ms_sm.v
25.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
// Module instances modified by /home/rws/workarea/rf/sw/bbplayer/tools/necprimfix
//
// 1 instance of in01d5 changed to j_in01.
// 1 instance of ni01d5 changed to j_ni01.
//
/************************************************************************\
* *
* Copyright (C) 1994, Silicon Graphics, Inc. *
* *
* These coded instructions, statements, and computer programs contain *
* unpublished proprietary information of Silicon Graphics, Inc., and *
* are protected by Federal copyright law. They may not be disclosed *
* to third parties or copied or duplicated in any form, in whole or *
* in part, without the prior written consent of Silicon Graphics, Inc. *
* *
\************************************************************************/
// $Id: ms_sm.v,v 1.13 2003/01/24 23:07:37 berndt Exp $
// rdram state machine for memspan
// this module performs rdram request/activity/r/w/c/z for
// memspan; attempts to minimize latency between requests;
// clears requests and controls update flow of pointers/busy flags;
// shortcuts for write cases of write masks c/z being zero.
// generation of rbphase, being the rambus access phase to regfile.
// address/pointer selection for memspan regfile address; rdram phase
// write enable selection also, for rdram phase.
// rdram writes into regfile (R) are terminated by finish line from io;
// regfile writes into rdram (W) are terminated by counter compare here.
// write requests (from writemask logic, another module) are reset as
// soon as writemask is output to rdram, this allows unstalling of
// writemask stall ASAP, overlapping accrual of next wmask with
// rdram write activity here.
// the only use of rbphase here is to control write enable behavior
// there is no use of stalls here, all rdram state machine activity
// is non-stallable and should only connect to non-stallable
// interfaces of other blocks.
//
// notes: reads are fn of enreadc/z; writes implied by creqw/zreqw;
//
// NOTES FOR JLSMITH: protocol is READS: 0 delay, WRITES: 2 delay.
// mods 10-7-94: stay in wrctxt if (resetc/zreqw) set, and mod rp
// so that set c/zreqw has priority over reset; this way we don't
// skip a write beat during reset req and ensure writes before reads.
// mods 10-11-94: place all stall inputs here and generate single one out
// later put all sync stuff in here...and clock stoppage.
// mods 10-19-94: stb_sync_full, freeze_gclk, unfreeze_gclk, rel_sync_full
// mod 10-20-94: pipe_busy output
// mod 10-26-94: init wcount to 1; add stallnxtwm
// mod 10-27-94: buffer rbcwincwr/rbzwincwr for wcount cmp: wnum
// 11-1 eliminate state_rdcstart/rdzstart? (miss finish)
// kill steprddone at rdctxt/loop if set
// 11-3 disallow read request until spanproc=0
// 11-14 outport finishd1/finishd2 for si killwe's;
// 11-16 advance selrbc/zw high a state for address init
// 11-23 add start_gclk output, = !stopgclock; retain latter for my sim env
// 12-1 add steprbptrd1,d2 to delay rdramreq after rdptr update: rdspace
// 12-8 add 3 more states, for c/zwmzero rdram cycle bypass;
// 12-9 add 4th state, bug fix; also add ensteprbc/zwptr;
// 12-13 fix write bypass (sync reset*reqw/steprb*wptr, reset in bypass2);
// 12-16 fix 32b c zbuf case: add zreqwbuf; fix cwmzero/!zwmzero case;
// 12-20 fix wrzdata-to-rdctxt clear of ensteprbcwptr (32b z tri bug);
// cleanup state machine transitions
// 12-22 create reset_ld as delayed reset, to stopgclock generation;
// 12-28 create delayread to guarantee rbc/zrinc settling before dma read request;
// 1-4 add stopgclockd, output to ms_debug for observation;
// 1-10 reset to zero: wnum, wcount for synthesis reasons;
// 1-12 add spanprocd register, to fix rdspace latency issue;
// remove delayread, which was not sufficent solution.
