ms_si.v 58.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
 /************************************************************************\
 *                                                                        *
 *               Copyright (C) 1994, Silicon Graphics, Inc.               *
 *                                                                        *
 *  These coded instructions, statements, and computer programs  contain  *
 *  unpublished  proprietary  information of Silicon Graphics, Inc., and  *
 *  are protected by Federal copyright  law.  They  may not be disclosed  *
 *  to  third  parties  or copied or duplicated in any form, in whole or  *
 *  in part, without the prior written consent of Silicon Graphics, Inc.  *
 *                                                                        *
 \************************************************************************/

// $Id: ms_si.v,v 1.13 2003/01/24 23:07:37 berndt Exp $
//		spanbuf interface for memspan
//	this module is a framework around the spanbuf register file
//	(which are two banks of 16 word x 72b memory, single ported)
//
//	handles read/write data paths of rdram access, with fillcolor
//		and writemask insertion as necessary;
//	contains split spanbuf address iterator for the rdram access.
//	also handles loads and copies data alignment;
//	handles c/z read data supply, write data consume, to/from rdp blend
//	it arbitrates rdp c/z r/w collisions and generates "stallrw" for
//	such incidents.  also, it generates "stallphase" for cases of these
//	rdp read/write c/z events occuring during a rdram phase (rbphase=1).

//	adding alpha compare and copy compare/bit shift enables
//	split addressing for rdram access
//	also add dither?  maybe in ms_rp.v  (rdp pipeline) where twophase also
//		buffer ops so that load will work without trashing context:
//	note also:  for safety, count stage should also define validphase,
//		and this not clobbered by load_en in rdctxt.....!
//	define rbwe0, rbwe1;
//	much later:  diags  (also affect ms_sm).
//	must stall load of cbufw, zbufw as needed; therefore those reg's are
//		stallable (feeders). **add gclock notion**

//NOTE:  each 16b source value has lsb rep'd into lower 2b of 18b field in sbuf
//therefore ebus is concatenation of 2lsb's from each 18b field = 8bits.
//span/scanline proceeds L-R across each 144b spanbuf entry...

//NOTE:  for pipe sync'ing, the LOAD data is provided AT SAME TIME AS
//read RDP depth data normally provided (tbd).
//and COPY data received ONE CLOCK BEFORE write RDP *depth* would have been
//copy:  z writes, use cwmask.  (tbd).
//load:  z reads.  (tbd). maybe need znum16?

//bytemask latest 10-12-94:  left-most byte pertains to first 8byte word,
//	and lsbit of this byte pertains to msbyte of data word, indep of xdec
//mods 10-13: rotate cwmask/zwmask for alignment with start word of span
//mods 10-20: revise for tristate driver outside module, shared io reg's
//	and add input "load_dve" early version of load_dv for mux usage
//	this changes timing of copy data, to ONE CLOCK BEFORE depth supplied
//  11-2-94:  hack rbwe
//  11-8  stallrwen state machine now fn of stopgclock, fix deadlocked stalls
//  11-9 add transp latches, ldcbuf144, ldzbuf144
//  11-10 fix loadsend for case of ptr = 7;  mod transp w: clk, r: !clk
//  	add extphaser; add inputs rdpcwptrsbc for transp
//  11-11 add delay to addr0/1 to spanbuf, fix hold time vs. we0/1....
//  11-12 fix phasing of rb mux data io, and add split address generation
//	inc zrptr at loadsend mux by simple rewiring of mux inputs, loadtlut.
//	add inports finishd1/2; killwe0/1a/b; add rdpzrptrd[2:0] for loadsend;
//  11-15 add wrcopymode for cwmask usage in z planes mode, nxtwmaskc, rotate;
//  11-16 derive copywen from copyoutd, compares....to ms_rp.v for cwmask.
//	and input alphacompen, ccalpha, wrcsize8/16_buf/output copywen;
//  11-17 add inputs rbc/zwptrn for ldc/zbufwen for hold time (generate in ms_rp
//	as half phase earlier, negedge clock registers, add addrxi toggling.
//	kill selrbcw/rbzw activity for selcwmask/selzwmask high, for rbaddress.
//  11-20 mod ccalpha to blendalpha for copymode; add dithalpha/dithalphaen in;
//  11-21 add stallwptr in, for killing rdpwe's;
//  11-22 reswizzle zwmask output;
//  11-28 mod right major cwmask swizzle; to do:  zwmask;
//  11-29 mod rbaddr init to not overflow at prep time
//  12-1 mod stallrwen to hold if rbphase; add hold time to din/addr0,1
//  12-2 another mod to above, to hold after transition out of idle state;  3 way case
//  	also delay conflict resolution state machine until after stallptr;
//  12-6 mod phaseinvert to fix read c/z bugs right major;
//	also add observation wires:  din128, dout128, transp_c/zbufr128;
//	also, create rdprcolorin, OR in 3b color !rmwenreadc for no readc case;
//  12-7 revise transp_c/zbufw for synopsys timing loop;
//  12-8 fix fields for 16b color reads; fix setting covg=7 for 8bI extraction;
//		revise all 6 transparent latches for synopsys; (6x144b)
//  12-13 fix 32b RGB insertion fields;
//  12-14 mod copymode 8b alphacompare to mask if value is zero;
//  12-19 undo above, to allow arbitrary ref compare;  add latches (mike)
//  12-27 cleanup of clock domains and add reset of regs startd/addrxdec/addrxi
//  1-3  mod rdprdepthd to force zread to blender to hex 3fff0 if !enzcompare;
//		add inport rmwenreadz;
//  1-4 add inport test_mode1 to kill rdram we into spanbuf;
//  1-9 add wire extfn/instantiate extphaser negedge dff;
//  1-10 fix ordering of 4-way spanbuf c/z r/w conflict state machine;
//  1-24 test version for elimination of half cycle stopgclock path to ndff
//		by changing 8/10b latches to be clock low transparent;
//  1-25 add delay to outputs ldc/zbufwen, c/zbufwin for sim skew reasons;
//  2-2  add inport start4ms, use to qualify extfn;
//              SECOND TAPEOUT MODS
//      3-30-95  add new ports rp => si:  limitcw, limitzw (timing paths);
//		remove stallwptr port;
//		replace ndff with ms_latch_l.v (timing path); add extphaserd;
//	4-4-94  add extphasere for delay (latch timing margin)
//	6-9-95  mod ms_latch8n/10n instantiations for hold time fix port changes;

`timescale 1ns/1ns

module ms_si(clock, start_gclk, reset_l, stopgclock,
	rbphase, start, dma_read_en, rdpwcolor, rdpwdepth,
	dout, selrbcr, selrbzr, selrbcw, selrbzw,
	rmwenreadc, rmwenreadz, rmwrgbmode, dbus_din, ebus_din,
	rdpreqcr, rdpreqzr, rdpreqcw, rdpreqzw, enrbwe, selcwmask, selzwmask,
	wrfillcolor, rbcrptr, rbzrptr, rbcwptr, rbzwptr, rdcxi, rdzxi, rdxdec,
	wrcxi, wrzxi, wrxdec, rmwcsize8, rmwcsize16, rmwcsize32,
	wrfillmode, cwmask, wrcopymode_buf, rdpcwptrn, rdpzwptrn,
	zwmask, wrcopymode, wrcsize8_buf, wrcsize16_buf,
	rdpcrptrsb, rdpzrptrsb, rdpcwptrsbc, rdpzwptrsbc, rdprpixc, rdprpixz,
	rdpwpixc, rdpwpixz, rmwcopymode, rmwloadtlut, load_dve,
	finishd1, finishd2, alphacompen, blendalpha, dithalpha, dithalphaen,
	stallptr, test_mode1, start4ms, limitcw, limitzw,
	
	copy_load,

	dbus_dout, ebus_dout, din, dataload,
	rdprcolor, rdprdepthd, addr0, addr1, we0, we1,
	stallphase, stallrw, copywen);

