pi.v 47.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
// pi.v v1 Frank Berndt
// pi top level;
// :set tabstop=4

// pi buffer address map, 256x64
//
//	  0..63		flash data 0, 512 bytes;
//	 64..127	flash data 1, 512 bytes;
//	128..129	flash ecc 0, 16 bytes;
//	130..131	flash ecc 1, 16 bytes;
//	132..153	aes expanded key, 44*4 bytes;
//	154..155	aes init vector, 16 bytes;
//	156..159	unused;
//	160..255	address translation buffer;

module pi (
	sysclk, rst_l, reset_l,
	secure,
	cbus_din, cbus_dout, cbus_error, cbus_select, cbus_command,
	cbus_write_enable, cbus_read_request, cbus_read_grant,
	dbus_din, dbus_dout, dbus_enable,
	dma_request, dma_grant, dma_start, dma_last,
	dma_intr, aes_intr, flc_intr, ide_intr, err_intr, err_trap,
	io_rst, io_in, io_ena, io_out, io_oe, io_ale,
	io_ior, io_iow, io_cs, io_dmarq, io_dmack, io_intr,
	fl_ce, fl_ale, fl_cle, fl_re, fl_we, fl_wp, fl_ryby, fl_md,
	lctrl_req, lctrl_val, lctrl_but,
	gpio_oe, gpio_out, gpio_in
);

`include "cbus.vh"

	// module io ports;

	input sysclk;				// system clock;
	input rst_l;				// pin reset;
	input reset_l;				// system reset;
	input secure;				// in secure mode;

	input [31:0] cbus_din;		// cbus data in;
	output [31:0] cbus_dout;	// cbus data out;
	output cbus_error;			// cbus error;
	input [1:0] cbus_select;	// cbus phase;
	input [2:0] cbus_command;	// cbus command;
	input cbus_write_enable;	// enable cbus output;
	output cbus_read_request;	// request cbus response cycle;
	input cbus_read_grant;		// response cycle granted;

	input [63:0] dbus_din;		// dbus data in;
	output [63:0] dbus_dout;	// dbus data out;
	input dbus_enable;			// enable dbus drivers;
	output dma_request;			// dma request;
	input dma_grant;			// dma granted;
	input dma_start;			// first dbus word valid;
	input dma_last;				// last dbus word valid;
	output dma_intr;			// dma interrupt;
	output aes_intr;			// aes controller interrupt;
	output flc_intr;			// flash controller interrupt;
	output ide_intr;			// flash controller interrupt;
	output err_intr;			// error interrupt on error;
	output err_trap;			// secure kernel trap on error;

	// generic io interface;

	output io_rst;				// io bus reset;
	input [15:0] io_in;			// io input data;
	output io_ena;				// io input clock enables;
	output [15:0] io_out;		// io output data;
	output [1:0] io_oe;			// io data output enables;
	output io_ale;				// io address latch enable;
	output io_ior;				// io read pulse;
	output io_iow;				// io write pulse;
	output [3:0] io_cs;			// io pio chip selects;
	input io_dmarq;				// io dma request;
	output io_dmack;			// io dma acknowledge;
	input io_intr;				// io device interrupt;

	// nand flash controls;

	output [3:0] fl_ce;			// chip enables;
	output fl_ale;				// address latch enable;
	output fl_cle;				// command latch enable;
	output fl_re;				// read eanble;
	output fl_we;				// write eanble;
	output fl_wp;				// write protect;
	input fl_ryby;				// ready/busy;
	input fl_md;				// module detect;

	// button interface to si;

	input lctrl_req;			// request button sample;
	output lctrl_val;			// button sample valid;
	output [13:0] lctrl_but;	// button data;

	// general purpose io;

	output [3:0] gpio_oe;		// output enables;
	output [3:0] gpio_out;		// output values;
	input [3:0] gpio_in;		// input values;

	// buffer system reset;

	reg reset;				// positive reset;
	reg sec_mode;			// in secure mode;
	wire [7:0] acc_ena;		// access enables;

	always @(posedge sysclk)
	begin
		sec_mode <= secure;
		reset <= ~reset_l;
	end

	// cbus interface;
	// cbus interface controls;
	// decode cbus commands;

	reg [2:0] cbus_cmd;		// cbus cmd register;
	reg [31:0] cbus_in;		// cbus read/write register;
	wire [31:0] cbus_out;	// cbus output data;
	reg [31:0] cbus_dout;	// cbus read/write register;
	wire error_out;			// error bit;
	reg cbus_error;			// cbus error;
	wire cbus_read;			// cbus read request;
	wire cbus_write;		// cbus write request;
	wire cbus_rw;			// cbus read or write request;

	always @(posedge sysclk)
	begin
		cbus_cmd <= cbus_command;
		cbus_in <= cbus_din;
		cbus_dout <= {32{cbus_write_enable}} & cbus_out;
		cbus_error <= cbus_write_enable & error_out;
	end

	assign cbus_read = (cbus_cmd == `CBUS_CMD_READ);
	assign cbus_write = (cbus_cmd == `CBUS_CMD_WRITE);
	assign cbus_rw = cbus_read | cbus_write;

	// pi responds in register and ram space 0x046x_xxxx;
	// pi responds in cartrige space 0x05xx_xxxx ... 0x7fff_ffff;
	// stop access if reset interfered;

	wire [11:0] cbus_id;	// cbus space id;
	wire cbus_pi;			// pi internal space, regs, buffer, ide;
	wire cbus_buf;			// pi buffer space;
	wire cbus_ifc;			// ide flow control space;
	wire cbus_ide;			// ide space;
	wire cbus_0x;			// cartrige space 0x0xxx_xxxx;
	wire cbus_xa;			// cartrige space 0xx500_0000..0xxfff_ffff;
	wire cbus_ya;			// cartrige space 0x1000_0000..0x7fff_ffff;
	wire cbus_io;			// all cartrige spaces;
	wire cbus_req;			// cbus read/write request;
	wire pi_read;			// pi read request;
	wire pi_write;			// pi write request;
	wire pi_rrgnt;			// read request grant;
	wire pi_busy;			// pi busy with dma or io;

	assign cbus_id = cbus_in[31:20];
	assign cbus_pi = (cbus_id == `CBUS_PI);
	assign cbus_buf = cbus_pi & ~cbus_in[19] & cbus_in[16];
	assign cbus_ifc = cbus_pi & ~cbus_in[19] & cbus_in[17];
	assign cbus_ide = cbus_pi & cbus_in[19];

	assign cbus_0x = (cbus_in[30:28] == 3'b000);
	assign cbus_xa = cbus_in[27]
		| (cbus_in[27:24] == 4'h5)
		| (cbus_in[27:24] == 4'h6)
		| (cbus_in[27:24] == 4'h7);
	assign cbus_ya = |cbus_in[30:28];
	assign cbus_io = ~cbus_in[31] & (cbus_ya | (cbus_0x & cbus_xa));

	assign cbus_req = cbus_rw & (cbus_pi | cbus_io);
	assign pi_read = cbus_pi & cbus_read;
	assign pi_write = cbus_pi & cbus_write;
	assign pi_rrgnt = reset | cbus_read_grant;