// 2-2 generate/output start4ms for back-to-back dma fix;
//
// hw2
//
// 6-8 create 7b bus "start_gclk" for new gclk gating scheme;
// 6-9 add latch to above path;
// 6-12 add intermediate buffer between latch and 10x drivers;
//
// bcp
// 10-31 replace stopgclk_lat with negedge DFF;
module ms_sm(clock, reset_l, rdspace, rdenreadc, rdenreadz,
grant, start, finish,
creqw, zreqw, cwmzero, zwmzero, rddone, smcwincwr, smzwincwr,
stallphase, stallrw, stallrdctxt, stallwrctxt, stallptr,
stallczwm, stb_sync_full, freeze_gclk, unfreeze_gclk, stallnxtwm,
spanproc,
steprddone, finishd1, finishd2,
rdramreqcr, rdramreqzr, rdramreqcw, rdramreqzw,
enrbwe, selrbcr, selrbzr, stopgclockd, start4ms,
selrbcw, selrbzw, selcwmask, selzwmask, resetcreqw, resetzreqw,
steprbcrptr, steprbzrptr, steprbcwptr, steprbzwptr, rbphase,
start_gclock, stopgclock, rel_sync_full, pipe_busy);
`include "ms.vh"
input clock; // system clock
input reset_l; // system reset
input rdspace; //space is avail for next dmard
input rdenreadc; //rdctxt enrdcolor
input rdenreadz; //rdctxt enrddepth
input grant; //dma grant
input start; //dma valid (0/2 delay r/w)
input finish; //dma last data cycle
input creqw; //color write request
input zreqw; //depth write request
input cwmzero; //color wmask is all zero's
input zwmzero; //depth wmask is all zero's
input rddone;
input [3:0] smcwincwr; //number of regfile 36b entries
input [3:0] smzwincwr; //per current spanlet 1-16 ??
input stallphase, stallrw, stallrdctxt, stallwrctxt;
input stallptr, stallczwm;
input stb_sync_full, freeze_gclk, unfreeze_gclk;
input stallnxtwm;
input spanproc;
output steprddone;
output finishd1, finishd2;
output rdramreqcr; //dma request
output rdramreqzr; //dma request
output rdramreqcw; //dma request
output rdramreqzw; //dma request
output enrbwe; //regfile we for rdram activity
output selrbcr; //sel rf addr for rdram c rd
output selrbzr; //sel rf addr for rdram z rd
output selrbcw; //sel rf addr for rdram c wr
output selrbzw; //sel rf addr for rdram z wr
output selcwmask;
output selzwmask;
output resetcreqw; //clear write request (color)
output resetzreqw; //clear write request (depth)
output steprbcrptr;
output steprbzrptr;
output steprbcwptr;
output steprbzwptr;
output rbphase;
output start4ms;
output stopgclock;
output start_gclock;
output rel_sync_full;
output pipe_busy;
output stopgclockd;
// input/output registers
reg finishd1;
reg steprbcrptr;
reg steprbzrptr;
reg steprbcwptr;
reg steprbzwptr;
reg enrbwe;
reg rdramreqcr;
reg rdramreqzr;
reg rdramreqcw;
reg rdramreqzw;
reg steprddone;
reg selrbcr;
reg selrbzr;
reg selrbcw;
reg selrbzw;
reg selcwmask;
reg selzwmask;
reg resetcreqw;
reg resetzreqw;
reg rel_sync_full, rel_sync_fulld, freeze_gclkd;
reg fullsyncreq;
reg steprbptrd1, steprbptrd2;
reg ensteprbcwptr, ensteprbzwptr;
reg stopgclockd;
// internal registers
reg finishd2;
reg [3:0] wcount, wnum;
reg rbphase;
reg zreqwbuf;
reg reset_ld;
reg spanprocd;
reg start_gclock;
// pseudo registers
reg stopgclock;
reg pipe_busy;
// wires
wire start4ms;
//latch start_gclk via clk=low transparent latch, buffer noninverting
//then fanout=10 and buffer each output, utilize just lsb for
//preexisting netlist e.g. start_gclk_bus[0] goes to global start_gclk
//until clock distribution netlist surgery occurs....