`include "ms.vh"

input clock;					// system clock
input start_gclk;
input reset_l;					// system reset
input stopgclock;

input rbphase;					//rdram memory usage phase
input start;
//add tristate stuff, from jeff
//input data_out_en;
input dma_read_en;
input [63:0] dbus_din;
input [7:0] ebus_din;
input [26:0] rdpwcolor;				//delayed write color from ms_rp
input [17:0] rdpwdepth;				//delayed write depth from ms_rp
input [143:0] dout;				//data from spanbuf
input selrbcr;					//address select/init
input selrbzr;
input selrbcw;
input selrbzw;
input rmwrgbmode;
input rmwenreadc;
input rmwenreadz;
input rdpreqcr;					//actual rdp r/w requests to rf
input rdpreqzr;
input rdpreqcw;
input rdpreqzw;
input enrbwe;					//enable we for rdram writes
input selcwmask;
input selzwmask;
input [31:0] wrfillcolor;
input [3:0] rbcrptr;
input [3:0] rbzrptr;
input [3:0] rbcwptr;
input [3:0] rbzwptr;
input [25:0] rdcxi;				//want rdcxi[3:3] for wordsel
input [25:0] rdzxi;
input rdxdec;
input [25:0] wrcxi;
input [25:0] wrzxi;
input wrxdec;
input rmwcsize8;
input rmwcsize16;
input rmwcsize32;
input wrfillmode;
input [63:0] cwmask;
input [31:0] zwmask;				//replicate in pairs for z
input [6:0] rdpcrptrsb;				//byte ptrs for rdp r/w
input [6:0] rdpzrptrsb;				//valid for spanbuf rd, or
input [6:0] rdpcwptrsbc;			//write insert; as well as
input [6:0] rdpzwptrsbc;			//rd extract and spanbuf wr
input [6:0] rdpcwptrn;
input [6:0] rdpzwptrn;
input rdprpixc;					//validcycle & validphase at
input rdprpixz;					//time r/w c/z spanbuf in pipe
input rdpwpixc;					//also fn of enread/enwrite c/z?
input rdpwpixz;
input rmwcopymode;				//copy mode opcode
input rmwloadtlut;				//if load, tlut mode invoked
input load_dve;
input finishd2, finishd1;
input wrcopymode;
input alphacompen;
input [7:0] blendalpha, dithalpha;
input wrcopymode_buf, wrcsize8_buf, wrcsize16_buf;
input dithalphaen;
input stallptr;
input test_mode1;
input start4ms;
input limitcw, limitzw;

input [63:0] copy_load;				//tristate bus load/copy data

output [63:0] dbus_dout;
output [7:0] ebus_dout;
output [143:0] din;				//data to spanbuf
output [26:0] rdprcolor;			//read color to blend unit
output [17:0] rdprdepthd;			//read depth to blend unit
output [3:0] addr0;				//address bank 0
output [3:0] addr1;				//address bank 1
output we0;					//write enable bank 0
output we1;					//write enable bank 1
output stallphase;				//stall for rdp r/w at rbphase
output stallrw;					//stall at rdp r/w c/z conflict
output [63:0] dataload;				//load data to tmem driver
output [7:0] copywen;

// input/output registers
//	clock domain
reg [71:0] rbdataio;				//input rdram read word
//	gclock domain
reg [26:0] rdprcolorin;
reg [17:0] rdprdepth;				//depth out from extraction
reg [17:0] rdprdepthd;				//depth out to blend, delayed

// internal registers
//		clock domain
reg extphase;					//state of rdram phase start
//reg extphaser;
reg extphaserd;
reg phaseinvert;				//odd word initialization
reg [3:0] rbaddr0;
reg [3:0] rbaddr1;
reg encw;
reg enzw;
reg encr;
reg enzr;
reg stallrwen;
reg killwe0a, killwe1a;
reg killwe0b, killwe1b;
reg startd, addrxdec, addrxi;
reg [143:0] rdpdataw_d;				//XXX

//RDP SPANBUF ACCESS CONFLICT RESOLUTION STATE MACHINE
reg [3:0] statec;
parameter
        state_firstwr           =4'h1,
        state_wrz              =4'h2,
        state_rdc              =4'h4,
        state_rdz              =4'h8;

// synopsys translate_off
`ifdef MSPAN_MON
reg [7:0] firstwr_arcs;
reg [3:0] wrz_arcs;
reg [2:0] rdc_arcs;
`endif
// synopsys translate_on

//		gclock domain
reg [63:0] loadsave;
reg [63:0] loadsend;
reg [63:0] copybuf;
reg [2:0] rdpzrptrd;
reg [63:0] copyout;
reg [63:0] copyoutd;
reg [7:0] copywen;

// pseudo registers

reg [26:0] rdprcolor;                           //color out to blend

reg [31:0] zwmask3;
reg [3:0] addr0;
reg [3:0] addr1;
reg [3:0] rdpaddr;
reg stallrw;
reg stallphase;
wire rbwe0;
wire rbwe1;
reg rdpwe;
reg ldcbufr;
reg ldzbufr;
reg [143:0] rdpdataw;
reg [35:0] cpixw;
reg [15:0] ldcbufw;
reg [15:0] ldzbufw;
reg [15:0] ldcbufwen;
reg [15:0] ldzbufwen;
reg [143:0] cbufwin;
reg [143:0] zbufwin;
reg [63:0] loadsavein;
reg [0:63] cwmask3;
reg [63:0] cwmask2;
reg [35:0] cpixr;
reg [31:0] zwmask2;
reg [7:0] ebus_dout;
reg [63:0] dbus_dout;

reg [63:0] dataload, copydin;

reg [6:0] rdpcrptr, rdpzrptr, rdpcwptr, rdpzwptr;
wire extphasere;
wire extfn; 				//added for negedge dff input assign
//reg [143:0] ldcbuf144, ldzbuf144;

// transparent latches got replaced;
wire [143:0] transp_doutd; //ld=rbphase	in=dout	input: spanbuf read to rbwrite
wire [71:0] transp_rb_hi; //ld=!extphase	in=rbdataio hi
wire [71:0] transp_rb_lo;  //ld=extphase	in=rbdataio low
wire [143:0] transp_cbufw; //ld=ldcbufwen	in=cpixw
wire [143:0] transp_zbufw; //ld=ldzbufwen	in=zpixw   //use for copy also
wire [143:0] transp_cbufr; //ld=ldcbufr	in=dout
wire [143:0] transp_zbufr; //ld=ldzbufr	in=dout		//used for load, too

//wires
//the following wires and assigns are just for ease of observability,
//by allowing copy data of bytes versus rdram data of nytes...

wire [63:0] rbdataio64;
wire [127:0] transp_doutd128, transp_cbufw128, transp_zbufw128;
wire [127:0] din128, dout128, transp_zbufr128, transp_cbufr128;
wire extphaser = extfn;

assign rbdataio64 = {rbdataio[71:56], rbdataio[53:38],
		rbdataio[35:20], rbdataio[17:2]};

assign transp_doutd128 = {transp_doutd[143:128], transp_doutd[125:110], transp_doutd[107:92], transp_doutd[89:74], transp_doutd[71:56], transp_doutd[53:38], transp_doutd[35:20], transp_doutd[17:2]};

assign transp_cbufw128 = {transp_cbufw[143:128], transp_cbufw[125:110], transp_cbufw[107:92], transp_cbufw[89:74], transp_cbufw[71:56], transp_cbufw[53:38], transp_cbufw[35:20], transp_cbufw[17:2]};

assign transp_zbufw128 = {transp_zbufw[143:128], transp_zbufw[125:110], transp_zbufw[107:92], transp_zbufw[89:74], transp_zbufw[71:56], transp_zbufw[53:38], transp_zbufw[35:20], transp_zbufw[17:2]};

assign din128 = {din[143:128], din[125:110], din[107:92], din[89:74], din[71:56], din[53:38], din[35:20], din[17:2]};

assign dout128 = {dout[143:128], dout[125:110], dout[107:92], dout[89:74], dout[71:56], dout[53:38], dout[35:20], dout[17:2]};

assign transp_cbufr128 = {transp_cbufr[143:128], transp_cbufr[125:110], transp_cbufr[107:92], transp_cbufr[89:74], transp_cbufr[71:56], transp_cbufr[53:38], transp_cbufr[35:20], transp_cbufr[17:2]};

assign transp_zbufr128 = {transp_zbufr[143:128], transp_zbufr[125:110], transp_zbufr[107:92], transp_zbufr[89:74], transp_zbufr[71:56], transp_zbufr[53:38], transp_zbufr[35:20], transp_zbufr[17:2]};

//BUS IO CONNECTIVITY

always @(loadsend) begin
	dataload <= loadsend;
	copydin <= loadsend;
end

always @(rdprcolorin or rmwenreadc) begin
	rdprcolor <= rdprcolorin | {24'b0, {3{!rmwenreadc}}};
end

always @(rdpcrptrsb or rdpzrptrsb or rdpcwptrsbc or rdpzwptrsbc) begin
	rdpcrptr <= rdpcrptrsb;
	rdpzrptr <= rdpzrptrsb;
	rdpcwptr <= rdpcwptrsbc;
	rdpzwptr <= rdpzwptrsbc;
end

