cbufw[45:36]),
.clk(clock),
.g(ldcbufwen[4]), .d_in(cbufwin[45:36]));
ms_latch8n transp_cbufw_lat8_3(.d_out(transp_cbufw[35:28]),
.clk(clock),
.g(ldcbufwen[3]), .d_in(cbufwin[35:28]));
ms_latch10n transp_cbufw_lat10_2(.d_out(transp_cbufw[27:18]),
.clk(clock),
.g(ldcbufwen[2]), .d_in(cbufwin[27:18]));
ms_latch8n transp_cbufw_lat8_1(.d_out(transp_cbufw[17:10]),
.clk(clock),
.g(ldcbufwen[1]), .d_in(cbufwin[17:10]));
ms_latch10n transp_cbufw_lat10_0(.d_out(transp_cbufw[9:0]),
.clk(clock),
.g(ldcbufwen[0]), .d_in(cbufwin[9:0]));
//problem: want neg clk/gclk below; must work for conflict case
// (e.g. ldc/zbuf one clk only, gclk hi stuck) as well as normal stall cases
// (e.g. ldc/zbuf multiclock, gclk stuck hi). OK to use clk?
ms_latch144 transp_cbufr_lat (.d_out(transp_cbufr), .clk(clock), .g(ldcbufr),
.d_in(dout));
ms_latch144 transp_zbufr_lat (.d_out(transp_zbufr), .clk(clock), .g(ldzbufr),
.d_in(dout));
//DETECT CASES OF ACCESS CONFLICTS
always @(rdpreqcr or rdpreqzr or rdpreqcw or rdpreqzw or stallrwen) begin
if ((rdpreqcr & rdpreqzr) || (rdpreqcw & rdpreqzw) ||
((rdpreqcr || rdpreqzr) & (rdpreqcw || rdpreqzw))) begin
stallrw <= stallrwen;
end
else begin
stallrw <= low;
end
end
//detect case of wrong phase for rdp r/w access to spanbuf
always @(rdpreqcr or rdpreqzr or rdpreqcw or rdpreqzw or rbphase) begin
if (rbphase & (rdpreqcr || rdpreqzr || rdpreqcw || rdpreqzw)) begin
stallphase <= high;
end
else begin
stallphase <= low;
end
end
always @(rbphase or rbaddr0 or rbaddr1 or rdpaddr) begin
if (rbphase) begin
addr0 <= rbaddr0;
addr1 <= rbaddr1;
end
else if (!rbphase) begin
addr0 <= rdpaddr;
addr1 <= rdpaddr;
end
else begin
addr0 <= 4'bx;
addr1 <= 4'bx;
end
end
//LOAD data path input mux: cut down to 64b to save gates; add mux in rd path
always @(transp_zbufr or rdpzrptr) begin
if (!rdpzrptr[3]) begin
loadsavein <= {transp_zbufr[143:128], transp_zbufr[125:110],
transp_zbufr[107:92], transp_zbufr[89:74]};
end
else begin
loadsavein <= {transp_zbufr[71:56], transp_zbufr[53:38],
transp_zbufr[35:20], transp_zbufr[17:2]};
end
end
//Z PIXEL INSERTION (to transparent latch transp_zbufw)
//note: this delay is in critical path thru latch into reg write...tsu=3ns
always @(rmwcopymode or rdpzwptrn or rdpwdepth or rdpwpixz or ldzbufw or
copyout or rmwcsize8 or rmwcsize16) begin
if (!rmwcopymode) begin
zbufwin <= {8{rdpwdepth}};
if (rdpzwptrn[3:1] == 'h0) begin
ldzbufw <= 'hc000;
end
else if (rdpzwptrn[3:1] == 'h1) begin
ldzbufw <= 'h3000;
end
else if (rdpzwptrn[3:1] == 'h2) begin
ldzbufw <= 'h0c00;
end
else if (rdpzwptrn[3:1] == 'h3) begin
ldzbufw <= 'h0300;
end
else if (rdpzwptrn[3:1] == 'h4) begin
ldzbufw <= 'h00c0;
end
else if (rdpzwptrn[3:1] == 'h5) begin
ldzbufw <= 'h0030;
end
else if (rdpzwptrn[3:1] == 'h6) begin
ldzbufw <= 'h000c;
end
else if (rdpzwptrn[3:1] == 'h7) begin
ldzbufw <= 'h0003;
end
else begin
ldzbufw <= 16'bx;
end
end
else if (rmwcopymode) begin
zbufwin <= {copyout[63:48], copyout[48], copyout[48],
copyout[47:32], copyout[32], copyout[32],
copyout[31:16], copyout[16], copyout[16],
copyout[15:0], copyout[0], copyout[0],
copyout[63:48], copyout[48], copyout[48],
copyout[47:32], copyout[32], copyout[32],
copyout[31:16], copyout[16], copyout[16],
copyout[15:0], copyout[0], copyout[0]};
if (rmwcsize16 & rdpzwptrn[3]) begin
ldzbufw <= 'h00ff;
end
else if (rmwcsize16 & !rdpzwptrn[3]) begin