	// hold on to pio access type;
	// reset stops any register op in progress;
	// addr[5:2] address compatible registers;
	// addr[6] addresses new pi registers;
	// addr[16] addresses pi buffer ram;

	reg pio_ifc;			// pio flow control;
	reg pio_read;			// cbus pio read request;
	reg pio_ack;			// pio read acknowledge;
	reg pio_req;			// delayed cbus_req;
	reg [29:0] pio_addr;	// pio address; registers, ram or device space;
	reg [29:9] pio_laddr;	// previous pi address, for pio hit detection;
	reg pio_hit;			// pio page hit;
	reg pio_dev;			// pio to cartrige;
	reg pio_write;			// cbus pio write;
	wire pio_reg;			// pio access to registers;
	wire pio_buf;			// pio access to buffer;
	wire pio_ide;			// pio access to io bus;
	reg reg_write;			// write to register;
	wire [31:0] pio_wdata;	// pio write data;
	reg [2:0] io_done;		// io done pipe;
	wire ifc_rack;			// ide flow control ack;
	wire ide_stall;			// stall read response for flow control;
	wire ide_rack;			// ide read ack;
	wire rsp_req;			// request read response;

	assign ifc_rack = pio_ifc & ~ide_stall;
	assign rsp_req = pio_read | ide_rack | ifc_rack | io_done[2];

	always @(posedge sysclk)
	begin
		pio_ifc <= (ide_stall & pio_ifc) | (cbus_ifc & pi_read);
		pio_read <= ~(cbus_ide | cbus_ifc) & pi_read;
		pio_ack <= rsp_req;
		if(cbus_req) begin
			pio_addr <= cbus_in[29:0];
			pio_dev <= cbus_io;
			pio_write <= cbus_write;
		end
		pio_req <= cbus_req;
		if(pio_req) begin
			pio_hit <= (pio_addr[29:9] == pio_laddr);
			pio_laddr <= pio_addr[29:9];
		end
		reg_write <= ~reset & pi_write;
	end

	assign pio_wdata = cbus_in;
	assign pio_reg = ~pio_dev & ~pio_addr[19] & ~pio_addr[16];
	assign pio_buf = ~pio_dev & ~pio_addr[19] & pio_addr[16];
	assign pio_ide = ~pio_dev & pio_addr[19];

	// ide request control;
	// do not request io bus when access is disabled;
	// latch upper or lower write data, based on addr[1];

	wire ide_acc;			// access to ide spaces;
	reg ide_req;			// pio request to ide spaces;
	wire [15:0] ide_di;		// ide read data;

	assign ide_acc = pio_ide & acc_ena[6];

	always @(posedge sysclk)
	begin
		ide_req <= cbus_rw & cbus_ide;
	end

	// pio request control;
	// cache pio address to avoid flash reads for page hit;

	reg io_req;				// pio request to cartridge space;
	wire io_stop;			// stop io request;
	wire io_read;			// io read request;
	wire io_write;			// io write request;
	wire io_miss;			// io page miss;
	wire io_hit;			// io page hit;
	reg [31:0] io_wdata;	// captured io write data;
	reg io_pend;			// io read is pending;
	reg io_kick;			// kick processor for io read;
	reg io_err;				// io error;
	reg io_rbuf;			// read pi buffer for response data;

	assign io_read = io_req & ~pio_write;
	assign io_write = io_req & pio_write;
	assign io_stop = reset | io_done[0];
	assign io_miss = io_pend & ~pio_hit;
	assign io_hit = io_pend & pio_hit;
	assign error_out = pio_dev & io_err;

	always @(posedge sysclk)
	begin
		io_req <= cbus_rw & cbus_io;
		if(io_write)
			io_wdata <= pio_wdata;
		io_pend <= ~io_stop & (io_pend? pi_busy : io_req);
		io_kick <= io_miss & ~pi_busy & ~pio_write;
		io_rbuf <= ~pi_rrgnt & (io_rbuf | (io_done[0] & ~io_err));
	end

	// decode buffer regions for access control;

	wire [7:0] pio_baddr;	// pio buffer address;
	wire pio_batb;			// atb buffer range;
	wire pio_baes;			// aes buffer range;
	wire pio_bbuf;			// data buffer range;
	wire pio_bacc;			// buffer access enabled;

	assign pio_baddr = { pio_addr[10] & ~io_rbuf, pio_addr[9:3] };
	assign pio_batb = pio_addr[11] | pio_baddr[7] & (pio_baddr[6] | pio_baddr[5]);
	assign pio_baes = (pio_baddr[7:5] == 3'b100) & |pio_baddr[4:2];
	assign pio_bbuf = ~pio_batb & ~pio_baes;
	assign pio_bacc = (pio_batb & acc_ena[2])
		| (pio_baes & acc_ena[3])
		| (pio_bbuf & acc_ena[0]);

	// cbus access to pi buffer;
	// cbus request to buffer issued one clock after cbus address;
	// write data in cbus_in line up for write to pi buffer;
	// read data come out one clock later;
	// cbus request is dropped and buf_err set when dbus dma interfered;

	wire [2:0] pio_bufen;	// pio to upper atb, upper word or lower word;
	wire [2:0] io_bufen;	// buffer enables for io read response;

	assign pio_bufen[2] = pio_buf & pio_bacc & pio_addr[11];
	assign pio_bufen[1] = pio_buf & pio_bacc & ~pio_addr[11] & ~pio_addr[2];
	assign pio_bufen[0] = pio_buf & pio_bacc & ~pio_addr[11] & pio_addr[2];
	assign io_bufen[2] = 1'b0;
	assign io_bufen[1] = io_rbuf & ~pio_addr[2];
	assign io_bufen[0] = io_rbuf & pio_addr[2];

	// decode register addresses;
	// the new registers are access restricted;

	wire reg_comp;			// compatible registers;
	wire reg_new;			// new registers;
	wire [5:2] reg_addr;	// register address;
	wire [12:0] ra_reg;		// register index;

	assign reg_comp = pio_reg & ~pio_addr[6];
	assign reg_new = pio_reg & pio_addr[6];
	assign reg_addr = pio_addr[5:2];

	assign ra_reg[0] = (reg_addr == 4'h0);
	assign ra_reg[1] = (reg_addr == 4'h1);
	assign ra_reg[2] = (reg_addr == 4'h2);
	assign ra_reg[3] = (reg_addr == 4'h3);
	assign ra_reg[4] = (reg_addr == 4'h4);
	assign ra_reg[5] = (reg_addr == 4'h5);
	assign ra_reg[6] = (reg_addr == 4'h6);
	assign ra_reg[7] = (reg_addr == 4'h7);
	assign ra_reg[8] = (reg_addr == 4'h8);
	assign ra_reg[9] = (reg_addr == 4'h9);
	assign ra_reg[10] = (reg_addr == 4'ha);
	assign ra_reg[11] = (reg_addr == 4'hb);
	assign ra_reg[12] = (reg_addr == 4'hc);

	// decode compatible register addresses;
	// compatible registers are always accessible;

	wire ra_dma_addr;		// access PI_DRAM_ADDR;
	wire ra_dev_addr;		// access PI_DEV_ADDR;
	wire ra_dma_read;		// access PI_DMA_READ;
	wire ra_dma_write;		// access PI_DMA_WRITE;
	wire ra_status;			// access PI_STATUS;

	assign ra_dma_addr = reg_comp & ra_reg[0];
	assign ra_dev_addr = reg_comp & ra_reg[1];
	assign ra_dma_read = reg_comp & ra_reg[2];
	assign ra_dma_write = reg_comp & ra_reg[3];
	assign ra_status = reg_comp & ra_reg[4];

	// decode new register addresses;

	wire ra_atbu;			// access PI_ATBU;
	wire ra_error;			// access PI_ERROR;
	wire ra_fl_ctrl;		// access PI_FLASH_CTRL;
	wire ra_fl_conf;		// access PI_FLASH_CONF;
	wire ra_aes_ctrl;		// access PI_AES_CTRL;
	wire ra_access;			// access PI_ACCESS;
	wire ra_bread;			// access PI_DMA_BREAD;
	wire ra_bwrite;			// access PI_DMA_BWRITE;
	wire ra_gpio;			// access PI_GPIO;
	wire ra_ide_conf;		// access PI_IDE_CONF;
	wire ra_ide_ctrl;		// access PI_IDE_CTRL;
	wire ra_edata;			// access PI_EDATA;
	wire ra_fl_addr;		// access PI_FLASH_ADDR;

	assign ra_atbu = reg_new & ra_reg[0] & acc_ena[2];
	assign ra_error = reg_new & ra_reg[1] & acc_ena[7];
	assign ra_fl_ctrl = reg_new & ra_reg[2] & acc_ena[1];
	assign ra_fl_conf = reg_new & ra_reg[3] & acc_ena[1];
	assign ra_aes_ctrl = reg_new & ra_reg[4] & acc_ena[3];
	assign ra_access = reg_new & ra_reg[5];
	assign ra_bread = reg_new & ra_reg[6] & acc_ena[4];
	assign ra_bwrite = reg_new & ra_reg[7] & acc_ena[4];
	assign ra_gpio = reg_new & ra_reg[8] & acc_ena[5];
	assign ra_ide_conf = reg_new & ra_reg[9] & acc_ena[6];
	assign ra_ide_ctrl = reg_new & ra_reg[10] & acc_ena[6];
	assign ra_edata = reg_new & ra_reg[11];
	assign ra_fl_addr = reg_new & ra_reg[12] & acc_ena[1];