//WRITEMASK BYTE ROTATE for starting span address

always @(cwmask or wrcxi or wrzxi or wrcopymode) begin
	case ((wrcxi[5:3] & {3{~wrcopymode}} |
			wrzxi[5:3] & {3{wrcopymode}}))
                3'h0: cwmask2 <= {cwmask[63:0]};
		3'h1: cwmask2 <= {cwmask[55:0], cwmask[63:56]};
		3'h2: cwmask2 <= {cwmask[47:0], cwmask[63:48]};
		3'h3: cwmask2 <= {cwmask[39:0], cwmask[63:40]};
		3'h4: cwmask2 <= {cwmask[31:0], cwmask[63:32]};
		3'h5: cwmask2 <= {cwmask[23:0], cwmask[63:24]};
		3'h6: cwmask2 <= {cwmask[15:0], cwmask[63:16]};
		3'h7: cwmask2 <= {cwmask[7:0], cwmask[63:8]};
	endcase
end
		
always @(cwmask2 or wrxdec) begin
  if (!wrxdec) begin
        cwmask3 <= {cwmask2[7:0], cwmask2[15:8], cwmask2[23:16], cwmask2[31:24],
		cwmask2[39:32], cwmask2[47:40], cwmask2[55:48], cwmask2[63:56]};
  end
  else begin
     cwmask3 <= {cwmask2[55:48], cwmask2[47:40], cwmask2[39:32],
	cwmask2[31:24], cwmask2[23:16], cwmask2[15:8], cwmask2[7:0],
	cwmask2[63:56]};
  end
end

always @(zwmask or wrxdec) begin
	if (wrxdec) begin
		zwmask3 <= {zwmask[3:0], zwmask[7:4],
		  zwmask[11:8], zwmask[15:12], zwmask[19:16], zwmask[23:20],
		  zwmask[27:24], zwmask[31:28]};
	end
	else begin
		zwmask3 <= zwmask;
	end
end

always @(zwmask3 or wrzxi or wrxdec) begin
        case (wrzxi[5:3] ^ {3{wrxdec}})
                3'h0: zwmask2 <= {zwmask3[31:0]};
                3'h1: zwmask2 <= {zwmask3[27:0], zwmask3[31:28]};
                3'h2: zwmask2 <= {zwmask3[23:0], zwmask3[31:24]};
                3'h3: zwmask2 <= {zwmask3[19:0], zwmask3[31:20]};
                3'h4: zwmask2 <= {zwmask3[15:0], zwmask3[31:16]};
                3'h5: zwmask2 <= {zwmask3[11:0], zwmask3[31:12]};
                3'h6: zwmask2 <= {zwmask3[7:0], zwmask3[31:8]};
                3'h7: zwmask2 <= {zwmask3[3:0], zwmask3[31:4]};
        endcase
end

//C PIXEL EXTRACTION (to register rdprcolorin) part I

//32b case:  only take 8883 out of 8 10 8 10 fields
//first extract 36b field into cpixr, then do formatting into rdprcolorin
always @(rmwcsize32 or rmwcsize16 or rdpcrptr or transp_cbufr) begin
        if (rmwcsize32) begin
                if (rdpcrptr[3:2] == 'h0) begin
                        cpixr <= transp_cbufr[143:108];
                end
                else if (rdpcrptr[3:2] == 'h1) begin
                        cpixr <= transp_cbufr[107:72];
                end
                else if (rdpcrptr[3:2] == 'h2) begin
                        cpixr <= transp_cbufr[71:36];
                end
                else if (rdpcrptr[3:2] == 'h3) begin
                        cpixr <= transp_cbufr[35:0];
                end
                else begin
                        cpixr <= 36'bx;
                end

        end
//16b IA case:  only take 8 3 out of 8 10 and rep into 8 8 8 3
//extract 8 10 into cpixr[17:0], then format into rdprcolorin later
//16b RGB case:  similar except formatting step at end
        else if (rmwcsize16) begin
                if (rdpcrptr[3:1] == 'h0) begin
                        cpixr <= transp_cbufr[143:126];
                end
                else if (rdpcrptr[3:1] == 'h1) begin
                        cpixr <= {transp_cbufr[125:108]};
                end
                else if (rdpcrptr[3:1] == 'h2) begin
                        cpixr <= {transp_cbufr[107:90]};
                end
                else if (rdpcrptr[3:1] == 'h3) begin
                        cpixr <= {transp_cbufr[89:72]};
                end
                else if (rdpcrptr[3:1] == 'h4) begin
                        cpixr <= {transp_cbufr[71:54]};
                end
                else if (rdpcrptr[3:1] == 'h5) begin
                        cpixr <= {transp_cbufr[53:36]};
                end
                else if (rdpcrptr[3:1] == 'h6) begin
                        cpixr <= {transp_cbufr[35:18]};
                end
                else if (rdpcrptr[3:1] == 'h7) begin
                        cpixr <= {transp_cbufr[17:0]};
                end
                else begin
                        cpixr <= 36'bx;
                end
        end
        else begin
                if (rdpcrptr[3:0] == 'h0) begin
                        cpixr <= transp_cbufr[143:136];
                end
                else if (rdpcrptr[3:0] == 'h1) begin
                        cpixr <= transp_cbufr[135:128];
                end
                else if (rdpcrptr[3:0] == 'h2) begin
                        cpixr <= transp_cbufr[125:118];
                end
                else if (rdpcrptr[3:0] == 'h3) begin
                        cpixr <= transp_cbufr[117:110];
                end
                else if (rdpcrptr[3:0] == 'h4) begin
                        cpixr <= transp_cbufr[107:100];
                end
                else if (rdpcrptr[3:0] == 'h5) begin
                        cpixr <= transp_cbufr[99:92];
                end
                else if (rdpcrptr[3:0] == 'h6) begin
                        cpixr <= transp_cbufr[89:82];
                end
                else if (rdpcrptr[3:0] == 'h7) begin
                        cpixr <= transp_cbufr[81:74];
                end
                else if (rdpcrptr[3:0] == 'h8) begin
                        cpixr <= transp_cbufr[71:64];
                end
                else if (rdpcrptr[3:0] == 'h9) begin
                        cpixr <= transp_cbufr[63:56];
                end
                else if (rdpcrptr[3:0] == 'ha) begin
                        cpixr <= transp_cbufr[53:46];
                end
                else if (rdpcrptr[3:0] == 'hb) begin
                        cpixr <= transp_cbufr[45:38];
                end
                else if (rdpcrptr[3:0] == 'hc) begin
                        cpixr <= transp_cbufr[35:28];
                end
                else if (rdpcrptr[3:0] == 'hd) begin
                        cpixr <= transp_cbufr[27:20];
                end
                else if (rdpcrptr[3:0] == 'he) begin
                        cpixr <= transp_cbufr[17:10];
                end
                else if (rdpcrptr[3:0] == 'hf) begin
                        cpixr <= transp_cbufr[9:2];
                end
                else begin
                        cpixr <= 36'bx;
                end
        end
end

// SPANBUF ADDRESS MUX

//******handle load of tex load buffer later**********

always @(rdpreqcr or rdpreqzr or rdpreqcw or rdpreqzw or
		rdpcwptr or rdpzwptr or rdpcrptr or rdpzrptr or
		transp_cbufw or transp_zbufw or
   		encw or enzw or encr or enzr or limitcw or limitzw) begin
	if (rdpreqcw & encw) begin
		rdpaddr <= {1'b0, rdpcwptr[6:4]};
		rdpwe <= !limitcw;
		ldcbufr <= low;
                ldzbufr <= low;
		rdpdataw <= transp_cbufw;
	end
        else if (rdpreqzw & enzw) begin
                rdpaddr <= {1'b1, rdpzwptr[6:4]};
		rdpwe <= !limitzw;
		ldcbufr <= low;
                ldzbufr <= low;
		rdpdataw <= transp_zbufw;
        end
        else if (rdpreqcr & encr) begin
                rdpaddr <= {1'b0, rdpcrptr[6:4]};
		rdpwe <= low;
		ldcbufr <= high;
                ldzbufr <= low;
                rdpdataw <= 144'bx;
        end
        else if (rdpreqzr & enzr) begin
                rdpaddr <= {1'b1, rdpzrptr[6:4]};
		rdpwe <= low;
		ldcbufr <= low;
                ldzbufr <= high;
                rdpdataw <= 144'bx;
        end
	else begin
		rdpaddr <= 4'bx;
		rdpwe <= low;
		ldcbufr <= low;
                ldzbufr <= low;
                rdpdataw <= 144'bx;
	end
end

//transparent latches, here we come:

//SPANBUF DATA, WE MUXING

assign rbwe0 = enrbwe & !((killwe0a || killwe0b) & finishd2 & rbphase) & !test_mode1;
assign rbwe1 = enrbwe & !((killwe1a || killwe1b) & finishd2 & rbphase) & !test_mode1;
assign din = rbphase? rdpdataw_d : {transp_rb_hi, transp_rb_lo};
assign we0 = rbphase? rbwe0 : rdpwe;
assign we1 = rbphase? rbwe1 : rdpwe;

ms_latch144 transp_doutd_lat (.d_out(transp_doutd), .clk(clock), .g(rbphase),
      	       	     	      .d_in(dout));
ms_latch72 transp_rb_lo_lat (.d_out(transp_rb_lo), .clk(clock), .g(~extphaserd),
      	       	     	      .d_in(rbdataio[71:0]));
ms_latch72 transp_rb_hi_lat (.d_out(transp_rb_hi), .clk(clock), .g(extphaserd),
      	       	     	      .d_in(rbdataio[71:0]));

ms_latch8n transp_zbufw_lat8_15(.d_out(transp_zbufw[143:136]), .clk(clock),
      	       	     	      .g(ldzbufwen[15]), .d_in(zbufwin[143:136]));
ms_latch10n transp_zbufw_lat10_14(.d_out(transp_zbufw[135:126]), .clk(clock),
      	       	     	      .g(ldzbufwen[14]), .d_in(zbufwin[135:126]));
ms_latch8n transp_zbufw_lat8_13(.d_out(transp_zbufw[125:118]), .clk(clock),
      	       	     	      .g(ldzbufwen[13]), .d_in(zbufwin[125:118]));
ms_latch10n transp_zbufw_lat10_12(.d_out(transp_zbufw[117:108]), .clk(clock),
      	       	     	      .g(ldzbufwen[12]), .d_in(zbufwin[117:108]));
ms_latch8n transp_zbufw_lat8_11(.d_out(transp_zbufw[107:100]), .clk(clock),
      	       	     	      .g(ldzbufwen[11]), .d_in(zbufwin[107:100]));
ms_latch10n transp_zbufw_lat10_10(.d_out(transp_zbufw[99:90]), .clk(clock),
      	       	     	      .g(ldzbufwen[10]), .d_in(zbufwin[99:90]));
ms_latch8n transp_zbufw_lat8_9(.d_out(transp_zbufw[89:82]), .clk(clock),
      	       	     	      .g(ldzbufwen[9]), .d_in(zbufwin[89:82]));
ms_latch10n transp_zbufw_lat10_8(.d_out(transp_zbufw[81:72]), .clk(clock),
      	       	     	      .g(ldzbufwen[8]), .d_in(zbufwin[81:72]));
ms_latch8n transp_zbufw_lat8_7(.d_out(transp_zbufw[71:64]), .clk(clock),
      	       	     	      .g(ldzbufwen[7]), .d_in(zbufwin[71:64]));
ms_latch10n transp_zbufw_lat10_6(.d_out(transp_zbufw[63:54]), .clk(clock),
      	       	     	      .g(ldzbufwen[6]), .d_in(zbufwin[63:54]));
ms_latch8n transp_zbufw_lat8_5(.d_out(transp_zbufw[53:46]), .clk(clock),
      	       	     	      .g(ldzbufwen[5]), .d_in(zbufwin[53:46]));
ms_latch10n transp_zbufw_lat10_4(.d_out(transp_zbufw[45:36]), .clk(clock),
      	       	     	      .g(ldzbufwen[4]), .d_in(zbufwin[45:36]));
ms_latch8n transp_zbufw_lat8_3(.d_out(transp_zbufw[35:28]), .clk(clock),
      	       	     	      .g(ldzbufwen[3]), .d_in(zbufwin[35:28]));
ms_latch10n transp_zbufw_lat10_2(.d_out(transp_zbufw[27:18]), .clk(clock),
      	       	     	      .g(ldzbufwen[2]), .d_in(zbufwin[27:18]));
ms_latch8n transp_zbufw_lat8_1(.d_out(transp_zbufw[17:10]), .clk(clock),
      	       	     	      .g(ldzbufwen[1]), .d_in(zbufwin[17:10]));
ms_latch10n transp_zbufw_lat10_0(.d_out(transp_zbufw[9:0]), .clk(clock),
      	       	     	      .g(ldzbufwen[0]), .d_in(zbufwin[9:0]));

ms_latch8n transp_cbufw_lat8_15(.d_out(transp_cbufw[143:136]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[15]), .d_in(cbufwin[143:136]));
ms_latch10n transp_cbufw_lat10_14(.d_out(transp_cbufw[135:126]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[14]), .d_in(cbufwin[135:126]));
ms_latch8n transp_cbufw_lat8_13(.d_out(transp_cbufw[125:118]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[13]), .d_in(cbufwin[125:118]));
ms_latch10n transp_cbufw_lat10_12(.d_out(transp_cbufw[117:108]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[12]), .d_in(cbufwin[117:108]));
ms_latch8n transp_cbufw_lat8_11(.d_out(transp_cbufw[107:100]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[11]), .d_in(cbufwin[107:100]));
ms_latch10n transp_cbufw_lat10_10(.d_out(transp_cbufw[99:90]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[10]), .d_in(cbufwin[99:90]));
ms_latch8n transp_cbufw_lat8_9(.d_out(transp_cbufw[89:82]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[9]), .d_in(cbufwin[89:82]));
ms_latch10n transp_cbufw_lat10_8(.d_out(transp_cbufw[81:72]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[8]), .d_in(cbufwin[81:72]));
ms_latch8n transp_cbufw_lat8_7(.d_out(transp_cbufw[71:64]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[7]), .d_in(cbufwin[71:64]));
ms_latch10n transp_cbufw_lat10_6(.d_out(transp_cbufw[63:54]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[6]), .d_in(cbufwin[63:54]));
ms_latch8n transp_cbufw_lat8_5(.d_out(transp_cbufw[53:46]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[5]), .d_in(cbufwin[53:46]));
ms_latch10n transp_cbufw_lat10_4(.d_out(transp_cbufw[45:36]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[4]), .d_in(cbufwin[45:36]));
ms_latch8n transp_cbufw_lat8_3(.d_out(transp_cbufw[35:28]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[3]), .d_in(cbufwin[35:28]));
ms_latch10n transp_cbufw_lat10_2(.d_out(transp_cbufw[27:18]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[2]), .d_in(cbufwin[27:18]));
ms_latch8n transp_cbufw_lat8_1(.d_out(transp_cbufw[17:10]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[1]), .d_in(cbufwin[17:10]));
ms_latch10n transp_cbufw_lat10_0(.d_out(transp_cbufw[9:0]), 
				.clk(clock),
      	       	     	      .g(ldcbufwen[0]), .d_in(cbufwin[9:0]));

//problem:  want neg clk/gclk below;  must work for conflict case
// (e.g. ldc/zbuf one clk only, gclk hi stuck) as well as normal stall cases
// (e.g. ldc/zbuf multiclock, gclk stuck hi).  OK to use clk?

ms_latch144 transp_cbufr_lat (.d_out(transp_cbufr), .clk(clock), .g(ldcbufr),
                              .d_in(dout));

ms_latch144 transp_zbufr_lat (.d_out(transp_zbufr), .clk(clock), .g(ldzbufr),
                              .d_in(dout));


//DETECT CASES OF ACCESS CONFLICTS

always @(rdpreqcr or rdpreqzr or rdpreqcw or rdpreqzw or stallrwen) begin
	if ((rdpreqcr & rdpreqzr) || (rdpreqcw & rdpreqzw) ||
		((rdpreqcr || rdpreqzr) & (rdpreqcw || rdpreqzw))) begin
		stallrw <= stallrwen;
	end
	else begin
		stallrw <= low;
	end
end

//detect case of wrong phase for rdp r/w access to spanbuf

always @(rdpreqcr or rdpreqzr or rdpreqcw or rdpreqzw or rbphase) begin
        if (rbphase & (rdpreqcr || rdpreqzr || rdpreqcw || rdpreqzw)) begin
                stallphase <= high;
        end
        else begin
                stallphase <= low;
        end
end


always @(rbphase or rbaddr0 or rbaddr1 or rdpaddr) begin
	if (rbphase) begin
		addr0 <= rbaddr0;
		addr1 <= rbaddr1;
	end
	else if (!rbphase) begin
		addr0 <= rdpaddr;
		addr1 <= rdpaddr;
	end
	else begin
		addr0 <= 4'bx;
		addr1 <= 4'bx;
	end
end

//LOAD data path input mux:  cut down to 64b to save gates;  add mux in rd path

always @(transp_zbufr or rdpzrptr) begin
	if (!rdpzrptr[3]) begin
		loadsavein <= {transp_zbufr[143:128], transp_zbufr[125:110],
			transp_zbufr[107:92], transp_zbufr[89:74]};
	end
	else begin
		loadsavein <= {transp_zbufr[71:56], transp_zbufr[53:38],
			transp_zbufr[35:20], transp_zbufr[17:2]};
	end
end