//lanfnb
//stopgclk_lat(.en(clock), .d(stopgclock), .q(stopgclock_d));
always @(negedge clock) begin
if (reset_l == 1'b0) begin
start_gclock <= 1'b1;
end
else begin
start_gclock <= ~stopgclock;
end
end
// rdram state machine
reg [21:0] state;
parameter
state_rdctxt = 22'h1,
state_rdcreq = 22'h2,
state_rdcwait = 22'h4,
state_rdcdata = 22'h10,
state_rdzreq = 22'h20,
state_rdzwait = 22'h40,
state_rdzdata = 22'h100,
state_wrctxt = 22'h200,
state_wrcreq = 22'h400,
state_wrcwait = 22'h800,
state_wrcstart = 22'h1000,
state_wrcdata = 22'h2000,
state_wrzreq = 22'h4000,
state_wrzwait = 22'h8000,
state_wrzstart = 22'h10000,
state_wrzdata = 22'h20000,
state_bypass1 = 22'h40000,
state_bypass2 = 22'h80000,
state_bypass3 = 22'h100000,
state_bypass4 = 22'h200000;
assign start4ms = ((state == state_rdcwait) || (state == state_rdzwait) ||
(state == state_wrcwait) ||
(state == state_wrzwait));
// synopsys translate_off
`ifdef MSPAN_MON
reg [6:0] rdctxt_arcs;
reg [3:0] rdcdata_arcs;
reg [2:0] rdzdata_arcs;
reg [9:0] wrctxt_arcs;
reg [3:0] wrcdata_arcs;
reg [1:0] wrzdata_arcs;
`endif
// synopsys translate_on
//stall OR'ing
always @(stallphase or stallrw or stallrdctxt or stallwrctxt or
stallptr or stallczwm or freeze_gclkd or rel_sync_fulld or
stallnxtwm or reset_ld) begin
stopgclock <= (stallphase || stallrw || stallrdctxt || stallwrctxt ||
stallptr || stallczwm || freeze_gclkd || rel_sync_fulld ||
stallnxtwm) & reset_ld;
end
always @(rel_sync_fulld) begin
pipe_busy <= (!rel_sync_fulld);
end
always @(posedge clock) begin
if (reset_l == 1'b0) begin
// resettable registers
enrbwe <= low;
reset_ld <= low;
rdramreqcr <= low;
rdramreqzr <= low;
rdramreqcw <= low;
rdramreqzw <= low;
steprbptrd1 <= low;
steprbptrd2 <= low;
steprbcrptr <= low;
steprbzrptr <= low;
steprbcwptr <= low;
steprbzwptr <= low;
steprddone <= low;
state <= state_rdctxt;
ensteprbcwptr <= low;
ensteprbzwptr <= low;
rbphase <= high;
resetcreqw <= high;
resetzreqw <= high;
freeze_gclkd <= low;
rel_sync_full <= low;
rel_sync_fulld <= low;
fullsyncreq <= low;
selcwmask <= low;
selzwmask <= low;
selrbcr <= low;
selrbzr <= low;
selrbcw <= low;
selrbzw <= low;
zreqwbuf <= low;
spanprocd <= low;
stopgclockd <= low;
//nonresettable registers
wcount <= 4'b0;
wnum <= 4'b0;
// synopsys translate_off
`ifdef MSPAN_MON
rdctxt_arcs <= 7'b0;
rdcdata_arcs <= 4'b0;
rdzdata_arcs <= 3'b0;
wrctxt_arcs <= 10'b0;
wrcdata_arcs <= 4'b0;
wrzdata_arcs <= 2'b0;
`endif
// synopsys translate_on
end
else begin
reset_ld <= high;
stopgclockd <= stopgclock;
steprbptrd2 <= steprbptrd1;
steprbptrd1 <= (steprbcrptr || steprbzrptr);
finishd2 <= finishd1;
finishd1 <= finish;
rbphase <= !rbphase;
freeze_gclkd <= freeze_gclk;
rel_sync_fulld <= rel_sync_full;
//strobe full sync state machine
if (stb_sync_full) begin
fullsyncreq <= high;
end
else if (fullsyncreq & !(creqw || zreqw || resetcreqw || resetzreqw)) begin
fullsyncreq <= low;
end
else begin
fullsyncreq <= fullsyncreq;
end
if (fullsyncreq & !(creqw || zreqw || resetcreqw || resetzreqw)) begin
rel_sync_full <= high;
end
else if (unfreeze_gclk) begin
rel_sync_full <= low;
end
else begin
rel_sync_full <= rel_sync_full;
end
spanprocd <= spanproc;
// rdram state machine
case (state)
// rdspace <= 1 iff space for both c/z read
// (if one plane, define both same size)
// and reads enabled..