ldzbufw <= 'hff00;
end
else if (rmwcsize8 & (rdpzwptrn[3:2] == 'h0)) begin
ldzbufw <= 'hf000;
end
else if (rmwcsize8 & (rdpzwptrn[3:2] == 'h1)) begin
ldzbufw <= 'h0f00;
end
else if (rmwcsize8 & (rdpzwptrn[3:2] == 'h2)) begin
ldzbufw <= 'h00f0;
end
else if (rmwcsize8 & (rdpzwptrn[3:2] == 'h3)) begin
ldzbufw <= 'h000f;
end
else begin
ldzbufw <= 16'bx;
end
end
else begin
zbufwin <= 144'bx;
ldzbufw <= 16'bx;
end
ldzbufwen <= ldzbufw & {16{rdpwpixz}};
end
//C PIXEL INSERTION (to transparent latch transp_cbufw)
//note: this delay is in critical path thru latch into reg write...tsu=3ns
//32b RGB: first format rdpwcolor into cpixw, then demux into cbufwin
always @(rdpcwptrn or rdpwcolor or rmwcsize32 or rmwcsize16 or rmwcsize8
or ldcbufw or rmwrgbmode or cpixw or rdpwpixc) begin
if (rmwcsize32) begin
cpixw <= {rdpwcolor[26:11], {2{rdpwcolor[11]}},
rdpwcolor[10:0], 7'b0};
cbufwin <= {4{cpixw}};
if (rdpcwptrn[3:2] == 'h0) begin
ldcbufw <= 'hf000;
end
else if (rdpcwptrn[3:2] == 'h1) begin
ldcbufw <= 'h0f00;
end
else if (rdpcwptrn[3:2] == 'h2) begin
ldcbufw <= 'h00f0;
end
else if (rdpcwptrn[3:2] == 'h3) begin
ldcbufw <= 'h000f;
end
else begin
ldcbufw <= 16'bx;
end
end
else if (rmwcsize16) begin
if (!rmwrgbmode) begin
cpixw <= {rdpwcolor[26:19], rdpwcolor[2:0], 7'h0};
end
else if (rmwrgbmode) begin
cpixw <= {rdpwcolor[26:22], rdpwcolor[18:14],
rdpwcolor[10:6], rdpwcolor[2:0]};
end
cbufwin <= {8{cpixw[17:0]}};
if (rdpcwptrn[3:1] == 'h0) begin
ldcbufw <= 'hc000;
end
else if (rdpcwptrn[3:1] == 'h1) begin
ldcbufw <= 'h3000;
end
else if (rdpcwptrn[3:1] == 'h2) begin
ldcbufw <= 'h0c00;
end
else if (rdpcwptrn[3:1] == 'h3) begin
ldcbufw <= 'h0300;
end
else if (rdpcwptrn[3:1] == 'h4) begin
ldcbufw <= 'h00c0;
end
else if (rdpcwptrn[3:1] == 'h5) begin
ldcbufw <= 'h0030;
end
else if (rdpcwptrn[3:1] == 'h6) begin
ldcbufw <= 'h000c;
end
else if (rdpcwptrn[3:1] == 'h7) begin
ldcbufw <= 'h0003;
end
else begin
ldcbufw <= 16'bx;
end
end
else if (rmwcsize8) begin
cpixw <= {rdpwcolor[26:11], {2{rdpwcolor[11]}}};
cbufwin <= {8{cpixw[17:0]}};
if (rdpcwptrn[3:0] == 'h0) begin
ldcbufw <= 'h8000;
end
else if (rdpcwptrn[3:0] == 'h1) begin
ldcbufw <= 'h4000;
end
else if (rdpcwptrn[3:0] == 'h2) begin
ldcbufw <= 'h2000;
end
else if (rdpcwptrn[3:0] == 'h3) begin
ldcbufw <= 'h1000;
end
else if (rdpcwptrn[3:0] == 'h4) begin
ldcbufw <= 'h0800;
end
else if (rdpcwptrn[3:0] == 'h5) begin
ldcbufw <= 'h0400;
end
else if (rdpcwptrn[3:0] == 'h6) begin
ldcbufw <= 'h0200;
end
else if (rdpcwptrn[3:0] == 'h7) begin
ldcbufw <= 'h0100;
end
else if (rdpcwptrn[3:0] == 'h8) begin
ldcbufw <= 'h0080;
end
else if (rdpcwptrn[3:0] == 'h9) begin
ldcbufw <= 'h0040;
end
else if (rdpcwptrn[3:0] == 'ha) begin
ldcbufw <= 'h0020;
end
else if (rdpcwptrn[3:0] == 'hb) begin
ldcbufw <= 'h0010;
end
else if (rdpcwptrn[3:0] == 'hc) begin
ldcbufw <= 'h0008;
end
else if (rdpcwptrn[3:0] == 'hd) begin
ldcbufw <= 'h0004;
end
else if (rdpcwptrn[3:0] == 'he) begin
ldcbufw <= 'h0002;
end
else if (rdpcwptrn[3:0] == 'hf) begin
ldcbufw <= 'h0001;
end
else begin
ldcbufw <= 16'bx;
end
end
else begin
cpixw <= 36'bx;
cbufwin <= 144'bx;
ldcbufw <= 16'bx;
end
ldcbufwen <= ldcbufw & {16{rdpwpixc}};
end
//COPY DATA MUX for above data "copyout": 4x16b or 4x8b per clock
//never discard leading texel (leftmost) from tex unit, so no setup clks;
//form 64b bucket (for 8b, it's 32b replicated 2x) of texels.