//Z PIXEL INSERTION (to transparent latch transp_zbufw)
//note:  this delay is in critical path thru latch into reg write...tsu=3ns

always @(rmwcopymode or rdpzwptrn or rdpwdepth or rdpwpixz or ldzbufw or
				copyout or rmwcsize8 or rmwcsize16) begin
        if (!rmwcopymode) begin
		zbufwin <= {8{rdpwdepth}};

                if (rdpzwptrn[3:1] == 'h0) begin
			ldzbufw <= 'hc000;
		end
                else if (rdpzwptrn[3:1] == 'h1) begin
			ldzbufw <= 'h3000;
                end
                else if (rdpzwptrn[3:1] == 'h2) begin
			ldzbufw <= 'h0c00;
                end
                else if (rdpzwptrn[3:1] == 'h3) begin
                        ldzbufw <= 'h0300;
                end
                else if (rdpzwptrn[3:1] == 'h4) begin
			ldzbufw <= 'h00c0;
                end
                else if (rdpzwptrn[3:1] == 'h5) begin
                        ldzbufw <= 'h0030;
                end
                else if (rdpzwptrn[3:1] == 'h6) begin
			ldzbufw <= 'h000c;
                end
                else if (rdpzwptrn[3:1] == 'h7) begin
                        ldzbufw <= 'h0003;
                end
                else begin
                        ldzbufw <= 16'bx;
                end

	end
	else if (rmwcopymode) begin
		zbufwin <= {copyout[63:48], copyout[48], copyout[48],
			copyout[47:32], copyout[32], copyout[32],
                        copyout[31:16], copyout[16], copyout[16],
                        copyout[15:0], copyout[0], copyout[0],
			copyout[63:48], copyout[48], copyout[48],
                        copyout[47:32], copyout[32], copyout[32],
                        copyout[31:16], copyout[16], copyout[16],
                        copyout[15:0], copyout[0], copyout[0]};
		if (rmwcsize16 & rdpzwptrn[3]) begin
			ldzbufw <= 'h00ff;
		end
		else if (rmwcsize16 & !rdpzwptrn[3]) begin
			ldzbufw <= 'hff00;
		end
		else if (rmwcsize8 & (rdpzwptrn[3:2] == 'h0)) begin
			ldzbufw <= 'hf000;
		end
                else if (rmwcsize8 & (rdpzwptrn[3:2] == 'h1)) begin
                        ldzbufw <= 'h0f00;
                end
                else if (rmwcsize8 & (rdpzwptrn[3:2] == 'h2)) begin
                        ldzbufw <= 'h00f0;
                end
                else if (rmwcsize8 & (rdpzwptrn[3:2] == 'h3)) begin
                        ldzbufw <= 'h000f;
                end
		else begin
			ldzbufw <= 16'bx;
		end
	end
	else begin
		zbufwin <= 144'bx;
		ldzbufw <= 16'bx;
	end
	ldzbufwen <= ldzbufw & {16{rdpwpixz}};
end

//C PIXEL INSERTION (to transparent latch transp_cbufw)
//note:  this delay is in critical path thru latch into reg write...tsu=3ns

//32b RGB:  first format rdpwcolor into cpixw, then demux into cbufwin

always @(rdpcwptrn or rdpwcolor or rmwcsize32 or rmwcsize16 or rmwcsize8
	or ldcbufw or rmwrgbmode or cpixw or rdpwpixc) begin
        if (rmwcsize32) begin
		cpixw <= {rdpwcolor[26:11], {2{rdpwcolor[11]}},
				rdpwcolor[10:0], 7'b0};
		cbufwin <= {4{cpixw}};
                if (rdpcwptrn[3:2] == 'h0) begin
			ldcbufw <= 'hf000;
                end
                else if (rdpcwptrn[3:2] == 'h1) begin
			ldcbufw <= 'h0f00;
                end
                else if (rdpcwptrn[3:2] == 'h2) begin
                        ldcbufw <= 'h00f0;
                end
                else if (rdpcwptrn[3:2] == 'h3) begin
                        ldcbufw <= 'h000f;
                end
		else begin
			ldcbufw <= 16'bx;
		end
        end
	else if (rmwcsize16) begin
		if (!rmwrgbmode) begin
			cpixw <= {rdpwcolor[26:19], rdpwcolor[2:0], 7'h0};
		end
		else if (rmwrgbmode) begin
			cpixw <= {rdpwcolor[26:22], rdpwcolor[18:14],
				rdpwcolor[10:6], rdpwcolor[2:0]};
		end
		cbufwin <= {8{cpixw[17:0]}};

                if (rdpcwptrn[3:1] == 'h0) begin
			ldcbufw <= 'hc000;
                end
                else if (rdpcwptrn[3:1] == 'h1) begin
			ldcbufw <= 'h3000;
                end
                else if (rdpcwptrn[3:1] == 'h2) begin
                        ldcbufw <= 'h0c00;
                end
                else if (rdpcwptrn[3:1] == 'h3) begin
			ldcbufw <= 'h0300;
                end
                else if (rdpcwptrn[3:1] == 'h4) begin
                        ldcbufw <= 'h00c0;
                end
                else if (rdpcwptrn[3:1] == 'h5) begin
			ldcbufw <= 'h0030;
                end
                else if (rdpcwptrn[3:1] == 'h6) begin
                        ldcbufw <= 'h000c;
                end
                else if (rdpcwptrn[3:1] == 'h7) begin
			ldcbufw <= 'h0003;
                end
                else begin
                        ldcbufw <= 16'bx;
                end
	end
	else if (rmwcsize8) begin
		cpixw <= {rdpwcolor[26:11], {2{rdpwcolor[11]}}};
		cbufwin <= {8{cpixw[17:0]}};

                if (rdpcwptrn[3:0] == 'h0) begin
			ldcbufw <= 'h8000;
                end
                else if (rdpcwptrn[3:0] == 'h1) begin
                        ldcbufw <= 'h4000;
                end
                else if (rdpcwptrn[3:0] == 'h2) begin
                        ldcbufw <= 'h2000;
                end
                else if (rdpcwptrn[3:0] == 'h3) begin
                        ldcbufw <= 'h1000;
                end
                else if (rdpcwptrn[3:0] == 'h4) begin
                        ldcbufw <= 'h0800;
                end
                else if (rdpcwptrn[3:0] == 'h5) begin
                        ldcbufw <= 'h0400;
                end
                else if (rdpcwptrn[3:0] == 'h6) begin
                        ldcbufw <= 'h0200;
                end
                else if (rdpcwptrn[3:0] == 'h7) begin
                        ldcbufw <= 'h0100;
                end
                else if (rdpcwptrn[3:0] == 'h8) begin
                        ldcbufw <= 'h0080;
                end
                else if (rdpcwptrn[3:0] == 'h9) begin
                        ldcbufw <= 'h0040;
                end
                else if (rdpcwptrn[3:0] == 'ha) begin
                        ldcbufw <= 'h0020;
                end
                else if (rdpcwptrn[3:0] == 'hb) begin
                        ldcbufw <= 'h0010;
                end
                else if (rdpcwptrn[3:0] == 'hc) begin
                        ldcbufw <= 'h0008;
                end
                else if (rdpcwptrn[3:0] == 'hd) begin
                        ldcbufw <= 'h0004;
                end
                else if (rdpcwptrn[3:0] == 'he) begin
                        ldcbufw <= 'h0002;
                end
                else if (rdpcwptrn[3:0] == 'hf) begin
                        ldcbufw <= 'h0001;
                end
		else begin
			ldcbufw <= 16'bx;
		end
	end
        else begin
                cpixw <= 36'bx;
		cbufwin <= 144'bx;
		ldcbufw <= 16'bx;
        end

	ldcbufwen <= ldcbufw & {16{rdpwpixc}};
end

//COPY DATA MUX for above data "copyout":  4x16b or 4x8b per clock
//never discard leading texel (leftmost) from tex unit, so no setup clks;
//form 64b bucket (for 8b, it's 32b replicated 2x) of texels.

always @(rmwcsize16 or rmwcsize8 or rdpzwptr or copydin or copybuf) begin
	if (rmwcsize16) begin
		if (rdpzwptr[2:1] == 'h0) begin
			copyout <= copydin;
		end
		else if (rdpzwptr[2:1] == 'h1) begin
                        copyout <= {copybuf[15:0], copydin[63:16]};
                end
                else if (rdpzwptr[2:1] == 'h2) begin
                        copyout <= {copybuf[31:0], copydin[63:32]};
                end
                else if (rdpzwptr[2:1] == 'h3) begin
                        copyout <= {copybuf[47:0], copydin[63:48]};
                end
		else begin
			copyout <= 64'bx;
		end
	end
	else if (rmwcsize8) begin
                if (rdpzwptr[1:0] == 'h0) begin
                        copyout <= {2{copydin[63:56], copydin[47:40],
				copydin[31:24], copydin[15:8]}};
                end
                else if (rdpzwptr[1:0] == 'h1) begin
                        copyout <= {2{copybuf[15:8], copydin[63:56],
				copydin[47:40], copydin[31:24]}};
                end
                else if (rdpzwptr[1:0] == 'h2) begin
                        copyout <= {2{copybuf[31:24], copybuf[15:8],
				copydin[63:56], copydin[47:40]}};
                end
                else if (rdpzwptr[1:0] == 'h3) begin
                        copyout <= {2{copybuf[47:40], copybuf[31:24],
				copybuf[15:8], copydin[63:56]}};
                end
		else begin
			copyout <= 64'bx;
		end
	end
	else begin
		copyout <= 64'bx;
	end
end