	// kick pi dma on writes to dma length registers;

	wire ra_dma_len;		// access any of the dma length registers;

	assign ra_dma_len = ra_dma_read | ra_dma_write | ra_bread | ra_bwrite;

	// request cbus for response;
	// immediatedly after read_requests is seen on cbus;
	// clear on grant and reset;

	reg cbus_read_request;	// request cbus response;

	always @(posedge sysclk)
	begin
		cbus_read_request <= ~pi_rrgnt & (cbus_read_request | rsp_req);
	end

	// compatible pi registers;
	// these registers are always accessible;

	reg [25:0] dma_addr;	// dma address;
	reg [29:0] dev_addr;	// device address;
	reg [23:0] dma_len;		// dma length;
	reg dma_read;			// dma read request, mem -> pi;
	reg dma_rwb;			// bdma request, mem <-> pibuf;
	reg dma_intr;			// dma interrupt, status[3];
	reg dma_err;			// dma error, status[2];
	reg io_busy;			// io busy, status[1];
	reg dma_busy;			// dma busy, status[0];
	wire dma_conflict;		// dma conflict;

	// decode writes to status register;
	// data[1]=1 clears interrupt;
	// data[0]=1 aborts current operation and resets error;
	// reset dma on missing module;

	wire sts_we;			// write to PI_STATUS;
	wire clr_intr;			// clear interrupt;
	wire dma_reset;			// abort operation, clear error;
	wire dma_stop;			// stop dma;
	wire dma_done;			// dma is done;

	assign sts_we = reg_write & ra_status;
	assign clr_intr = reset | (sts_we & pio_wdata[1]);
	assign dma_reset = reset | (sts_we & pio_wdata[0]);
	assign dma_stop = dma_reset | dma_done;

	// memory address;
	// must be 16-bit aligned for compatibility;
	// loaded with pio write write;
	// used for first dma block transfer to align;
	// then increments in blocks of 128 bytes;

	wire dma_addr_we;		// write dma address;
	wire dma_addr_ld;		// load dma address;
	wire dma_addr_inc;		// increment dma address;

	assign dma_addr_we = reg_write & ra_dma_addr;
	assign dma_addr_ld = ~dma_conflict & dma_addr_we;

	always @(posedge sysclk)
	begin
		if(dma_addr_ld)
			dma_addr <= { pio_wdata[25:1], 1'b0 };
		else if(dma_addr_inc)
			dma_addr <= { dma_addr[25:7] + 1, 7'd0 };
	end

	// device address;
	// virtual or physical address into device space;
	// compatibility requires 16-bit alignment;
	// however, bit 0 is needed for new functions;

	wire dev_addr_we;		// write device address;
	wire dev_addr_ld;		// load device address;
	wire dev_addr_inc;		// increment device address;

	assign dev_addr_we = reg_write & ra_dev_addr;
	assign dev_addr_ld = ~dma_conflict & dev_addr_we;

	always @(posedge sysclk)
	begin
		if(dev_addr_ld)
			dev_addr <= pio_wdata[29:0];
		else if(io_write)
			dev_addr <= pio_addr;
		else if(dev_addr_inc)
			dev_addr[29:3] <= dev_addr[29:3] + 1;
	end

	// dma length;
	// writing the dma length registers starts the dma;
	// starting a dma through PI_DMA_READ triggers error interrupt;
	// it is up to software to emulate the write;
	// one clock later, add lower addres bits for # of dw;
	// decremented by buffer dma for each double-word;
	// do not start dma when dma_len is 0, but issue done;

	wire dma_len_we;		// write to dma length;
	wire dma_len_ld;		// load dma_len;
	wire dma_proc;			// start write dma process;
	wire dma_trap;			// trap read dma;
	reg dma_kick;			// kick dma;
	wire dma_len_dec;		// decrement dma length;
	wire dma_len_nw0;		// # of dw is 0;
	reg dma_len_zero;		// dma length is 0;
	wire [23:0] dma_off;	// lower byte offset;

	assign dma_len_we = reg_write & ra_dma_len;
	assign dma_len_ld = ~dma_conflict & dma_len_we;
	assign dma_off = { 21'd0, dma_addr[2:1], 1'b0 };
	assign dma_len_nw0 = (dma_len[23:3] == 21'd0);

	always @(posedge sysclk)
	begin
		dma_kick <= dma_len_ld;
		if(dma_len_ld) begin
			dma_read <= ra_dma_read | ra_bread;
			dma_rwb <= ra_bread | ra_bwrite;
		end
		if(dma_len_ld)
			dma_len <= pio_wdata[23:0];
		else if(dma_kick)
			dma_len <= dma_len + dma_off;
		else if(dma_len_dec)
			dma_len[23:3] <= dma_len[23:3] - 1;
		if(io_kick)
			dma_len_zero <= 1'b0;
		else if(dma_kick)
			dma_len_zero <= &dma_len;
		else if(dma_len_dec)
			dma_len_zero <= dma_len_nw0;
	end

	assign dma_proc = dma_kick & ~dma_rwb & ~dma_read;
	assign dma_trap = dma_kick & ~dma_rwb & dma_read;

	// buffer dma busy flag;
	// set at start of buffer dma;

	reg bdma_start;			// start buffer dma;
	wire bdma_done;			// buffer dma is done;
	reg bdma_busy;			// buffer dma busy;

	assign bdma_done = dma_len_zero & (bdma_start | bdma_busy);

	always @(posedge sysclk)
	begin
		bdma_start <= dma_kick & dma_rwb;
		bdma_busy <= ~dma_stop & (bdma_busy | (bdma_start & ~dma_len_zero));
	end

	// dma burst length;
	// first burst aligns to 128-byte block;
	// a number of full 128-byte bursts may follow;
	// last burst moves the remaining bytes;

	wire bdma_ge128;		// dma_len >= 128;
	wire [6:3] bdma_dwib;	// # of dw in current burst;
	reg bdma_fill;			// fill current burst;
	reg [6:0] bdma_len;		// burst dma length;

	assign bdma_ge128 = |dma_len[23:7];
	assign bdma_dwib = ~dma_addr[6:3];

	always @(posedge sysclk)
	begin
		bdma_fill <= bdma_ge128 | (dma_len[6:3] > bdma_dwib);
		bdma_len <= bdma_fill? { bdma_dwib, 3'b111 } : dma_len[6:0];
	end

	// request dbus dma;

	reg bdma_aesp;			// aesp requests one burst dma;
	wire bdma_req;			// dma burst request;
	wire bdma_cyc_clr;		// clear bdma busy;
	reg bdma_cyc;			// bdma busy;
	wire bdma_req_clr;		// clear dma request;
	reg dma_request;		// dma request;
	reg bdma_ack;			// burst dma ack;
	reg bdma_ack2;
	reg bdma_ack3;

	assign bdma_cyc_clr = dma_stop | bdma_ack3;
	assign bdma_req_clr = dma_stop | dma_grant;
	assign bdma_req = dma_busy & ~dma_len_zero & ~bdma_cyc & (bdma_aesp | bdma_busy);

	always @(posedge sysclk)
	begin
		bdma_cyc <= ~bdma_cyc_clr & (bdma_cyc | bdma_req);
		dma_request <= ~bdma_req_clr & (dma_request | bdma_req);
		bdma_ack <= dma_last;
		bdma_ack2 <= bdma_ack;
		bdma_ack3 <= bdma_ack2;
	end