always @(rmwcsize16 or rmwcsize8 or rdpzwptr or copydin or copybuf) begin
if (rmwcsize16) begin
if (rdpzwptr[2:1] == 'h0) begin
copyout <= copydin;
end
else if (rdpzwptr[2:1] == 'h1) begin
copyout <= {copybuf[15:0], copydin[63:16]};
end
else if (rdpzwptr[2:1] == 'h2) begin
copyout <= {copybuf[31:0], copydin[63:32]};
end
else if (rdpzwptr[2:1] == 'h3) begin
copyout <= {copybuf[47:0], copydin[63:48]};
end
else begin
copyout <= 64'bx;
end
end
else if (rmwcsize8) begin
if (rdpzwptr[1:0] == 'h0) begin
copyout <= {2{copydin[63:56], copydin[47:40],
copydin[31:24], copydin[15:8]}};
end
else if (rdpzwptr[1:0] == 'h1) begin
copyout <= {2{copybuf[15:8], copydin[63:56],
copydin[47:40], copydin[31:24]}};
end
else if (rdpzwptr[1:0] == 'h2) begin
copyout <= {2{copybuf[31:24], copybuf[15:8],
copydin[63:56], copydin[47:40]}};
end
else if (rdpzwptr[1:0] == 'h3) begin
copyout <= {2{copybuf[47:40], copybuf[31:24],
copybuf[15:8], copydin[63:56]}};
end
else begin
copyout <= 64'bx;
end
end
else begin
copyout <= 64'bx;
end
end
//
always @(rbdataio) begin
dbus_dout <= {rbdataio[71:56], rbdataio[53:38], rbdataio[35:20],
rbdataio[17:2]};
ebus_dout <= {rbdataio[55:54], rbdataio[37:36], rbdataio[19:18],
rbdataio[1:0]};
end
always @(posedge clock) begin
if (reset_l == 1'b0) begin
// resettable registers
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= 8'b0;
wrz_arcs <= 4'b0;
rdc_arcs <= 3'b0;
`endif
// synopsys translate_on
end
else if (start_gclk) begin
copybuf <= copydin;
copyoutd <= copyout;
if (!alphacompen || !wrcopymode_buf) begin
copywen <= 8'hff;
end
else if (alphacompen & wrcopymode_buf) begin
if (wrcsize8_buf) begin
if (!dithalphaen) begin
copywen <= ~{2{(blendalpha > copyoutd[31:24]),
(blendalpha > copyoutd[23:16]),
(blendalpha > copyoutd[15:8]),
(blendalpha > copyoutd[7:0])}};
// copywen <= {2{(|copyoutd[31:24]),
// (|copyoutd[23:16]),
// (|copyoutd[15:8]),
// (|copyoutd[7:0])}};
end
else begin
copywen <= ~{2{(dithalpha > copyoutd[31:24]),
({dithalpha[1:0], dithalpha[7:2]} > copyoutd[23:16]),
({dithalpha[3:0], dithalpha[7:4]} > copyoutd[15:8]),
({dithalpha[5:0], dithalpha[7:6]} > copyoutd[7:0])}};
end
end
else if (wrcsize16_buf) begin
copywen <= {{2{copyoutd[48]}}, {2{copyoutd[32]}},
{2{copyoutd[16]}}, {2{copyoutd[0]}}};
end
else begin
copywen <= 8'bx;
end
end
else begin
copywen <= 8'bx;
end
// rdprdepthd <= rdprdepth;
rdprdepthd <= {(rdprdepth[17:4] & {14{rmwenreadz}}),
rdprdepth[3:0] | ~{4{rmwenreadz}}};
//delay so c read is 2 clks later than z read
//LOAD input registers and alignment
//note: for LOAD, we use z reads/zrbuf but we use cwmask; fudge internally;
//latency: same as rdp zread data (versus startspant0 received, that is...)