// rddone <= 1 iff no span in rdctxt
// set init, and set when decomp last spanlet
// tbd: wrptrs must update during reads if no writes enabled;
// therefore: disable all stalls "not applicable".
// question: are we cycling thru rdctxt even if write only, to make space?
// answer: no. below, we define rdspace=0 for this case.
// although...can just interlock with passing of address to rmwctxt...
// and set rddone then if !(enreadc + enreadz), similar approach for wr.
//summary: if load, then update wrptrs whenever update rdptrs;
// cases:
// read write crptr zrptr cwptr zwptr
// c wc wc
// cz wc wz wc wz
// c c rc wc
// c cz rc wz wc wz
// z c wc rz wc rz
// z cz wc rz wc wz
// cz c rc rz wc rz
// cz cz rc rz wc wz
// c rc rc
// also, if write only op, disable read stalls and update read ptrs
// whenever we update write ptrs. etc.
// therefore "rdspace" is zero when no reads invoked
// 9/24/94: actually the above solved instead by setting rddone at t4;
// whereas creqw/zreqw never set for loads
// 9/24/94: ...and also wrdone is set if no writes....also at startspan;
// therefore must flush betw. all c/z r/w mode changes.
// 9/24/94: still true, because r,w pointer update slips pipe for w,r
// only cases, respectively...
state_rdctxt : begin
steprbcrptr <= low;
steprbzrptr <= low;
steprbcwptr <= low;
steprbzwptr <= low;
steprddone <= low;
resetcreqw <= low;
resetzreqw <= low;
if (spanproc || spanprocd || steprddone || steprbcrptr || steprbzrptr) begin
state <= state_rdctxt;
// synopsys translate_off
`ifdef MSPAN_MON
rdctxt_arcs <= { 1'b1 | rdctxt_arcs }; // A
`endif
// synopsys translate_on
end
else if (creqw || zreqw) begin
state <= state_wrctxt;
// synopsys translate_off
`ifdef MSPAN_MON
rdctxt_arcs <= { { 1'b1, 1'b0 } | rdctxt_arcs }; // B
`endif
// synopsys translate_on
end
else if ((!rdspace || rddone) & ! (creqw || zreqw)) begin
state <= state_rdctxt;
// synopsys translate_off
`ifdef MSPAN_MON
rdctxt_arcs <= { { 1'b1, 2'b0 } | rdctxt_arcs }; // C
`endif
// synopsys translate_on
end
else if (rdspace & !rddone & rdenreadc & !(steprbptrd1 || steprbptrd2)) begin
state <= state_rdcreq;
// synopsys translate_off
`ifdef MSPAN_MON
rdctxt_arcs <= { { 1'b1, 3'b0 } | rdctxt_arcs }; // D
`endif
// synopsys translate_on
rdramreqcr <= high;
// send out addr/len/dir/rw
end
else if (rdspace & !rddone & rdenreadz & !(steprbptrd1 || steprbptrd2)) begin
state <= state_rdzreq;
// synopsys translate_off
`ifdef MSPAN_MON
rdctxt_arcs <= { { 1'b1, 4'b0 } | rdctxt_arcs }; // E
`endif
// synopsys translate_on
rdramreqzr <= high;
// send out addr/len/dir/rw
end
else if ((rdspace & !rddone) & !(rdenreadz || rdenreadc) &
! (creqw || zreqw)) begin
state <= state_rdctxt;
// synopsys translate_off
`ifdef MSPAN_MON
rdctxt_arcs <= { { 1'b1, 5'b0 } | rdctxt_arcs }; // F
`endif
// synopsys translate_on
end
else begin
state <= state_rdctxt;
// synopsys translate_off
`ifdef MSPAN_MON
rdctxt_arcs <= { { 1'b1, 6'b0 } | rdctxt_arcs }; // G