//
always @(rbdataio) begin
	dbus_dout <= {rbdataio[71:56], rbdataio[53:38], rbdataio[35:20],
				rbdataio[17:2]};
	ebus_dout <= {rbdataio[55:54], rbdataio[37:36], rbdataio[19:18],
				rbdataio[1:0]};
end

always @(posedge clock) begin
   if (reset_l == 1'b0) begin
      // resettable registers
// synopsys translate_off
`ifdef MSPAN_MON
	firstwr_arcs <= 8'b0;
	wrz_arcs <= 4'b0;
	rdc_arcs <= 3'b0;
`endif
// synopsys translate_on
      end
   else if (start_gclk) begin
        copybuf <= copydin;
	copyoutd <= copyout;
  	
	if (!alphacompen || !wrcopymode_buf) begin
		copywen <= 8'hff;
	end
	else if (alphacompen & wrcopymode_buf) begin
		if (wrcsize8_buf) begin
		  if (!dithalphaen) begin
			copywen <= ~{2{(blendalpha > copyoutd[31:24]),
				(blendalpha > copyoutd[23:16]),
				(blendalpha > copyoutd[15:8]),
				(blendalpha > copyoutd[7:0])}};
//                      copywen <= {2{(|copyoutd[31:24]),
//                              (|copyoutd[23:16]),
//                              (|copyoutd[15:8]),
//                              (|copyoutd[7:0])}};
		  end
		  else begin
			copywen <= ~{2{(dithalpha > copyoutd[31:24]),
                               ({dithalpha[1:0], dithalpha[7:2]} > copyoutd[23:16]),
                               ({dithalpha[3:0], dithalpha[7:4]} > copyoutd[15:8]),
                               ({dithalpha[5:0], dithalpha[7:6]} > copyoutd[7:0])}};
		  end
		end
		else if (wrcsize16_buf) begin
			copywen <= {{2{copyoutd[48]}}, {2{copyoutd[32]}},
					{2{copyoutd[16]}}, {2{copyoutd[0]}}};
		end
		else begin
			copywen <= 8'bx;
		end
	end
	else begin
		copywen <= 8'bx;
	end

//        rdprdepthd <= rdprdepth;   

rdprdepthd <= {(rdprdepth[17:4] & {14{rmwenreadz}}),
				rdprdepth[3:0] | ~{4{rmwenreadz}}};

//delay so c read is 2 clks later than z read

//LOAD input registers and alignment
//note:  for LOAD, we use z reads/zrbuf but we use cwmask;  fudge internally;
//latency:  same as rdp zread data (versus startspant0 received, that is...)

        loadsave <= loadsavein;
	rdpzrptrd <= rdpzrptr[2:0];

        if (!(load_dve)) begin
                loadsend <= copy_load;
        end
        else if (rdpzrptrd[2:0] == 'h0) begin
                if (!rmwloadtlut) begin
                        loadsend <= loadsave;
                end
                else begin
                        loadsend <= {4{loadsave[63:48]}};
                end
        end
        else if (rdpzrptrd[2:0] == 'h1) begin
                        loadsend <= {loadsave[55:0], loadsavein[63:56]};
        end
        else if (rdpzrptrd[2:0] == 'h2) begin
                if (!rmwloadtlut) begin
                        loadsend <= {loadsave[47:0], loadsavein[63:48]};
                end
                else begin
                        loadsend <= {4{loadsave[47:32]}};
                end
        end
        else if (rdpzrptrd[2:0] == 'h3) begin
                        loadsend <= {loadsave[39:0], loadsavein[63:40]};
        end
        else if (rdpzrptrd[2:0] == 'h4) begin
                if (!rmwloadtlut) begin
                        loadsend <= {loadsave[31:0], loadsavein[63:32]};
                end
                else begin
                        loadsend <= {4{loadsave[31:16]}};
                end
        end
        else if (rdpzrptrd[2:0] == 'h5) begin
                        loadsend <= {loadsave[23:0], loadsavein[63:24]};
        end
        else if (rdpzrptrd[2:0] == 'h6) begin
                if (!rmwloadtlut) begin
                        loadsend <= {loadsave[15:0], loadsavein[63:16]};
                end
                else begin
                        loadsend <= {4{loadsave[15:0]}};
                end
        end
        else if (rdpzrptrd[2:0] == 'h7) begin
                        loadsend <= {loadsave[7:0], loadsavein[63:8]};
        end

//for prop delay, the 3 lsb's of zrptr are constant for loads.  (tv won't know)
//**********not true for load tlut!!!*********************

//loadsavein is defined outside clock loop;  rdpzrptr loaded at stptzr-1.

//Z PIXEL EXTRACTION (to register rdprdepth):  18b per value

   if (rdprpixz) begin
        if (rdpzrptr[3:1] == 'h0) begin
                rdprdepth <= transp_zbufr[143:126];
        end
        else if (rdpzrptr[3:1] == 'h1) begin
                rdprdepth <= transp_zbufr[125:108];
        end
        else if (rdpzrptr[3:1] == 'h2) begin
                rdprdepth <= transp_zbufr[107:90];
        end
        else if (rdpzrptr[3:1] == 'h3) begin
                rdprdepth <= transp_zbufr[89:72];
        end
        else if (rdpzrptr[3:1] == 'h4) begin
                rdprdepth <= transp_zbufr[71:54];
        end
        else if (rdpzrptr[3:1] == 'h5) begin
                rdprdepth <= transp_zbufr[53:36];
        end
        else if (rdpzrptr[3:1] == 'h6) begin
                rdprdepth <= transp_zbufr[35:18];
        end
        else if (rdpzrptr[3:1] == 'h7) begin
                rdprdepth <= transp_zbufr[17:0];
        end
   end
   else if (!(rdprpixz)) begin
                rdprdepth <= rdprdepth;
   end
   else begin
                rdprdepth <= 18'bx;
   end
//C PIXEL EXTRACTION (to register rdprcolorin) part II

//32b case:  only take 8883 out of 8 10 8 10 fields
//first extract 36b field into cpixr, then do formatting into rdprcolorin
   if (rdprpixc) begin
        if (rmwcsize32) begin
                rdprcolorin <= {cpixr[35:20], cpixr[17:7]};
        end
//16b IA case:  only take 8 3 out of 8 10 and rep into 8 8 8 3
//extract 8 10 into cpixr[17:0], then format into rdprcolorin later
//16b RGB case:  similar except formatting step at end
        else if (rmwcsize16) begin
                if (!rmwrgbmode) begin
                rdprcolorin <= {cpixr[17:10], cpixr[17:10], cpixr[17:10],
                                cpixr[9:7]};
                end
                else if (rmwrgbmode) begin
                rdprcolorin <= {cpixr[17:13], 3'h0, cpixr[12:8], 3'h0,
                                cpixr[7:3], 3'h0, cpixr[2:0]};
                end
        end
        else begin
                rdprcolorin <= {cpixr[7:0], cpixr[7:0], cpixr[7:0],
                                3'h7};
        end
   end
   else if (!(rdprpixc)) begin
                rdprcolorin <= rdprcolorin;
   end
   else begin
                rdprcolorin <= 27'bx;
   end

end
end

//instantiated version of above, so we explicitly call for negedge DFF
//initial (reset) state can be arbitrary, we mod to high for simplicity of muxing OR

assign extfn = ((start & start4ms) & ~phaseinvert) || (~(start & start4ms) & ~extphaserd);

always @(posedge clock) begin
   if (reset_l == 1'b0) begin
      // resettable registers
	extphase <= low;
	phaseinvert <= low;
	extphaserd <= low;
	statec <= state_firstwr;
	encr<= high;
	enzr<= high;
	encw<= high;
	enzw<= high;
	stallrwen <= high;
//stallrwen is initially high, we use sm to temp reset after conflict resolved

      // nonresettable registers
//     	transp_cbufr <= 144'bx;
//     	transp_zbufr <= 144'bx;
//     	transp_cbufw <= 144'bx;
//     	transp_zbufw <= 144'bx;
      end
   else begin

	rdpdataw_d  <= rdpdataw;			//XXX

	extphaserd <= extphaser;

	if (phaseinvert) begin
		if (start) begin
			extphase <= low;
		end
		else begin
			extphase <= !extphase;
		end
	end
	else if (!phaseinvert) begin
		if (start) begin
			extphase <= high;
		end
		else begin
			extphase <= !extphase;
		end
	end

//check wmask formats after finish design of wmask logic
//native cwmask is in pixel byte order;  mirror within ea byte
// to get rdram format
//	via earlier always @ statement to cwmask3[0:63] <= cwmask2[63:0]