loadsave <= loadsavein;
rdpzrptrd <= rdpzrptr[2:0];
if (!(load_dve)) begin
loadsend <= copy_load;
end
else if (rdpzrptrd[2:0] == 'h0) begin
if (!rmwloadtlut) begin
loadsend <= loadsave;
end
else begin
loadsend <= {4{loadsave[63:48]}};
end
end
else if (rdpzrptrd[2:0] == 'h1) begin
loadsend <= {loadsave[55:0], loadsavein[63:56]};
end
else if (rdpzrptrd[2:0] == 'h2) begin
if (!rmwloadtlut) begin
loadsend <= {loadsave[47:0], loadsavein[63:48]};
end
else begin
loadsend <= {4{loadsave[47:32]}};
end
end
else if (rdpzrptrd[2:0] == 'h3) begin
loadsend <= {loadsave[39:0], loadsavein[63:40]};
end
else if (rdpzrptrd[2:0] == 'h4) begin
if (!rmwloadtlut) begin
loadsend <= {loadsave[31:0], loadsavein[63:32]};
end
else begin
loadsend <= {4{loadsave[31:16]}};
end
end
else if (rdpzrptrd[2:0] == 'h5) begin
loadsend <= {loadsave[23:0], loadsavein[63:24]};
end
else if (rdpzrptrd[2:0] == 'h6) begin
if (!rmwloadtlut) begin
loadsend <= {loadsave[15:0], loadsavein[63:16]};
end
else begin
loadsend <= {4{loadsave[15:0]}};
end
end
else if (rdpzrptrd[2:0] == 'h7) begin
loadsend <= {loadsave[7:0], loadsavein[63:8]};
end
//for prop delay, the 3 lsb's of zrptr are constant for loads. (tv won't know)
//**********not true for load tlut!!!*********************
//loadsavein is defined outside clock loop; rdpzrptr loaded at stptzr-1.
//Z PIXEL EXTRACTION (to register rdprdepth): 18b per value
if (rdprpixz) begin
if (rdpzrptr[3:1] == 'h0) begin
rdprdepth <= transp_zbufr[143:126];
end
else if (rdpzrptr[3:1] == 'h1) begin
rdprdepth <= transp_zbufr[125:108];
end
else if (rdpzrptr[3:1] == 'h2) begin
rdprdepth <= transp_zbufr[107:90];
end
else if (rdpzrptr[3:1] == 'h3) begin
rdprdepth <= transp_zbufr[89:72];
end
else if (rdpzrptr[3:1] == 'h4) begin
rdprdepth <= transp_zbufr[71:54];
end
else if (rdpzrptr[3:1] == 'h5) begin
rdprdepth <= transp_zbufr[53:36];
end
else if (rdpzrptr[3:1] == 'h6) begin
rdprdepth <= transp_zbufr[35:18];
end
else if (rdpzrptr[3:1] == 'h7) begin
rdprdepth <= transp_zbufr[17:0];
end
end
else if (!(rdprpixz)) begin
rdprdepth <= rdprdepth;
end
else begin
rdprdepth <= 18'bx;
end
//C PIXEL EXTRACTION (to register rdprcolorin) part II
//32b case: only take 8883 out of 8 10 8 10 fields
//first extract 36b field into cpixr, then do formatting into rdprcolorin
if (rdprpixc) begin
if (rmwcsize32) begin
rdprcolorin <= {cpixr[35:20], cpixr[17:7]};
end
//16b IA case: only take 8 3 out of 8 10 and rep into 8 8 8 3
//extract 8 10 into cpixr[17:0], then format into rdprcolorin later
//16b RGB case: similar except formatting step at end
else if (rmwcsize16) begin
if (!rmwrgbmode) begin
rdprcolorin <= {cpixr[17:10], cpixr[17:10], cpixr[17:10],
cpixr[9:7]};
end
else if (rmwrgbmode) begin
rdprcolorin <= {cpixr[17:13], 3'h0, cpixr[12:8], 3'h0,
cpixr[7:3], 3'h0, cpixr[2:0]};
end
end
else begin
rdprcolorin <= {cpixr[7:0], cpixr[7:0], cpixr[7:0],
3'h7};
end
end
else if (!(rdprpixc)) begin
rdprcolorin <= rdprcolorin;
end
else begin
rdprcolorin <= 27'bx;
end
end
end
//instantiated version of above, so we explicitly call for negedge DFF
//initial (reset) state can be arbitrary, we mod to high for simplicity of muxing OR
assign extfn = ((start & start4ms) & ~phaseinvert) || (~(start & start4ms) & ~extphaserd);