`endif
// synopsys translate_on
end
end
state_rdcreq : begin
if (grant) begin
state <= state_rdcwait;
rdramreqcr <= low;
selrbcr <= high;
end
else if (!grant) begin
state <= state_rdcreq;
end
end
state_rdcwait : begin
if (start) begin
state <= state_rdcdata;
enrbwe <= high;
selrbcr <= low;
// rbaddr <= rbptrcr;
end
else if (!start) begin
state <= state_rdcwait;
end
end
state_rdcdata : begin
if ((rbphase & (finishd1 || finishd2)) & !rdenreadz & (creqw || zreqw)) begin
state <= state_wrctxt;
// synopsys translate_off
`ifdef MSPAN_MON
rdcdata_arcs <= { 1'b1 | rdcdata_arcs }; // A
`endif
// synopsys translate_on
enrbwe <= low;
steprbcrptr <= high;
steprddone <= high;
// update read pointers
end
else if ((rbphase & (finishd1 || finishd2)) & !rdenreadz & !(creqw || zreqw)) begin
state <= state_rdctxt;
// synopsys translate_off
`ifdef MSPAN_MON
rdcdata_arcs <= { { 1'b1, 1'b0 } | rdcdata_arcs }; // B
`endif
// synopsys translate_on
enrbwe <= low;
steprbcrptr <= high;
steprddone <= high;
// update read pointers
end
else if ((rbphase & (finishd1 || finishd2)) & rdenreadz) begin
state <= state_rdzreq;
// synopsys translate_off
`ifdef MSPAN_MON
rdcdata_arcs <= { { 1'b1, 2'b0 } | rdcdata_arcs }; // C
`endif
// synopsys translate_on
enrbwe <= low;
steprbcrptr <= high;
rdramreqzr <= high;
// send out addr/len/dir/rw
end
else if (!(rbphase & (finishd1 || finishd2))) begin
state <= state_rdcdata;
// synopsys translate_off
`ifdef MSPAN_MON
rdcdata_arcs <= { { 1'b1, 3'b0 } | rdcdata_arcs }; // D
`endif
// synopsys translate_on
end
end
state_rdzreq : begin
steprbcrptr <= low;
if (grant) begin
state <= state_rdzwait;
rdramreqzr <= low;
selrbzr <= high;
end
else if (!grant) begin
state <= state_rdzreq;
end
end
state_rdzwait : begin
if (start) begin
selrbzr <= low;
state <= state_rdzdata;
enrbwe <= high;
end
else if (!start) begin
state <= state_rdzwait;
end
end
state_rdzdata : begin
if (rbphase & (creqw || zreqw) & (finishd1 || finishd2)) begin
state <= state_wrctxt;
// synopsys translate_off
`ifdef MSPAN_MON
rdzdata_arcs <= { 1'b1 | rdzdata_arcs }; // A
`endif
// synopsys translate_on
enrbwe <= low;
steprbzrptr <= high;
steprddone <= high;
// update read pointers
end
else if (rbphase & !(creqw || zreqw) & (finishd1 || finishd2)) begin
state <= state_rdctxt;
// synopsys translate_off
`ifdef MSPAN_MON
rdzdata_arcs <= { { 1'b1, 1'b0 } | rdzdata_arcs }; // B
`endif
// synopsys translate_on
enrbwe <= low;
steprbzrptr <= high;
steprddone <= high;
end
else if (!(rbphase & (finishd1 || finishd2))) begin
state <= state_rdzdata;
// synopsys translate_off
`ifdef MSPAN_MON
rdzdata_arcs <= { { 1'b1, 2'b0 } | rdzdata_arcs }; // C
`endif
// synopsys translate_on
end
end
// note: spanoverlap may need to handle 3 prims, as we might be able to
//read for span 3 while not yet written span 1 (primitive is 22 clks min)
//e.g. might have two prims in wrctxt wmask/addr bufs, and 2-3? in pipe ~21
//clks from ew to readz rdp...