	// burst dma control;

	reg bdma_dph;			// burst dma phase;
	wire bdma_val;			// burst dma data valid;
	reg [1:0] bdma_dval;	// delayed valid;
	wire dbus_shr;			// data right shift;

	always @(posedge sysclk)
	begin
		bdma_dph <= bdma_cyc & ~dma_last & (bdma_dph | dma_start);
		bdma_dval <= { bdma_dval[0], bdma_val };
	end

	assign bdma_val = dma_start | bdma_dph;
	assign dma_len_dec = bdma_dval[0];
	assign dma_addr_inc = bdma_ack;
	assign dev_addr_inc = bdma_dval[0];

	// dma/io control;
	// writes to length registers start the pi dma;
	// if dma is busy then let the current dma complete and set dma error;
	// write to status register (any data) clears interrupt,
	// clears dma error bit and aborts current operation;

	wire dma_set_err;		// attempt to overwrite busy dma;

	assign pi_busy = dma_busy | io_busy;
	assign dma_set_err = pi_busy & (dma_addr_we | dev_addr_we | dma_len_we);
	assign dma_conflict = pi_busy;

	always @(posedge sysclk)
	begin
		dma_busy <= ~dma_stop & (dma_busy | dma_kick);
		io_busy <= ~io_stop & (io_busy | io_kick);
		dma_err <= ~dma_reset & (dma_err | dma_set_err);
		dma_intr <= ~clr_intr & (dma_intr | (dma_busy & dma_done));
	end

	// new pi registers;
	// access is controlled by PI_ACCESS register;

	// atb upper bits;
	// hold in register and joined for write of word;
	// write to PI_ATBU also invalidate the atb cache;

	wire atbu_we;			// write to atb upper bits;
	wire atb_inv;			// invalidate atb cache;
	reg [8:0] atbu;			// upper write bits of atb entry;

	assign atbu_we = reg_write & ra_atbu;
	assign atb_inv = dma_reset | atbu_we;

	always @(posedge sysclk)
	begin
		if(atbu_we)
			atbu <= pio_wdata[8:0];
	end

	// flash command register;
	// used directly for independent flash operations;
	// also used by pi dev processor for traditional pi dma;
	// don't start new command if controller is busy;
	// interrupt enable is cleared on reset;

	wire flc_addr_we;			// write flash address;
	reg [29:0] flc_addr;		// flash byte address;
	wire fl_ctrl_we;			// write flash cmd register;
	wire fl_ctrl_stop;			// stop flash controller;
	reg flc_wdph;				// write data phase;
	reg flc_rdph;				// read data phase;
	reg [3:0] flc_adph;			// address phase selects;
	reg [7:0] flc_cmd;			// flash command;
	reg flc_wrdy;				// wait for flash ready;
	reg flc_buf;				// data buffer to use for ctrl;
	wire flp_buf;				// data buffer to use for proc;
	reg flc_ecc;				// enable ecc detection/correction;
	reg flc_mcmd;				// multi-cycle command;
	reg [1:0] flc_dev;			// ctrl flash device;
	wire [1:0] flp_dev;			// proc flash device;
	reg [9:0] flc_size;			// size of data phase;
	reg flc_size_last;			// size reached last byte;
	wire flc_size_dec;			// decrement size;
	wire flc_nosize;			// do not use flc_size for dev proc;
	reg flc_start;				// ctrl start of flash operation;
	wire flp_start;				// proc start of flash operation;
	reg flc_stop;				// ctrl stop of flash operation;
	wire flp_stop;				// proc stop of flash operation;
	wire flc_busy;				// flash interface is busy;
	wire flc_done;				// flash operation done;
	reg flc_intr_en;			// flash interrupt enable;
	reg flc_intr;				// flash interrupt flag;
	wire flc_sbe;				// single-bit error;
	wire flc_dbe;				// double-bit error;
	wire [31:0] pi_fl_ctrl;		// pi aes control register;

	assign flc_addr_we = reg_write & ra_fl_addr & ~flc_busy;
	assign fl_ctrl_we = reg_write & ra_fl_ctrl & ~flc_busy;
	assign fl_ctrl_stop = reg_write & ra_fl_ctrl & ~pio_wdata[31];

	always @(posedge sysclk)
	begin
		if(reset)
			flc_intr_en <= 0;
		else if(fl_ctrl_we)
			flc_intr_en <= pio_wdata[30];
		if(fl_ctrl_we) begin
			flc_wdph <= pio_wdata[29];
			flc_rdph <= pio_wdata[28];
			flc_adph <= pio_wdata[27:24];
			flc_cmd <= pio_wdata[23:16];
			flc_wrdy <= pio_wdata[15];
			flc_buf <= pio_wdata[14];
			flc_dev <= pio_wdata[13:12];
			flc_ecc <= pio_wdata[11];
			flc_mcmd <= pio_wdata[10];
		end else if(flp_start) begin
			flc_buf <= flp_buf;
			flc_dev <= flp_dev;
		end
		if(fl_ctrl_we)
			flc_size <= pio_wdata[9:0];
		else if(~flc_nosize & flc_size_dec)
			flc_size <= flc_size - 1;
		flc_size_last <= ~flc_nosize & (flc_size == 10'd1);
		flc_start <= (fl_ctrl_we & pio_wdata[31]) | flp_start;
		flc_stop <= fl_ctrl_stop | flp_stop;
		flc_intr <= ~reset & flc_intr_en & (flc_intr | flc_done);
	end

	assign pi_fl_ctrl = { flc_busy, flc_intr,
		flc_wdph, flc_rdph, flc_adph, flc_cmd,
		flc_wrdy, flc_buf, flc_dev, flc_sbe, flc_dbe, flc_size };

	// flash config register;
	// controls timing for both the sm and module port;
	// default to slowest timing with enough setup/hold timing
	// that is enough for most older sm and nand flashes;
	//
	//	30..28	end of cycle time;
	//	26..24	read sample time;
	//	23..16	we active times;
	//	15..8	re active times;
	//	7..0	ale/cle active times;

	wire fl_conf_we;			// write flash config register;
	reg [31:0] flc_conf;		// flash config register;
	wire [31:0] flc_defc;		// default timing config;

	assign fl_conf_we = reg_write & ra_fl_conf;
	assign flc_defc = {
		1'b1,					// write protected;
		3'd7,					// 8 clock cycle;
		1'b0,					// unused;
		3'd5,					// read sample time;
		8'b00111110,			// ale/cle to re; setup 1, hold 2 clks;
		8'b00111110,			// ale/cle to we; setup 1, hold 2 clks;
		8'b11111111 };			// 8 clock cycle;

	always @(posedge sysclk)
	begin
		if(reset)
			flc_conf <= flc_defc;
		else if(fl_conf_we)
			flc_conf <= pio_wdata;
	end