always @(posedge clock) begin
if (reset_l == 1'b0) begin
// resettable registers
extphase <= low;
phaseinvert <= low;
extphaserd <= low;
statec <= state_firstwr;
encr<= high;
enzr<= high;
encw<= high;
enzw<= high;
stallrwen <= high;
//stallrwen is initially high, we use sm to temp reset after conflict resolved
// nonresettable registers
// transp_cbufr <= 144'bx;
// transp_zbufr <= 144'bx;
// transp_cbufw <= 144'bx;
// transp_zbufw <= 144'bx;
end
else begin
rdpdataw_d <= rdpdataw; //XXX
extphaserd <= extphaser;
if (phaseinvert) begin
if (start) begin
extphase <= low;
end
else begin
extphase <= !extphase;
end
end
else if (!phaseinvert) begin
if (start) begin
extphase <= high;
end
else begin
extphase <= !extphase;
end
end
//check wmask formats after finish design of wmask logic
//native cwmask is in pixel byte order; mirror within ea byte
// to get rdram format
// via earlier always @ statement to cwmask3[0:63] <= cwmask2[63:0]
//created cwmask2 as a byte rotated function to align with start of span
if (dma_read_en) begin
rbdataio <= {dbus_din[63:48], ebus_din[7:6],
dbus_din[47:32], ebus_din[5:4],
dbus_din[31:16], ebus_din[3:2],
dbus_din[15:0], ebus_din[1:0]};
end
else if (selcwmask || (wrcopymode & selzwmask)) begin
// rbdataw <= {cwmask[7:0], cwmask[15:8],
// 2'h0, cwmask[23:16], cwmask[31:24],
// 2'h0, cwmask[39:32], cwmask[47:40],
// 2'h0, cwmask[55:48], cwmask[63:56], 2'h0};
// rbdataw <= {cwmask2[0:15],
// 2'h0, cwmask2[16:31],
// 2'h0, cwmask2[32:47],
// 2'h0, cwmask2[48:63], 2'h0};
rbdataio <= {cwmask3[63], cwmask3[62], cwmask3[61], cwmask3[60],
cwmask3[59], cwmask3[58], cwmask3[57], cwmask3[56],
cwmask3[55], cwmask3[54], cwmask3[53], cwmask3[52],
cwmask3[51], cwmask3[50], cwmask3[49], cwmask3[48],
2'h0, cwmask3[47], cwmask3[46], cwmask3[45],
cwmask3[44], cwmask3[43], cwmask3[42], cwmask3[41], cwmask3[40],
cwmask3[39], cwmask3[38], cwmask3[37], cwmask3[36], cwmask3[35],
cwmask3[34], cwmask3[33], cwmask3[32],
2'h0, cwmask3[31], cwmask3[30], cwmask3[29],
cwmask3[28], cwmask3[27], cwmask3[26], cwmask3[25],
cwmask3[24], cwmask3[23], cwmask3[22], cwmask3[21],
cwmask3[20], cwmask3[19], cwmask3[18], cwmask3[17], cwmask3[16],
2'h0, cwmask3[15], cwmask3[14], cwmask3[13],
cwmask3[12], cwmask3[11], cwmask3[10], cwmask3[9], cwmask3[8],
cwmask3[7], cwmask3[6], cwmask3[5], cwmask3[4], cwmask3[3],
cwmask3[2], cwmask3[1], cwmask3[0], 2'h0};
end
else if (selzwmask) begin
// rbdataio <= {zwmask2[31], zwmask2[31], zwmask2[30],
// zwmask2[30], zwmask2[29], zwmask2[29], zwmask2[28], zwmask2[28],
// 2'h0, zwmask2[27], zwmask2[27], zwmask2[26],
// zwmask2[26], zwmask2[25], zwmask2[25], zwmask2[24], zwmask2[24],
// zwmask2[23], zwmask2[23], zwmask2[22],
// zwmask2[22], zwmask2[21], zwmask2[21], zwmask2[20], zwmask2[20],
// 2'h0, zwmask2[19], zwmask2[19], zwmask2[18],
// zwmask2[18], zwmask2[17], zwmask2[17], zwmask2[16], zwmask2[16],
// zwmask2[15], zwmask2[15], zwmask2[14],
// zwmask2[14], zwmask2[13], zwmask2[13], zwmask2[12], zwmask2[12],
// 2'h0, zwmask2[11], zwmask2[11], zwmask2[10],
// zwmask2[10], zwmask2[9], zwmask2[9], zwmask2[8], zwmask2[8],
// zwmask2[7], zwmask2[7], zwmask2[6],