state_wrctxt : begin
steprbcrptr <= low;
steprbzrptr <= low;
steprbcwptr <= low;
steprbzwptr <= low;
steprddone <= low;
resetcreqw <= low;
resetzreqw <= low;
if (resetcreqw || resetzreqw || steprbcwptr || steprbcrptr ||
steprbzwptr || steprbzrptr) begin
state <= state_wrctxt;
// synopsys translate_off
`ifdef MSPAN_MON
wrctxt_arcs <= { 1'b1 | wrctxt_arcs }; // A
`endif
// synopsys translate_on
end
else if (creqw & !cwmzero) begin
state <= state_wrcreq;
// synopsys translate_off
`ifdef MSPAN_MON
wrctxt_arcs <= { { 1'b1, 1'b0 } | wrctxt_arcs }; // B
`endif
// synopsys translate_on
zreqwbuf <= zreqw;
rdramreqcw <= high;
// send out addr/len/dir/rw
end
else if (creqw & cwmzero & zreqw & !zwmzero) begin
state <= state_wrzreq;
// synopsys translate_off
`ifdef MSPAN_MON
wrctxt_arcs <= { { 1'b1, 2'b0 } | wrctxt_arcs }; // C
`endif
// synopsys translate_on
rdramreqzw <= high;
ensteprbcwptr <= high;
end
else if ((creqw & cwmzero & zreqw & zwmzero)) begin
state <= state_bypass1;
// synopsys translate_off
`ifdef MSPAN_MON
wrctxt_arcs <= { { 1'b1, 3'b0 } | wrctxt_arcs }; // D
`endif
// synopsys translate_on
ensteprbcwptr <= high;
ensteprbzwptr <= high;
end
else if ((creqw & cwmzero & !zreqw )) begin
state <= state_bypass1;
// synopsys translate_off
`ifdef MSPAN_MON
wrctxt_arcs <= { { 1'b1, 4'b0 } | wrctxt_arcs }; // E
`endif
// synopsys translate_on
// resetcreqw <= high;
ensteprbcwptr <= high;
end
else if (!creqw & zreqw & !zwmzero) begin
state <= state_wrzreq;
// synopsys translate_off
`ifdef MSPAN_MON
wrctxt_arcs <= { { 1'b1, 5'b0 } | wrctxt_arcs }; // F
`endif
// synopsys translate_on
rdramreqzw <= high;
end
else if ((!creqw & zreqw & zwmzero)) begin
state <= state_bypass1;
// synopsys translate_off
`ifdef MSPAN_MON
wrctxt_arcs <= { { 1'b1, 6'b0 } | wrctxt_arcs }; // G
`endif
// synopsys translate_on
ensteprbzwptr <= high;
end
else if (!(creqw || zreqw ) & (!rdspace || rddone)) begin
state <= state_wrctxt;
// synopsys translate_off
`ifdef MSPAN_MON
wrctxt_arcs <= { { 1'b1, 7'b0 } | wrctxt_arcs }; // H
`endif
// synopsys translate_on
end
else if (!(creqw || zreqw ) & (rdspace & !rddone) &
(rdenreadc || rdenreadz)) begin
state <= state_rdctxt;
// synopsys translate_off
`ifdef MSPAN_MON
wrctxt_arcs <= { { 1'b1, 8'b0 } | wrctxt_arcs }; // I
`endif
// synopsys translate_on
end
else begin
state <= state_wrctxt;
// synopsys translate_off
`ifdef MSPAN_MON
wrctxt_arcs <= { { 1'b1, 9'b0 } | wrctxt_arcs }; // J
`endif
// synopsys translate_on
end
end
state_wrcreq : begin
if (grant) begin
state <= state_wrcwait;
rdramreqcw <= low;
selrbcw <= high;
end
else if (!grant) begin
state <= state_wrcreq;
end
end
state_wrcwait : begin
if (start) begin
state <= state_wrcstart;
selcwmask <= high;
wcount <= 4'h1;
wnum <= smcwincwr;
resetcreqw <= high;
end