	// aes control register;
	// used directly for independent aes operations;
	// also used by pi dev processor for traditional pi dma;
	// interrupt enable is cleared on reset;

	wire aes_ctrl_we;			// write to aes ctrl register;
	wire aesp_we;				// proc cmd issue;
	reg [7:1] aes_ia;			// ctrl buffer address of cbc init vector;
	reg [7:1] aesp_ia;			// proc init vector;
	reg aes_hc;					// ctrl hardware chaining;
	reg aesp_hc;				// proc hardware chaining;
	reg [7:1] aes_da;			// ctrl buffer address of data;
	wire [7:1] aesp_da;			// proc buffer address of data;
	reg [5:0] aes_size;			// ctrl # of 128-bit words to decrypt;
	wire [5:0] aesp_size;		// proc # of 128-bit words to decrypt;
	reg aes_start;				// start an aes operation;
	wire aesp_start;			// start proc aes operation;
	reg aes_stop;				// stop aes operation in progress;
	wire aesp_stop;				// stop proc aes operation;
	reg aes_intr_en;			// aes interrupt enable;
	reg aes_intr;				// aes interrupt flag;
	wire aes_busy;				// aes core is busy;
	wire aes_done;				// aes operation done;
	wire [31:0] pi_aes_ctrl;	// pi aes control register;
	wire aes_dw;				// aes double word done;

	assign aes_ctrl_we = reg_write & ra_aes_ctrl;

	always @(posedge sysclk)
	begin
		if(reset)
			aes_intr_en <= 0;
		else if(aes_ctrl_we)
			aes_intr_en <= pio_wdata[30];
		if(aes_ctrl_we) begin
			aes_size <= pio_wdata[21:16];
			aes_da <= pio_wdata[15:9];
			aes_ia <= pio_wdata[7:1];
			aes_hc <= pio_wdata[0];
		end else if(aesp_we) begin
			aes_size <= aesp_size;
			aes_da <= aesp_da;
			aes_ia <= aesp_ia;
			aes_hc <= aesp_hc;
		end
		aes_start <= (aes_ctrl_we & pio_wdata[31]) | aesp_start;
		aes_stop <= (aes_ctrl_we & ~pio_wdata[31]) | aesp_stop;
		aes_intr <= ~reset & aes_intr_en & (aes_intr | aes_done);
	end

	assign pi_aes_ctrl = { aes_busy, aes_intr, 6'd0,
		2'd0, aes_size, aes_da, 1'b0, aes_ia, aes_hc };

	// ide registers;
	// software must take io bus out of reset;
	// set defaults to pio mode 2 at 62.5MHz;

	wire ide_conf_we;			// write to ide config register;
	reg io_rst;					// io bus reset;
	reg [30:0] ide_conf;		// ide timing config register;
	wire [31:0] pi_ide_conf;	// value returned on reads;

	assign ide_conf_we = reg_write & ra_ide_conf;

	always @(posedge sysclk)
	begin
		if(reset) begin
			io_rst <= 1'b1;
			ide_conf <= { 5'd8, 5'd7, 5'd2, 6'd9, 5'd8, 5'd1 };
		end else if(ide_conf_we) begin
			io_rst <= pio_wdata[31];
			ide_conf <= pio_wdata[30:0];
		end
	end

	assign pi_ide_conf = { io_rst, ide_conf };

	// ide dma control register;
	// XXX

	// ioc gpio register;
	// latch id bits from io bus on rising edge of pin reset;
	// set gpio[1:0] to drive out 0 at falling edge of pin reset;
	// set gpio[3:2] to inputs at falling edge of pin reset;
	// sample id during pin reset only;
	// soft reset is too short for weak pull resistors to drive;

	wire gpio_we;				// write to gpio register;
	reg [15:0] ioc_id;			// id bits latched during reset;
	reg [3:0] gpio_oe;			// gpio configuration;
	reg [3:0] gpio_out;			// gpio output values;
	wire [31:0] pi_gpio;		// gpio read value;
	reg id_ena;					// sample id bits;

	assign gpio_we = reg_write & ra_gpio;

	always @(posedge sysclk)
	begin
		if(rst_l == 1'b0) begin
			gpio_oe <= 4'b0011;
			gpio_out <= 4'b0000;
		end else if(gpio_we) begin
			gpio_oe <= pio_wdata[7:4];
			gpio_out <= pio_wdata[3:0];
		end
		id_ena <= ~rst_l;
		if(id_ena)
			ioc_id <= io_in;
	end

	assign pi_gpio = { ioc_id, 8'd0, gpio_oe, gpio_in };

	// access control register;
	// all bits are writable in secure mode;
	// right can only be taken away in non-secure mode;

	reg [7:0] acc_ctrl;		// access control register;
	wire [31:0] pi_access;

	always @(posedge sysclk)
	begin
		if(reset)
			acc_ctrl <= 8'd0;
		else if(reg_write & ra_access)
			acc_ctrl <= pio_wdata[7:0] & acc_ena;
	end

	assign acc_ena = {8{sec_mode}} | acc_ctrl;
	assign pi_access = { 24'd0, acc_ctrl };

	// pi error register;
	// fatal error handling;
	// detect changes in module presense;

	wire wr_trap;			// write trap;
	wire [3:2] error_ecc;	// cor/unc ecc error;
	wire [1:0] error_atb;	// atb errors;
	reg error_sk;			// secure kernel trap on error;
	reg error_int;			// error interrupt on error;
	reg [4:0] error;		// error status bits;
	wire error_we;			// write PI_ERROR;
	wire error_loga;		// errors for which to log virtual address;
	reg error_aden;			// capture error address;
	reg [29:8] error_addr;	// error address;
	wire error_val;			// valid error, unc ecc or atb;
	wire [29:8] proc_addr;	// process device address;
	wire [31:0] pi_error;	// read value;

	assign error_we = reg_write & ra_error;
	assign wr_trap = dma_trap | io_write;

	always @(posedge sysclk)
	begin
		if(reset) begin
			error_sk <= 1'b0;
			error_int <= 1'b0;
			error[4:0] <= 5'd0;
		end else if(error_we) begin
			error_sk <= pio_wdata[31];
			error_int <= pio_wdata[30];
			error <= pio_wdata[4:0];
		end else
			error <= error | { wr_trap, error_ecc, error_atb };
		error_aden <= (error[3:0] == 4'd0) & error_loga;
		if(error_aden)
			error_addr <= proc_addr;
	end

	assign error_loga = |{ error_ecc, error_atb };
	assign error_val = |{ error[4], error[2:0] };
	assign err_trap = error_sk & error_val;
	assign err_intr = error_int & error_val;
	assign pi_error = { error_sk, error_int, error_addr, 3'd0, error };

	// pi buffer sram;
	// this is the core of the data paths;
	// synchronous single-port 256xN bits, writable in N/2 units;
	// can be accessed from both the cbus and dbus;
	// dbus cycles have highest priority and preempt everything else;
	// register buufer read data for atb and io logic;

	wire buf_ena;			// enable buffer read/write;
	wire [7:0] buf_addr;	// buffer word address;
	wire [40:0] buf_doh;	// upper buffer read data;
	wire [40:0] buf_dol;	// lower buffer read data;
	wire [40:0] buf_dih;	// upper buffer write data;
	wire [40:0] buf_dil;	// lower buffer write data;
	wire [1:0] buf_we;		// buffer write enables;

	pi_buf pibuf (
		.clk(sysclk),
		.csb(~buf_ena),
		.addr(buf_addr),
		.dih(buf_dih),
		.dil(buf_dil),
		.web(~buf_we),
		.doh(buf_doh),
		.dol(buf_dol)
	);

	// dbus read interface requires 16-bit barrel shifter;
	// placed between sram and register, there is enough time;
	// shifts only enabled for dbus reads;

	reg [1:0] buf_shl;		// # of barrel left shifts;
	wire [63:0] buf_dor;	// data read from pi buffer;
	wire [63:0] buf_doa;	// output of first row muxes;
	wire [63:0] buf_dob;	// output of second row muxes;
	reg [40:0] buf_rdoh;	// registered upper buffer read data;
	reg [40:0] buf_rdol;	// registered lower buffer read data;

	assign buf_dor = { buf_doh[31:0], buf_dol[31:0] };
	assign buf_doa[63:48] = buf_shl[0]? buf_dor[47:32] : buf_dor[63:48];
	assign buf_doa[47:32] = buf_shl[0]? buf_dor[31:16] : buf_dor[47:32];
	assign buf_doa[31:16] = buf_shl[0]? buf_dor[15:0]  : buf_dor[31:16];
	assign buf_doa[15:0]  = buf_shl[0]? buf_dor[63:48] : buf_dor[15:0];
	assign buf_dob[63:48] = buf_shl[1]? buf_doa[31:16] : buf_doa[63:48];
	assign buf_dob[47:32] = buf_shl[1]? buf_doa[15:0]  : buf_doa[47:32];
	assign buf_dob[31:16] = buf_shl[1]? buf_doa[63:48] : buf_doa[31:16];
	assign buf_dob[15:0]  = buf_shl[1]? buf_doa[47:32] : buf_doa[15:0];

	always @(posedge sysclk)
	begin
		buf_rdoh <= { buf_doh[40:32], buf_dob[63:32] };
		buf_rdol <= { buf_dol[40:32], buf_dob[31:0] };
	end