//created cwmask2 as a byte rotated function to align with start of span

	if (dma_read_en) begin
		rbdataio <= {dbus_din[63:48], ebus_din[7:6],
			dbus_din[47:32], ebus_din[5:4],
			dbus_din[31:16], ebus_din[3:2],
			dbus_din[15:0], ebus_din[1:0]};
	end
	else if (selcwmask || (wrcopymode & selzwmask)) begin
//		rbdataw <= {cwmask[7:0], cwmask[15:8],
//			2'h0, cwmask[23:16], cwmask[31:24],
//			2'h0, cwmask[39:32], cwmask[47:40],
//			2'h0, cwmask[55:48], cwmask[63:56], 2'h0};
//              rbdataw <= {cwmask2[0:15],
//			2'h0, cwmask2[16:31],
//			2'h0, cwmask2[32:47],
//			2'h0, cwmask2[48:63], 2'h0};
              rbdataio <= {cwmask3[63], cwmask3[62], cwmask3[61], cwmask3[60],
		cwmask3[59], cwmask3[58], cwmask3[57], cwmask3[56],
		cwmask3[55], cwmask3[54], cwmask3[53], cwmask3[52],
		cwmask3[51], cwmask3[50], cwmask3[49], cwmask3[48],
                        2'h0, cwmask3[47], cwmask3[46], cwmask3[45],
		cwmask3[44], cwmask3[43], cwmask3[42], cwmask3[41], cwmask3[40],
  		cwmask3[39], cwmask3[38], cwmask3[37], cwmask3[36], cwmask3[35],
		cwmask3[34], cwmask3[33], cwmask3[32], 
                        2'h0, cwmask3[31],  cwmask3[30],  cwmask3[29],
		cwmask3[28],  cwmask3[27],  cwmask3[26],  cwmask3[25],
		cwmask3[24], cwmask3[23],  cwmask3[22], cwmask3[21],
		cwmask3[20], cwmask3[19], cwmask3[18], cwmask3[17], cwmask3[16],
                        2'h0, cwmask3[15], cwmask3[14], cwmask3[13],
		cwmask3[12], cwmask3[11], cwmask3[10], cwmask3[9], cwmask3[8],
		cwmask3[7], cwmask3[6], cwmask3[5], cwmask3[4], cwmask3[3],
		cwmask3[2], cwmask3[1], cwmask3[0], 2'h0};
	end
	else if (selzwmask) begin
//		rbdataio <= {zwmask2[31], zwmask2[31], zwmask2[30],
//                  zwmask2[30], zwmask2[29], zwmask2[29], zwmask2[28], zwmask2[28],
//                2'h0, zwmask2[27], zwmask2[27], zwmask2[26],
//                  zwmask2[26], zwmask2[25], zwmask2[25], zwmask2[24], zwmask2[24],
//                zwmask2[23], zwmask2[23], zwmask2[22],
//                  zwmask2[22], zwmask2[21], zwmask2[21], zwmask2[20], zwmask2[20],
//                2'h0, zwmask2[19], zwmask2[19], zwmask2[18],
//                  zwmask2[18], zwmask2[17], zwmask2[17], zwmask2[16], zwmask2[16],
//                zwmask2[15], zwmask2[15], zwmask2[14],
//                  zwmask2[14], zwmask2[13], zwmask2[13], zwmask2[12], zwmask2[12],
//                2'h0, zwmask2[11], zwmask2[11], zwmask2[10],
//                  zwmask2[10], zwmask2[9], zwmask2[9], zwmask2[8], zwmask2[8],
//                zwmask2[7], zwmask2[7], zwmask2[6],
//                  zwmask2[6], zwmask2[5], zwmask2[5], zwmask2[4], zwmask2[4],
//                zwmask2[3], zwmask2[3], zwmask2[2],
//                  zwmask2[2], zwmask2[1], zwmask2[1], zwmask2[0], zwmask2[0]};


             rbdataio <= {zwmask2[28], zwmask2[28], zwmask2[29],
               zwmask2[29], zwmask2[30], zwmask2[30], zwmask2[31], zwmask2[31],
               zwmask2[24], zwmask2[24], zwmask2[25],
               zwmask2[25], zwmask2[26], zwmask2[26], zwmask2[27], zwmask2[27],
               2'h0, zwmask2[20], zwmask2[20], zwmask2[21],
               zwmask2[21], zwmask2[22], zwmask2[22], zwmask2[23], zwmask2[23],
               zwmask2[16], zwmask2[16], zwmask2[17],
               zwmask2[17], zwmask2[18], zwmask2[18], zwmask2[19], zwmask2[19],
               2'h0, zwmask2[12], zwmask2[12], zwmask2[13],
               zwmask2[13], zwmask2[14], zwmask2[14], zwmask2[15], zwmask2[15],
               zwmask2[8], zwmask2[8], zwmask2[9],
               zwmask2[9], zwmask2[10], zwmask2[10], zwmask2[11], zwmask2[11],
               2'h0, zwmask2[4], zwmask2[4], zwmask2[5],
               zwmask2[5], zwmask2[6], zwmask2[6], zwmask2[7], zwmask2[7],
               zwmask2[0], zwmask2[0], zwmask2[1],
               zwmask2[1], zwmask2[2], zwmask2[2], zwmask2[3], zwmask2[3],
               2'h0};

//		rbdataio <= {zwmask[0], zwmask[0], zwmask[1],
//                 zwmask[1], zwmask[2], zwmask[2], zwmask[3], zwmask[3],
//		zwmask[4], zwmask[4], zwmask[5],
//                 zwmask[5], zwmask[6], zwmask[6], zwmask[7], zwmask[7],
//		2'h0, zwmask[8], zwmask[8], zwmask[9],
//                 zwmask[9], zwmask[10], zwmask[10], zwmask[11], zwmask[11],
//     		zwmask[12], zwmask[12], zwmask[13],
//               zwmask[13], zwmask[14], zwmask[14], zwmask[15], zwmask[15],
//		2'h0, zwmask[16], zwmask[16], zwmask[17],
//                 zwmask[17], zwmask[18], zwmask[18], zwmask[19], zwmask[19],
//              zwmask[20], zwmask[20], zwmask[21],
//               zwmask[21], zwmask[22], zwmask[22], zwmask[23], zwmask[23],
//		2'h0, zwmask[24], zwmask[24], zwmask[25],
//                 zwmask[25], zwmask[26], zwmask[26], zwmask[27], zwmask[27],
//              zwmask[28], zwmask[28], zwmask[29],
//               zwmask[29], zwmask[30], zwmask[30], zwmask[31], zwmask[31],
//		2'h0};
//                rbdataio <= {zwmask[3], zwmask[3], zwmask[2],
//                  zwmask[2], zwmask[1], zwmask[1], zwmask[0], zwmask[0],
//                zwmask[7], zwmask[7], zwmask[6],
//                  zwmask[6], zwmask[5], zwmask[5], zwmask[4], zwmask[4],
//                2'h0, zwmask[11], zwmask[11], zwmask[10],
//                  zwmask[10], zwmask[9], zwmask[9], zwmask[8], zwmask[8],
//                zwmask[15], zwmask[15], zwmask[14],
//                  zwmask[14], zwmask[13], zwmask[13], zwmask[12], zwmask[12],
//                2'h0, zwmask[19], zwmask[19], zwmask[18],
//                  zwmask[18], zwmask[17], zwmask[17], zwmask[16], zwmask[16],
//                zwmask[23], zwmask[23], zwmask[22],
//                  zwmask[22], zwmask[21], zwmask[21], zwmask[20], zwmask[20],
//                2'h0, zwmask[27], zwmask[27], zwmask[26],
//                  zwmask[26], zwmask[25], zwmask[25], zwmask[24], zwmask[24],
//                zwmask[31], zwmask[31], zwmask[30],
//                  zwmask[30], zwmask[29], zwmask[29], zwmask[28], zwmask[28],
//                2'h0};
	end
	else if (wrfillmode) begin
		rbdataio <= {2{wrfillcolor[31:16], wrfillcolor[16], wrfillcolor[16],
			wrfillcolor[15:0], wrfillcolor[0], wrfillcolor[0]}};
        end
	else if ((addrxi)) begin
		rbdataio <= transp_doutd[143:72];
	end
	else if (~(addrxi)) begin
		rbdataio <= transp_doutd[71:0];
	end
	else begin
		rbdataio <= 72'bx;
	end

//must upgrade below for split addressing********************************

//the following is initialization, some variable time before xfer occurs
//but the assertion continues until a known time before xfer.