else if (!start) begin
state <= state_wrcwait;
end
end
state_wrcstart : begin
state <= state_wrcdata;
selcwmask <= low;
selrbcw <= low;
resetcreqw <= low;
end
state_wrcdata : begin
if ((wcount == wnum) & zreqwbuf & !zwmzero) begin
state <= state_wrzreq;
// synopsys translate_off
`ifdef MSPAN_MON
wrcdata_arcs <= { 1'b1 | wrcdata_arcs }; // A
`endif
// synopsys translate_on
steprbcwptr <= high;
rdramreqzw <= high;
// send out addr/len/dir/rw
end
else if (((wcount == wnum) & zreqwbuf & zwmzero)) begin
state <= state_bypass1;
// synopsys translate_off
`ifdef MSPAN_MON
wrcdata_arcs <= { { 1'b1, 1'b0 } | wrcdata_arcs }; // B
`endif
// synopsys translate_on
resetzreqw <= high;
steprbcwptr <= high;
steprbzwptr <= high;
end
else if (((wcount == wnum) & !zreqwbuf )) begin
state <= state_wrctxt;
// synopsys translate_off
`ifdef MSPAN_MON
wrcdata_arcs <= { { 1'b1, 2'b0 } | wrcdata_arcs }; // C
`endif
// synopsys translate_on
steprbcwptr <= high;
end
else if (!(wcount == wnum)) begin
state <= state_wrcdata;
// synopsys translate_off
`ifdef MSPAN_MON
wrcdata_arcs <= { { 1'b1, 3'b0 } | wrcdata_arcs }; // D
`endif
// synopsys translate_on
wcount <= wcount + 1;
end
end
state_wrzreq : begin
steprbcwptr <= low;
resetcreqw <= low;
if (grant) begin
state <= state_wrzwait;
rdramreqzw <= low;
selrbzw <= high;
end
else if (!grant) begin
state <= state_wrzreq;
end
end
state_wrzwait : begin
if (start) begin
state <= state_wrzstart;
// selrbzw <= high;
selzwmask <= high;
wcount <= 4'h1;
wnum <= smzwincwr;
resetzreqw <= high;
resetcreqw <= ensteprbcwptr;
end
else if (!start) begin
state <= state_wrzwait;
end
end
state_wrzstart : begin
state <= state_wrzdata;
selrbzw <= low;
selzwmask <= low;
resetzreqw <= low;
resetcreqw <= low;
end
state_wrzdata : begin
if ((wcount == wnum)) begin
state <= state_wrctxt;
// synopsys translate_off
`ifdef MSPAN_MON
wrzdata_arcs <= { 1'b1 | wrzdata_arcs }; // A
`endif
// synopsys translate_on
steprbzwptr <= high;
steprbcwptr <= ensteprbcwptr;
ensteprbcwptr <= low;
end
else if (!(wcount == wnum)) begin
state <= state_wrzdata;
// synopsys translate_off
`ifdef MSPAN_MON
wrzdata_arcs <= { { 1'b1, 1'b0 } | wrzdata_arcs }; // B
`endif
// synopsys translate_on
wcount <= wcount + 1;
end
end
//new states for write bypass, to ensure pointers settle before nxt stepping
state_bypass1 : begin
steprbzwptr <= ensteprbzwptr;
steprbcwptr <= ensteprbcwptr;
ensteprbzwptr <= low;
ensteprbcwptr <= low;
resetcreqw <= ensteprbcwptr;
resetzreqw <= ensteprbzwptr;
state <= state_bypass2;
end
state_bypass2 : begin
state <= state_bypass3;
steprbzwptr <= low;
steprbcwptr <= low;
resetcreqw <= low;
resetzreqw <= low;
end
state_bypass3 : begin
state <= state_bypass4;
end
state_bypass4 : begin
state <= state_wrctxt;
end
default :
state <= 22'bx;
endcase
end
end
endmodule