	// dbus data path;
	// buffer incoming data in register;
	// output data path has 16-bit piped barrel shifter for alignment;
	// 16-bit words because old pi had this alignment;
	// both dbus_shl and dbus_byp are constant for entire dma;
	// mem->pibuf dma must be aligned on 8-byte addresses;
	// pibuf->mem dma can use barrel shifter;

	reg [63:0] dbus_in;		// dbus input register;
	wire [63:0] dbus_rdo;	// registered & shifted buffer read data;
	reg [63:0] dbus_out;	// dbus output data;
	reg [2:0] dbus_shl;		// # of barrel left shifts;
	wire [3:0] dbus_byp;	// bypass selects;
	wire [6:0] dbus_addr;	// dbus buffer address;

	assign dbus_rdo = { buf_rdoh[31:0], buf_rdol[31:0] };

	always @(posedge sysclk)
	begin
		if(dma_kick)
			dbus_shl <= { 1'b0, dev_addr[2:1] } - { 1'b0, dma_addr[2:1] };
		dbus_in <= dbus_din;
		dbus_out[63:48] <= dbus_byp[3]? buf_dob[63:48] : dbus_rdo[63:48];
		dbus_out[47:32] <= dbus_byp[2]? buf_dob[47:32] : dbus_rdo[47:32];
		dbus_out[31:16] <= dbus_byp[1]? buf_dob[31:16] : dbus_rdo[31:16];
		dbus_out[15:0]  <= dbus_byp[0]? buf_dob[15:0]  : dbus_rdo[15:0];
	end

	assign dbus_dout = {64{dbus_enable}} & dbus_out;
	assign dbus_byp[0] = dbus_shl[1] | dbus_shl[0];
	assign dbus_byp[1] = dbus_shl[1];
	assign dbus_byp[2] = dbus_shl[1] & dbus_shl[0];
	assign dbus_byp[3] = 1'b0;
	assign dbus_shr = dbus_shl[2];
	assign dbus_addr = dbus_shr? dev_addr[9:3] - 1 : dev_addr[9:3];

	// pi buffer arbitration;
	// requestors are cbus, dbus, and device side;
	// dbus is highest priority and preempts cbus and device side;
	// longest dbus burst is 128 bytes, 16 dbus cycles;
	// cbus requests fail if dma interferes;
	// software can avoid conflict or check buf_err; //XXX
	// device side stalls during dbus accesses;
	// buf_win: 00=device, 01=dbus, 10=cbus;

	wire buf_dbus_req;			// dbus requesting buffer;
	wire buf_cbus_req;			// cbus requesting buffer;
	wire buf_dev_req;			// device side requesting buffer;
	wire buf_dev_ack;			// device side won buffer;
	reg [2:0] buf_win;			// winner of buffer arbitration;

	assign buf_dbus_req = bdma_val | (bdma_dval[0] & |dbus_shl);
	assign buf_cbus_req = (cbus_rw & cbus_buf) | io_rbuf;

	always @(posedge sysclk)
	begin
		buf_win[0] <= ~reset & buf_dbus_req;
		buf_win[1] <= ~reset & ~buf_dbus_req & buf_cbus_req;
		buf_win[2] <= ~reset & (buf_dbus_req | buf_cbus_req | buf_dev_req);
		buf_shl <= {2{buf_win[0]}} & dbus_shl;
	end

	assign buf_ena = buf_win[2];
	assign buf_dev_ack = (buf_win == 3'b100);

	// pi buffer address mux;
	// select dbus address, cbus address or device address;

	wire [7:0] buf_dbus_addr;	// pibuf dbus address;
	wire [7:0] buf_cbus_addr;	// pibuf cbus address;
	wire [8:0] buf_dev_addr;	// pibuf device address;

	assign buf_dbus_addr = { 1'b0, dbus_addr };
	assign buf_cbus_addr = pio_baddr;

	assign buf_addr = buf_win[0]? buf_dbus_addr
		: buf_win[1]? buf_cbus_addr
		: buf_dev_addr[8:1];

	// pi buffer write enable mux;
	// select write enable from dbus, cbus or device side;
	// atb never writes;
	// devices write 32-bit words;

	wire buf_dev_write;			// device write cycle;
	wire [1:0] buf_dev_we;		// device side write enables;

	assign buf_dev_we[1] = buf_dev_write & ~buf_dev_addr[0];
	assign buf_dev_we[0] = buf_dev_write & buf_dev_addr[0];

	assign buf_we = buf_win[0]? {2{dma_read}}
		: buf_win[1]? {2{pio_write}} & pio_bufen[1:0]
		: buf_dev_we;

	// pi buffer write data mux;
	// atb is never written by the device side;
	// always stick upper atb bits into all write data;

	wire [31:0] buf_dev_wdata;	// device write data;
	wire [31:0] buf_dix;		// device or pio write data;

	assign buf_dix = buf_win[1]? pio_wdata : buf_dev_wdata;
	assign buf_dih = { atbu, buf_win[0]? dbus_in[63:32] : buf_dix };
	assign buf_dil = { atbu, buf_win[0]? dbus_in[31:0] : buf_dix };

	// register buffer read data for atb block;
	// mux and register read data for io devices;

	reg buf_sel;			// 32-bit read word select;
	reg [31:0] buf_rdo;		// read data for io devices;
	wire [31:0] buf_dou;	// upper read bits of atb pair;

	always @(posedge sysclk)
	begin
		buf_sel <= buf_win[2] & buf_dev_addr[0];
		buf_rdo <= buf_sel? buf_dol[31:0] : buf_doh[31:0];
	end

	assign buf_dou = { 7'd0, buf_doh[40:32], 7'd0, buf_dol[40:32] };

	// cbus response data mux;

	reg [31:0] reg_data;		// register response data;
	reg [2:0] rsp_sel;			// response word selects;
	reg [31:0] rsp_data;		// read response data;
	wire [3:0] pi_status;		// pi status;

	assign pi_status = { dma_intr, dma_err, io_busy, dma_busy };

	always @(posedge sysclk)
	begin
		reg_data <= ({32{ra_dev_addr}} & { 2'd0, dev_addr })
			| ({32{ra_dma_len}} & { 8'd0, dma_len })
			| ({32{ra_status}} & { 24'd0, 4'd0, pi_status })
			| ({32{ra_fl_ctrl}} & pi_fl_ctrl)
			| ({32{ra_fl_conf}} & flc_conf)
			| ({32{ra_fl_addr}} & { 2'd0, flc_addr })
			| ({32{ra_aes_ctrl}} & pi_aes_ctrl)
			| ({32{ra_access}} & pi_access)
			| ({32{ra_gpio}} & pi_gpio)
			| ({32{ra_ide_conf}} & pi_ide_conf)
			| ({32{ra_error}} & pi_error)
			| ({32{ra_edata}} & io_wdata);
		rsp_sel <= pio_bufen | io_bufen;
		if(pio_ack) begin
			rsp_data <= reg_data
				| { 2 {{16{ide_acc}} & ide_di}}
				| ({32{rsp_sel[2]}} & buf_dou)
				| ({32{rsp_sel[1]}} & buf_doh[31:0])
				| ({32{rsp_sel[0]}} & buf_dol[31:0]);
		end
	end