	if (selrbcr) begin
//		phaseinvert <= rdxdec ^ rdcxi[3];
		phaseinvert <= rdcxi[3];
                killwe1a <= start & !rbphase & rdxdec & rdcxi[3];
                killwe0a <= start & !rbphase & !rdxdec & !rdcxi[3];
                killwe0b <= start & rbphase & !rdxdec & rdcxi[3];
                killwe1b <= start & rbphase & rdxdec & !rdcxi[3];
		addrxdec <= rdxdec;
		addrxi <= rdcxi[3];
		rbaddr0 <= {1'b0, (rbcrptr[2:0] +
			{2'h0, start & rbphase & rdcxi[3] & !rdxdec})};
                rbaddr1 <= {1'b0, (rbcrptr[2:0] +
                        {2'h0, start & rbphase & !rdcxi[3] & rdxdec})};
	end
	else if (selrbzr) begin
//		phaseinvert <= rdxdec ^ rdzxi[3];
		phaseinvert <= rdzxi[3];
		killwe1a <= start & !rbphase & rdxdec & rdzxi[3];
		killwe0a <= start & !rbphase & !rdxdec & !rdzxi[3];
                killwe0b <= start & rbphase & !rdxdec & rdzxi[3];
                killwe1b <= start & rbphase & rdxdec & !rdzxi[3];
		addrxdec <= rdxdec;
		addrxi <= rdzxi[3];
		rbaddr0 <= {1'b1, (rbzrptr[2:0] +
                        {2'h0, start & rbphase & rdzxi[3] & !rdxdec})};
                rbaddr1 <= {1'b1, (rbzrptr[2:0] +
                        {2'h0, start & rbphase & !rdzxi[3] & rdxdec})};
	end
	else if (selrbcw & !(selcwmask || selzwmask)) begin
		phaseinvert <= wrxdec ^ wrcxi[3];
		addrxdec <= wrxdec;
		addrxi <= wrcxi[3];
		rbaddr0 <= {1'b0, (rbcwptr[2:0] +
                        {2'h0, start & rbphase & wrcxi[3] & !wrxdec})};
                rbaddr1 <= {1'b0, (rbcwptr[2:0] +
                        {2'h0, start & rbphase & !wrcxi[3] & wrxdec})};
        end
        else if (selrbzw & !(selcwmask || selzwmask)) begin
                phaseinvert <= wrxdec ^ wrzxi[3];
		addrxdec <= wrxdec;
		addrxi <= wrzxi[3];
		rbaddr0 <= {1'b1, (rbzwptr[2:0] +
                        {2'h0, start & rbphase & wrzxi[3] & !wrxdec})};
                rbaddr1 <= {1'b1, (rbzwptr[2:0] +
                        {2'h0, start & rbphase & !wrzxi[3] & wrxdec})};
        end
//****must modify below to increment at rbphase or whatever, not static***
	else begin
		killwe0a <= killwe0a;
		killwe1a <= killwe1a;
                killwe0b <= killwe0b;
                killwe1b <= killwe1b;
		addrxdec <= addrxdec;
		addrxi <= !addrxi;
		phaseinvert <= phaseinvert;
		rbaddr0 <= {rbaddr0[3], (rbaddr0[2:0] +
				{2'h0, rbphase & !(startd & addrxdec & addrxi)})};
                rbaddr1 <= {rbaddr1[3], (rbaddr1[2:0] +
				{2'h0, rbphase & !(startd & !addrxdec & !addrxi)})};
	end

	startd <= start;

//above, for split addressing, phaseinvert is used to modify extphase so that
//it correctly implies data ordering in/out muxing from/to rdram;  here we
//mod addresses so as to have split address cases, we init addresses as fn of
//xdec, xi[3], and whether start is aligned with rbphase.  if we have to init
//address to -1 (relative), we instead merely inhibit first increment, so that
//there is no issue of having to disable WE of underflowed address.  when we have
//to init it to +1, we do it above as initial value, and we still have to kill
//the WE early for that case alone, to be done.

//RDP SPANBUF ACCESS CONFLICT RESOLUTION STATE MACHINE

//note: the assumption here is that the first prioritized event in the conflict
//happens, during which stallrw is asserted. so, in this state
//machine we need to determine what this first event was, and then take it from
//there as needed, stalling 2 clocks per.
//priority is cw, zw, cr, zr (arbitrary, since clock is stopped and ptrs freeze)

//note that the actual arbitration mux transitions occur during rbphase,
//so as not to enter into critical path.  but the normal path is probably
//about the same--and of course timing analyzer isn't smart enuf to know diff.

	case (statec)
		state_firstwr : begin
//			stallrwen <= !stopgclock || stallrwen & rbphase;

			if (stallptr) begin
				statec <= state_firstwr;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= 1'b1 | firstwr_arcs;		    // A
`endif
// synopsys translate_on
				stallrwen <= stallrwen;
                                encw <= high;
                                enzw <= high;
                                encr <= high;
                                enzr <= high;
			end
			else if (stallrw & rdpreqcw & rdpreqzw & !rbphase) begin
				statec <= state_wrz;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= { 1'b1, 1'b0 } | firstwr_arcs;	    // B
`endif
// synopsys translate_on
				encw <= low;
			end
			else if (stallrw & rdpreqcw & rdpreqcr & !rbphase) begin
				statec <= state_rdc;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= { 1'b1, 2'b0 } | firstwr_arcs;	    // C
`endif
// synopsys translate_on
				encw <= low;
			end
			else if (stallrw & rdpreqcw & rdpreqzr & !rbphase) begin
				statec <= state_rdz;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= { 1'b1, 3'b0 } | firstwr_arcs;	    // D
`endif
// synopsys translate_on
				encw <= low;
			end
                        else if (stallrw & rdpreqzw & rdpreqcr & !rbphase) begin
                                statec <= state_rdc;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= { 1'b1, 4'b0 } | firstwr_arcs;	    // E
`endif
// synopsys translate_on
                                enzw <= low;
                        end
                        else if (stallrw & rdpreqzw & rdpreqzr & !rbphase) begin
                                statec <= state_rdz;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= { 1'b1, 5'b0 } | firstwr_arcs;	    // F
`endif
// synopsys translate_on
                                enzw <= low;
                        end
                        else if (stallrw & rdpreqcr & rdpreqzr & !rbphase) begin
                                statec <= state_rdz;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= { 1'b1, 6'b0 } | firstwr_arcs;	    // G
`endif
// synopsys translate_on
                                encr <= low;
                        end
                        else begin
                                statec <= state_firstwr;
// synopsys translate_off
`ifdef MSPAN_MON
firstwr_arcs <= { 1'b1, 7'b0 } | firstwr_arcs;	    // H
`endif
// synopsys translate_on
                        stallrwen <= !stopgclock || stallrwen & rbphase;
                                encw <= high;
                                enzw <= high;
                                encr <= high;
                                enzr <= high;
                        end
		end

		state_wrz : begin
			if (rdpreqcr & !rbphase) begin
                                statec <= state_rdc;
// synopsys translate_off
`ifdef MSPAN_MON
wrz_arcs <= 1'b1 | firstwr_arcs;		    // A
`endif
// synopsys translate_on
                                enzw <= low;
                        end
                        else if (rdpreqzr & !rbphase) begin
                                statec <= state_rdz;
// synopsys translate_off
`ifdef MSPAN_MON
wrz_arcs <= { 1'b1, 1'b0 } | firstwr_arcs;	    // B
`endif
// synopsys translate_on
                                enzw <= low;
                        end
                        else if (!rdpreqcr & !rdpreqzr & rbphase) begin
                                statec <= state_firstwr;
// synopsys translate_off
`ifdef MSPAN_MON
wrz_arcs <= { 1'b1, 2'b0 } | firstwr_arcs;	    // C
`endif
// synopsys translate_on
                                stallrwen <= low;
                        end
                        else begin
                                statec <= state_wrz;
// synopsys translate_off
`ifdef MSPAN_MON
wrz_arcs <= { 1'b1, 3'b0 } | firstwr_arcs;	    // D
`endif
// synopsys translate_on
                        end
                end

		state_rdc : begin
			if (rdpreqzr & !rbphase) begin
                                statec <= state_rdz;
// synopsys translate_off
`ifdef MSPAN_MON
rdc_arcs <= 1'b1 | firstwr_arcs;		    // A
`endif
// synopsys translate_on
                                encr <= low;
                        end
			else if (!rdpreqzr & rbphase) begin
				statec <= state_firstwr;
// synopsys translate_off
`ifdef MSPAN_MON
rdc_arcs <= { 1'b1, 1'b0 } | firstwr_arcs;	    // B
`endif
// synopsys translate_on
				stallrwen <= low;
			end
                        else begin
                                statec <= state_rdc;
// synopsys translate_off
`ifdef MSPAN_MON
rdc_arcs <= { 1'b1, 2'b0 } | firstwr_arcs;	    // C
`endif
// synopsys translate_on
                        end
                end

                state_rdz : begin
				statec <= state_firstwr;
				stallrwen <= low;
                end

		default :
				statec <= 'bx;
endcase
      end
   end
endmodule