// zwmask2[6], zwmask2[5], zwmask2[5], zwmask2[4], zwmask2[4],
// zwmask2[3], zwmask2[3], zwmask2[2],
// zwmask2[2], zwmask2[1], zwmask2[1], zwmask2[0], zwmask2[0]};
rbdataio <= {zwmask2[28], zwmask2[28], zwmask2[29],
zwmask2[29], zwmask2[30], zwmask2[30], zwmask2[31], zwmask2[31],
zwmask2[24], zwmask2[24], zwmask2[25],
zwmask2[25], zwmask2[26], zwmask2[26], zwmask2[27], zwmask2[27],
2'h0, zwmask2[20], zwmask2[20], zwmask2[21],
zwmask2[21], zwmask2[22], zwmask2[22], zwmask2[23], zwmask2[23],
zwmask2[16], zwmask2[16], zwmask2[17],
zwmask2[17], zwmask2[18], zwmask2[18], zwmask2[19], zwmask2[19],
2'h0, zwmask2[12], zwmask2[12], zwmask2[13],
zwmask2[13], zwmask2[14], zwmask2[14], zwmask2[15], zwmask2[15],
zwmask2[8], zwmask2[8], zwmask2[9],
zwmask2[9], zwmask2[10], zwmask2[10], zwmask2[11], zwmask2[11],
2'h0, zwmask2[4], zwmask2[4], zwmask2[5],
zwmask2[5], zwmask2[6], zwmask2[6], zwmask2[7], zwmask2[7],
zwmask2[0], zwmask2[0], zwmask2[1],
zwmask2[1], zwmask2[2], zwmask2[2], zwmask2[3], zwmask2[3],
2'h0};
// rbdataio <= {zwmask[0], zwmask[0], zwmask[1],
// zwmask[1], zwmask[2], zwmask[2], zwmask[3], zwmask[3],
// zwmask[4], zwmask[4], zwmask[5],
// zwmask[5], zwmask[6], zwmask[6], zwmask[7], zwmask[7],
// 2'h0, zwmask[8], zwmask[8], zwmask[9],
// zwmask[9], zwmask[10], zwmask[10], zwmask[11], zwmask[11],
// zwmask[12], zwmask[12], zwmask[13],
// zwmask[13], zwmask[14], zwmask[14], zwmask[15], zwmask[15],
// 2'h0, zwmask[16], zwmask[16], zwmask[17],
// zwmask[17], zwmask[18], zwmask[18], zwmask[19], zwmask[19],
// zwmask[20], zwmask[20], zwmask[21],
// zwmask[21], zwmask[22], zwmask[22], zwmask[23], zwmask[23],
// 2'h0, zwmask[24], zwmask[24], zwmask[25],
// zwmask[25], zwmask[26], zwmask[26], zwmask[27], zwmask[27],
// zwmask[28], zwmask[28], zwmask[29],
// zwmask[29], zwmask[30], zwmask[30], zwmask[31], zwmask[31],
// 2'h0};
// rbdataio <= {zwmask[3], zwmask[3], zwmask[2],
// zwmask[2], zwmask[1], zwmask[1], zwmask[0], zwmask[0],
// zwmask[7], zwmask[7], zwmask[6],
// zwmask[6], zwmask[5], zwmask[5], zwmask[4], zwmask[4],
// 2'h0, zwmask[11], zwmask[11], zwmask[10],
// zwmask[10], zwmask[9], zwmask[9], zwmask[8], zwmask[8],
// zwmask[15], zwmask[15], zwmask[14],
// zwmask[14], zwmask[13], zwmask[13], zwmask[12], zwmask[12],
// 2'h0, zwmask[19], zwmask[19], zwmask[18],
// zwmask[18], zwmask[17], zwmask[17], zwmask[16], zwmask[16],
// zwmask[23], zwmask[23], zwmask[22],
// zwmask[22], zwmask[21], zwmask[21], zwmask[20], zwmask[20],
// 2'h0, zwmask[27], zwmask[27], zwmask[26],
// zwmask[26], zwmask[25], zwmask[25], zwmask[24], zwmask[24],
// zwmask[31], zwmask[31], zwmask[30],
// zwmask[30], zwmask[29], zwmask[29], zwmask[28], zwmask[28],
// 2'h0};
end
else if (wrfillmode) begin
rbdataio <= {2{wrfillcolor[31:16], wrfillcolor[16], wrfillcolor[16],
wrfillcolor[15:0], wrfillcolor[0], wrfillcolor[0]}};
end
else if ((addrxi)) begin
rbdataio <= transp_doutd[143:72];
end
else if (~(addrxi)) begin
rbdataio <= transp_doutd[71:0];
end
else begin
rbdataio <= 72'bx;
end
//must upgrade below for split addressing********************************
//the following is initialization, some variable time before xfer occurs
//but the assertion continues until a known time before xfer.