	// cbus write data mux;
	// selects dma address, read length, write length or response data;
	// default to response data, because they toggle the least;

	wire cbus_sel_addr;		// cbus wants dma address;
	wire cbus_sel_len;		// cbus wants dma length;
	wire cbus_sel_data;		// cbus wants response data;
	wire cbus_out_addr;		// cbus wants dma_addr as response;
	wire [7:0] dma_delay;	// fixed in ri;

	assign cbus_sel_addr = (cbus_select == `CBUS_SEL_ADDR);
	assign cbus_sel_len = (cbus_select == `CBUS_SEL_LEN);
	assign cbus_sel_data = (cbus_select == `CBUS_SEL_DATA);
	assign cbus_out_addr = cbus_sel_addr | (cbus_sel_data & ra_dma_addr);
	assign dma_delay = 8'd0;

	assign cbus_out = cbus_out_addr? { 6'd0, dma_addr }
		: cbus_sel_len? { `CBUS_DEV_PI, dma_delay, dma_read, bdma_len }
		: rsp_data;

	// device side buffer arbitration;
	// aes needs back-to-back access for performance;
	// atb, flash and ide are in the delayed arbitration path;
	// reason for delayed device arbitration is logic depth of main arbiter;
	//
	// requestors (in order or priority) are:
	//		aes		read, write
	//		flash	read, write
	//		atb		read
	//		ide		read, write

	wire [8:0] flb_addr;		// flash buffer address;
	wire flb_req;				// flash buffer request;
	wire flb_write;				// flash buffer write;
	wire flb_ack;				// flash buffer ack;
	wire [31:0] flb_wdata;		// flash write data;

	wire [8:0] aes_addr;		// aes buffer address;
	wire aes_req;				// aes buffer request;
	wire aes_write;				// aes buffer write;
	wire aes_ack;				// aes acknowledge;
	wire [31:0] aes_wdata;		// aes write data;

	wire [7:0] atb_addr;		// atb buffer address;
	wire atb_req;				// atb buffer request;
	wire atb_ack;				// atb acknowledge;

	reg [2:1] darb_req;			// delayed requestors;
	reg [2:0] darb_win;			// device arbitration winner;
	reg [8:0] darb_addr;		// delayed device address;
	reg darb_write;				// delayed device write enables;

	always @(posedge sysclk)
	begin
		darb_req[1] <= flb_req & ~flb_ack;
		darb_req[2] <= atb_req & ~atb_ack;
		darb_win[0] <= aes_req;
		darb_win[1] <= ~aes_req & darb_req[1];
		darb_win[2] <= ~aes_req & ~darb_req[1] & darb_req[2];
		darb_addr <= darb_req[1]? flb_addr : { atb_addr, 1'b0 };
		darb_write <= darb_req[1]? flb_write : 1'b0;
	end

	assign buf_dev_req = aes_req | (darb_req[1] & ~flb_ack) | (darb_req[2] & ~atb_ack);
	assign aes_ack = buf_dev_ack & darb_win[0];
	assign flb_ack = buf_dev_ack & darb_win[1];
	assign atb_ack = buf_dev_ack & darb_win[2];

	// device buffer address mux;
	// device buffer write mux;

	assign buf_dev_addr = darb_win[0]? aes_addr : darb_addr;
	assign buf_dev_wdata = darb_win[0]? aes_wdata : flb_wdata;
	assign buf_dev_write = darb_win[0]? aes_write : darb_write;

	// instantiate address translation module;
	// maps virtual dma address to physical device address;

	reg atb_start;			// start atb lookup;
	wire atb_stop;			// stop atb operation;
	wire atb_map;			// do virtual to physical mapping;
	wire atb_done;			// atb lookup done or error;
	reg [29:0] atb_vaddr;	// address to map;
	wire [1:0] atb_udev;	// unmapped device;
	wire atb_pio;			// pio access;
	wire [29:0] atb_paddr;	// mapped address;
	wire [1:0] atb_pdev;	// mapped device;
	wire atb_piv;			// use buffer iv;
	wire atb_err;			// atb mapping/access error;

	assign atb_udev = 2'd0;
	assign atb_map = 1;
	assign atb_pio = io_busy;

	pi_atb atb (
		.sysclk(sysclk),
		.reset(reset),
		.atb_start(atb_start),
		.atb_stop(atb_stop),
		.atb_vaddr(atb_vaddr[29:14]),
		.atb_udev(atb_udev),
		.atb_pio(atb_pio),
		.atb_map(atb_map),
		.atb_inv(atb_inv),
		.atb_done(atb_done),
		.atb_paddr(atb_paddr[29:14]),
		.atb_pdev(atb_pdev),
		.atb_piv(atb_piv),
		.atb_err(atb_err),
		.atb_addr(atb_addr),
		.atb_req(atb_req),
		.atb_ack(atb_ack),
		.atb_h(buf_rdoh),
		.atb_l(buf_rdol)
	);

	assign atb_paddr[13:0] = atb_vaddr[13:0];

	// instantiate io bus controller;
	// protocol identical to ide, except for address output;

	wire flc_breq;			// flash io bus request;
	wire flc_bgnt;			// io bus granted to flash;
	wire flc_bre;			// flash io bus read enable;
	wire flc_brd;			// flash read from io bus;
	wire [15:0] flc_out;	// flash write data;

	pi_ioc ioc (
		.sysclk(sysclk),
		.reset(reset),
		.io_in(io_in),
		.io_ena(io_ena),
		.io_out(io_out),
		.io_oe(io_oe),
		.io_ale(io_ale),
		.io_ior(io_ior),
		.io_iow(io_iow),
		.io_cs(io_cs),
		.io_dmarq(io_dmarq),
		.io_dmack(io_dmack),
		.io_intr(io_intr),
		.flc_breq(flc_breq),
		.flc_bgnt(flc_bgnt),
		.flc_bre(flc_bre),
		.flc_brd(flc_brd),
		.flc_out(flc_out),
		.but_req(lctrl_req),
		.but_val(lctrl_val),
		.ide_conf(ide_conf),
		.ide_stall(ide_stall),
		.ide_acc(ide_acc),
		.ide_req(ide_req),
		.ide_addr(pio_addr[18:1]),
		.ide_write(pio_write),
		.ide_rack(ide_rack),
		.ide_do(pio_wdata),
		.ide_di(ide_di),
		.ide_intr(ide_intr)
	);

	assign lctrl_but = io_in[13:0];

	// instantiate nand flash controller;
	// executes flash commands between pi buffer and interface;
	// handles ecc calculation, correction and detection;

	pi_flash flc (
		.sysclk(sysclk),
		.reset(reset),
		.flc_conf(flc_conf),
		.flc_start(flc_start),
		.flc_stop(flc_stop),
		.flc_busy(flc_busy),
		.flc_done(flc_done),
		.flc_addr(flc_addr),
		.flc_dev(flc_dev),
		.flc_ecc(flc_ecc),
		.flc_mcmd(flc_mcmd),
		.flc_buf(flc_buf),
		.flc_cmd(flc_cmd),
		.flc_adph(flc_adph),
		.flc_rdph(flc_rdph),
		.flc_wdph(flc_wdph),
		.flc_wrdy(flc_wrdy),
		.flc_breq(flc_breq),
		.flc_bgnt(flc_bgnt),
		.flc_bre(flc_bre),
		.flc_in(io_in),
		.flc_brd(flc_brd),
		.flc_out(flc_out),
		.flc_size_dec(flc_size_dec),
		.flc_size_last(flc_size_last),
		.flc_sbe(flc_sbe),
		.flc_dbe(flc_dbe),
		.flb_addr(flb_addr),
		.flb_req(flb_req),
		.flb_write(flb_write),
		.flb_ack(flb_ack),
		.flb_in(buf_rdo),
		.flb_out(flb_wdata),
		.fl_ce(fl_ce),
		.fl_ale(fl_ale),
		.fl_cle(fl_cle),
		.fl_re(fl_re),
		.fl_we(fl_we),
		.fl_wp(fl_wp),
		.fl_ryby(fl_ryby)
	);

	// instantiate aes cbc decryption module;
	// handles data decryption in pi buffer in place;
	// expanded key is stored in pi buffer;

	pi_aes aes (
		.sysclk(sysclk),
		.reset_l(reset_l),
		.aes_start(aes_start),
		.aes_stop(aes_stop),
		.aes_busy(aes_busy),
		.aes_ia(aes_ia),
		.aes_hc(aes_hc),
		.aes_da(aes_da),
		.aes_size(aes_size),
		.aes_done(aes_done),
		.aes_addr(aes_addr),
		.aes_req(aes_req),
		.aes_write(aes_write),
		.aes_ack(aes_ack),
		.aes_in({ buf_rdoh[31:0], buf_rdol[31:0] }),
		.aes_out(aes_wdata),
		.aes_dw(aes_dw)
	);

	// device side processor;
	// handles both traditional dma and buffer dma;
	// state graph;
	//
	//	atb read aes dma rblk
	//	 |
	//	 |---0
	//	     0
	//	     0
	//	 |---0----0-------0
	//	 |        0   0   0
	//	 |---1    0       0
	//	     1    0---0   0
	//	     1        0   0
	//	 |---1----1
	//	 |        1
	//	 |---0    1
	//	     0    1---1
	//	     0        1
	//
	// stop process at reset or when mem dma length has reached 0;
	// stop when flash module is detected missing;
	// a dma length of 0 completes immediatedly without data movement;

	reg proc_start;			// start dev processor;
	wire proc_done;			// dev processor is done;
	wire proc_stop;			// stop device side;
	reg proc_busy;			// dev processor busy;
	wire proc_rblk;			// block next read while aes/bdma is busy;

	assign proc_done = dma_len_zero & (proc_start | proc_busy);
	assign proc_stop = dma_reset | proc_done | io_done[0] | (proc_busy & fl_md);
	assign dma_done = proc_done | bdma_done;

	always @(posedge sysclk)
	begin
		proc_start <= dma_proc | io_kick;
		proc_busy <= ~proc_stop & (proc_busy | proc_start);
	end

	// atb process;
	// start lookup on start of dma;
	// start lookup after error-free completion of flash read;
	// atb lookup runs parallel to aes decryption;
	// stop on any atb error;

	wire atb_lookup;		// do an atb lookup;
	wire atb_inc;			// start next atb lookup;
	wire atb_fin;			// atb finished;
	wire atb_ok;			// atb finished without error;
	reg atb_badiv;			// illegal iv location;
	wire atb_fail;			// atb lookup failed;

	assign atb_stop = proc_stop;
	assign atb_lookup = proc_start | atb_inc;

	always @(posedge sysclk)
	begin
		atb_start <= ~proc_stop & atb_lookup;
		if(dma_proc)
			atb_vaddr <= dev_addr - 30'd16;
		else if(io_kick)
			atb_vaddr <= { pio_addr[29:9], 9'd0 } - 30'd16;
		else if(atb_inc)
			atb_vaddr <= { atb_vaddr[29:9] + 1, 9'd0 };
		atb_badiv <= (atb_vaddr[13:4] != 10'h3ff);
	end

	assign atb_fin = proc_busy & atb_done;
	assign atb_fail = (atb_piv & atb_badiv) | atb_err;
	assign atb_ok = atb_fin & ~atb_fail;
	assign proc_addr = atb_vaddr[29:8];
	assign error_atb[1] = atb_fin & atb_fail & dma_busy;
	assign error_atb[0] = atb_fin & atb_fail & io_busy;

	// flash read process;
	// start flash read after successful atb lookup;
	// align flash address to 256-byte blocks, due to ecc checking;

	reg flp_stall;			// wait with aes until bdma is done;
	wire flp_fin;			// flash request finished;
	reg flp_ok;				// flash request finished without error;

	assign flp_start = atb_ok & ~atb_piv;
	assign flp_stop = proc_stop;
	assign flp_buf = atb_paddr[9];
	assign flp_dev = atb_pdev;
	assign flc_nosize = proc_busy;

	always @(posedge sysclk)
	begin
		if(proc_busy)
			flc_addr <= { atb_paddr[29:8], 8'h00 };
		else if(flc_addr_we)
			flc_addr <= pio_wdata[29:0];
		flp_stall <= proc_busy & ((proc_rblk & flp_stall) | flp_fin);
		flp_ok <= (atb_ok & atb_piv) | (~proc_rblk & flp_stall & ~flc_dbe);
	end

	assign flp_fin = proc_busy & flc_done;
	assign atb_inc = flp_ok;
	assign error_ecc[3] = flp_fin & flc_sbe;
	assign error_ecc[2] = flp_fin & flc_dbe;

	// aes process;
	// start after successful flash read;
	// data address is 256-byte aligned, in buffer 0 or 1;
	// decrypt only the involved 16-byte blocks;
	// use hardware cbc chaining after first block;
	// determine # of aes blocks to decrypt;
	// do not start aes if init vector is only block in buffer;

	reg aesp_first;			// first proc aes request;
	wire [5:0] aesp_ioff;	// iv offset in buffer;
	wire aesp_ionly;		// only iv at end of buffer;
	reg aesp_zoff;			// zero data offset;
	reg [5:0] aesp_doff;	// data offset in buffer;

	assign aesp_ioff = atb_paddr[9:4];
	assign aesp_ionly = aesp_ia[7] | (aesp_ia[5:1] == 5'd31);

	always @(posedge sysclk)
	begin
		aesp_first <= ~proc_stop & ~aesp_we & (aesp_first | proc_start);
		if(aesp_first)
			aesp_ia <= atb_piv? 7'd77 : { 1'b0, aesp_ioff };
		aesp_hc <= ~proc_start & (aesp_hc | aes_done);
		aesp_zoff <= aesp_hc | aesp_ionly;
		aesp_doff <= aesp_zoff? aesp_ioff : (aesp_ioff + 1);
	end

	assign aesp_we = flp_ok;
	assign aesp_start = flp_ok & ~(aesp_first & aesp_ionly);
	assign aesp_stop = proc_stop;
	assign aesp_da = { 1'b0, aesp_doff };
	assign aesp_size = { 1'b0, ~aesp_doff[4:0] };

	// pio completion;
	// on atb errors, ecc errors, or module removal;
	// after aes has decrypted entire 512-byte flash block;

	wire io_err_set;		// pio aborted due to errors;

	assign io_err_set = error_atb[0] | error_ecc[2] | fl_md;

	always @(posedge sysclk)
	begin
		io_err <= ~io_kick & (io_err | io_err_set);
		io_done[0] <= io_hit | (io_busy & (io_err | aes_done));
		io_done[2:1] <= io_done[1:0];
	end

	// aes data count;
	// amount of data that has passed the aes process;
	// kick burst dma when enough data to fill a dma cycle;

	wire dev_off_nz;		// dev_addr not aligned to aes blocks;
	reg [10:1] aesp_cnt;	// data count;
	wire aesp_cnt_inc;		// aes done with another double-word;
	wire aesp_cnt_dec;		// bdma moved another word;

	assign dev_off_nz = (dev_addr[3:1] != 3'd0);

	always @(posedge sysclk)
	begin
		if(proc_start) begin
			aesp_cnt[10:4] <= {7{dev_off_nz}};
			aesp_cnt[3:1] <= (~dev_addr[3:1] + 1);
		end if(aesp_cnt_inc & ~aesp_cnt_dec)
			aesp_cnt <= aesp_cnt + 4;
		else if(aesp_cnt_dec & ~aesp_cnt_inc)
			aesp_cnt <= aesp_cnt - 4;
		bdma_aesp <= proc_busy & ~aesp_cnt[10]
			& (aesp_cnt[9:1] > { 3'd0, bdma_len[6:1] });
	end

	assign aesp_cnt_inc = aes_dw;
	assign aesp_cnt_dec = bdma_dval[0];
	assign proc_rblk = ~aesp_cnt[10] & |aesp_cnt[9:8];

	// assertions;
	// synopsys translate_off

	always @(posedge sysclk)
	begin
		if(proc_busy & aesp_cnt[10] & aesp_cnt_dec)
			$display("ERROR: %t: %M: bdma overran aes", $time);
	end

	// synopsys translate_on

endmodule