if (selrbcr) begin
// phaseinvert <= rdxdec ^ rdcxi[3];
phaseinvert <= rdcxi[3];
killwe1a <= start & !rbphase & rdxdec & rdcxi[3];
killwe0a <= start & !rbphase & !rdxdec & !rdcxi[3];
killwe0b <= start & rbphase & !rdxdec & rdcxi[3];
killwe1b <= start & rbphase & rdxdec & !rdcxi[3];
addrxdec <= rdxdec;
addrxi <= rdcxi[3];
rbaddr0 <= {1'b0, (rbcrptr[2:0] +
{2'h0, start & rbphase & rdcxi[3] & !rdxdec})};
rbaddr1 <= {1'b0, (rbcrptr[2:0] +
{2'h0, start & rbphase & !rdcxi[3] & rdxdec})};
end
else if (selrbzr) begin
// phaseinvert <= rdxdec ^ rdzxi[3];
phaseinvert <= rdzxi[3];
killwe1a <= start & !rbphase & rdxdec & rdzxi[3];
killwe0a <= start & !rbphase & !rdxdec & !rdzxi[3];
killwe0b <= start & rbphase & !rdxdec & rdzxi[3];
killwe1b <= start & rbphase & rdxdec & !rdzxi[3];
addrxdec <= rdxdec;
addrxi <= rdzxi[3];
rbaddr0 <= {1'b1, (rbzrptr[2:0] +
{2'h0, start & rbphase & rdzxi[3] & !rdxdec})};
rbaddr1 <= {1'b1, (rbzrptr[2:0] +
{2'h0, start & rbphase & !rdzxi[3] & rdxdec})};
end
else if (selrbcw & !(selcwmask || selzwmask)) begin
phaseinvert <= wrxdec ^ wrcxi[3];
addrxdec <= wrxdec;
addrxi <= wrcxi[3];
rbaddr0 <= {1'b0, (rbcwptr[2:0] +
{2'h0, start & rbphase & wrcxi[3] & !wrxdec})};
rbaddr1 <= {1'b0, (rbcwptr[2:0] +
{2'h0, start & rbphase & !wrcxi[3] & wrxdec})};
end
else if (selrbzw & !(selcwmask || selzwmask)) begin
phaseinvert <= wrxdec ^ wrzxi[3];
addrxdec <= wrxdec;
addrxi <= wrzxi[3];
rbaddr0 <= {1'b1, (rbzwptr[2:0] +
{2'h0, start & rbphase & wrzxi[3] & !wrxdec})};
rbaddr1 <= {1'b1, (rbzwptr[2:0] +
{2'h0, start & rbphase & !wrzxi[3] & wrxdec})};
end
//****must modify below to increment at rbphase or whatever, not static***
else begin
killwe0a <= killwe0a;
killwe1a <= killwe1a;
killwe0b <= killwe0b;
killwe1b <= killwe1b;
addrxdec <= addrxdec;
addrxi <= !addrxi;
phaseinvert <= phaseinvert;
rbaddr0 <= {rbaddr0[3], (rbaddr0[2:0] +
{2'h0, rbphase & !(startd & addrxdec & addrxi)})};
rbaddr1 <= {rbaddr1[3], (rbaddr1[2:0] +
{2'h0, rbphase & !(startd & !addrxdec & !addrxi)})};
end
startd <= start;
//above, for split addressing, phaseinvert is used to modify extphase so that
//it correctly implies data ordering in/out muxing from/to rdram; here we
//mod addresses so as to have split address cases, we init addresses as fn of
//xdec, xi[3], and whether start is aligned with rbphase. if we have to init
//address to -1 (relative), we instead merely inhibit first increment, so that
//there is no issue of having to disable WE of underflowed address. when we have
//to init it to +1, we do it above as initial value, and we still have to kill
//the WE early for that case alone, to be done.
//RDP SPANBUF ACCESS CONFLICT RESOLUTION STATE MACHINE
//note: the assumption here is that the first prioritized event in the conflict
//happens, during which stallrw is asserted. so, in this state
//machine we need to determine what this first event was, and then take it from
//there as needed, stalling 2 clocks per.
//priority is cw, zw, cr, zr (arbitrary, since clock is stopped and ptrs freeze)
//note that the actual arbitration mux transitions occur during rbphase,
//so as not to enter into critical path. but the normal path is probably
//about the same--and of course timing analyzer isn't smart enuf to know diff.
case (statec)
state_firstwr : begin
// stallrwen <= !stopgclock || stallrwen & rbphase;
if (stallptr) begin
statec <= state_firstwr;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= 1'b1 | firstwr_arcs; // A
`endif
// synopsys translate_on
stallrwen <= stallrwen;
encw <= high;
enzw <= high;
encr <= high;
enzr <= high;
end
else if (stallrw & rdpreqcw & rdpreqzw & !rbphase) begin
statec <= state_wrz;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= { 1'b1, 1'b0 } | firstwr_arcs; // B
`endif
// synopsys translate_on
encw <= low;
end
else if (stallrw & rdpreqcw & rdpreqcr & !rbphase) begin
statec <= state_rdc;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= { 1'b1, 2'b0 } | firstwr_arcs; // C
`endif
// synopsys translate_on
encw <= low;
end
else if (stallrw & rdpreqcw & rdpreqzr & !rbphase) begin
statec <= state_rdz;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= { 1'b1, 3'b0 } | firstwr_arcs; // D
`endif
// synopsys translate_on
encw <= low;
end
else if (stallrw & rdpreqzw & rdpreqcr & !rbphase) begin
statec <= state_rdc;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= { 1'b1, 4'b0 } | firstwr_arcs; // E
`endif
// synopsys translate_on
enzw <= low;
end
else if (stallrw & rdpreqzw & rdpreqzr & !rbphase) begin
statec <= state_rdz;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= { 1'b1, 5'b0 } | firstwr_arcs; // F
`endif
// synopsys translate_on
enzw <= low;
end
else if (stallrw & rdpreqcr & rdpreqzr & !rbphase) begin
statec <= state_rdz;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= { 1'b1, 6'b0 } | firstwr_arcs; // G
`endif
// synopsys translate_on
encr <= low;
end
else begin
statec <= state_firstwr;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= { 1'b1, 7'b0 } | firstwr_arcs; // H
`endif
// synopsys translate_on
stallrwen <= !stopgclock || stallrwen & rbphase;
encw <= high;
enzw <= high;
encr <= high;
enzr <= high;
end
end
state_wrz : begin
if (rdpreqcr & !rbphase) begin
statec <= state_rdc;
// synopsys translate_off
`ifdef MSPAN_MON
wrz_arcs <= 1'b1 | firstwr_arcs; // A
`endif
// synopsys translate_on
enzw <= low;
end
else if (rdpreqzr & !rbphase) begin
statec <= state_rdz;
// synopsys translate_off
`ifdef MSPAN_MON
wrz_arcs <= { 1'b1, 1'b0 } | firstwr_arcs; // B
`endif
// synopsys translate_on
enzw <= low;
end
else if (!rdpreqcr & !rdpreqzr & rbphase) begin
statec <= state_firstwr;
// synopsys translate_off
`ifdef MSPAN_MON
wrz_arcs <= { 1'b1, 2'b0 } | firstwr_arcs; // C
`endif
// synopsys translate_on
stallrwen <= low;
end
else begin
statec <= state_wrz;
// synopsys translate_off
`ifdef MSPAN_MON
wrz_arcs <= { 1'b1, 3'b0 } | firstwr_arcs; // D
`endif
// synopsys translate_on
end
end
state_rdc : begin
if (rdpreqzr & !rbphase) begin
statec <= state_rdz;
// synopsys translate_off
`ifdef MSPAN_MON
rdc_arcs <= 1'b1 | firstwr_arcs; // A
`endif
// synopsys translate_on
encr <= low;
end
else if (!rdpreqzr & rbphase) begin
statec <= state_firstwr;
// synopsys translate_off
`ifdef MSPAN_MON
rdc_arcs <= { 1'b1, 1'b0 } | firstwr_arcs; // B
`endif
// synopsys translate_on
stallrwen <= low;
end
else begin
statec <= state_rdc;
// synopsys translate_off
`ifdef MSPAN_MON
rdc_arcs <= { 1'b1, 2'b0 } | firstwr_arcs; // C
`endif
// synopsys translate_on
end
end
state_rdz : begin
statec <= state_firstwr;
stallrwen <= low;
end
default :
statec <= 'bx;
endcase
end
end
endmodule