BankCtrl.v
30.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
module BankCtrl (
memclk,
Reset,
AnyNextCMD,
OtherCAS,
OtherDCAS,
Match,
CASMatch,
NAE,
AllCCR,
AllCCW,
AllDone,
P62p5,
OtherStAi,
OtherStA2,
OtherStA3,
OtherLastStA3,
StB0,
OtherStB0,
StB1,
nxt_StB1,
MB1stAct,
MBAct,
Device,
Read,
Length,
Addr,
I,
D,
M,
StRi,
SBSel,
TCL2,
TCL3,
TCL4,
TRCD4,
TRASp2,
TRP4,
Twdel,
Trdel,
M36,
OtherWriteDone,
OtherReadDone,
MB1stRAS,
APrechrg,
StAi,
StA2,
StA3,
LastStA3,
XCnt,
NextCMD,
WCAS,
RCAS,
DCAS,
PRAS,
APCAS,
RAS,
StM0,
ReadEn,
CCR,
nxt_Start,
pre_start,
nxt_Last,
nxt_Done,
Pend,
BlockRdy,
LastCAS,
nxt_StRS0,
WriteDone,
ReadDone,
DBusInEn,
MB1stRASout,
LastWCAS,
StWS1
);
input memclk;
input Reset;
input AnyNextCMD; // Next CMD for any bank
input OtherCAS; // CAS from other bank (in the pair)
input OtherDCAS;
input Match; // cbus address matches bank
input CASMatch; // Next CAS fifo matches bank
input NAE; // Next Address Enable
input AllCCR; // Cycle Complete Ready for Read
input AllCCW; // Cycle Complete Ready for Write
input AllDone;
input P62p5; // Phase of 62.5MHz clock
input OtherStAi; // Other Bank (of pair) idle
input OtherStA2; // Other Bank State A2
input OtherStA3;
input OtherLastStA3;
input StB0; // Bank pair not engaged in a multi-bank op
input OtherStB0; // B0 of other bank pair
input StB1; // First part of multi-bank operation
input nxt_StB1; // First part of multi-bank operation
input MB1stAct; // 1st multi-bank activate
input MBAct; // 1st, 2nd, 3rd or 4th multi-bank activate
input [3:0] Device;
input Read;
input [6:3] Length;
input [6:3] Addr;
input I;
input D;
input M;
input StRi;
input SBSel;
input TCL2;
input TCL3;
input TCL4;
input TRCD4;
input TRASp2;
input TRP4;
input [2:0] Trdel;
input [2:0] Twdel;
input M36;
input OtherWriteDone;
input OtherReadDone;
input MB1stRAS;
input APrechrg;
output StAi;
output StA2;
output StA3;
output LastStA3;
output [3:0] XCnt;
output NextCMD;
output WCAS;
output RCAS;
output DCAS;
output PRAS;
output APCAS;
output RAS;
output StM0;
output ReadEn;
output CCR;
output nxt_Start;
output pre_start;
output nxt_Last;
output nxt_Done;
output Pend;
output BlockRdy;
output LastCAS;
output nxt_StRS0;
output WriteDone;
output ReadDone;
output DBusInEn;
output MB1stRASout;
output LastWCAS;
output StWS1;
wire [3:0] BrstLen;
reg StA1_del;
`define DEV_SP (Device==4'h0) // rsp
`define DEV_CMD (Device==4'h1) // rsp
`define DEV_SPAN (Device==4'h2) // rdp
`define DEV_MI (Device==4'h3)
`define DEV_VI (Device==4'h4)
`define DEV_SI (Device==4'h5)
`define DEV_PI (Device==4'h6)
`define DEV_RI (Device==4'h7)
`define DEV_AI (Device==4'h8)
`define DEV_MEM (Device==4'h9) // rsp
`define DEV_UI (Device==4'hA)
// Main Bank Control State Machine
reg StAi; // Idle
reg StA0; // Bounce here if another bank CAS, Precharge
reg StA1; // RAS, Activate Bank
reg StAw;
reg StA2;
reg StAC;
reg StAD;
reg StA3; // Wait here until CAS can occur
reg StM1,StM0; // Aquire Write Mask from DBus
reg StRF,StWF; // CAS
reg StRE,StWE;
reg StRWF,StWWF; // Wait Cycle for M64
reg StRWE,StWWE;
reg StRD,StWD; // CAS
reg StRC,StWC;
reg StRWD,StWWD; // Wait Cycle for M64
reg StRWC,StWWC;
reg StRB,StWB; // CAS
reg StRA,StWA;
reg StRWB,StWWB; // Wait Cycle for M64
reg StRWA,StWWA;
reg StR9,StW9; // CAS
reg StR8,StW8;
reg StRW9,StWW9; // Wait Cycle for M64
reg StRW8,StWW8;
reg StR7,StW7; // CAS
reg StR6,StW6;
reg StRW7,StWW7; // Wait Cycle for M64
reg StRW6,StWW6;
reg StR5,StW5; // CAS
reg StR4,StW4;
reg StRW5,StWW5; // Wait Cycle for M64
reg StRW4,StWW4;
reg StR3,StW3; // CAS
reg StR2,StW2;
reg StRW3,StWW3; // Wait Cycle for M64
reg StRW2,StWW2;
reg StR1,StW1; // CAS
reg StR0,StW0;
reg StRW1,StWW1; // Wait Cycle for M64
reg StRW0,StWW0;
reg StWR0;
reg StWR1;
reg StWR2;
reg StWR3;
reg StPC;
reg StPD;
reg StPE;
reg StPF;
reg StP0;
reg StP1; // Issue manual precharge if unable to auto
reg StP2;
reg StP3;
reg StP4;
reg StP5;
reg StP6; // Final precharge, back to Ai
reg StRDi;
reg StRDH;
reg StRDG;
reg StRDF;
reg StRDE;
reg StRDD;
reg StRDC;
reg StRDB;
reg StRDA;
reg StRD9;
reg StRD8;
reg StRD7;
reg StRD6;
reg StRD5;
reg StRD4;
reg StRD3;
reg StRD2;
reg StRD1;
reg StRD0;
reg StWDi;
reg StWDD;
reg StWDC;
reg StWDB;
reg StWDA;
reg StWD9;
reg StWD8;
reg StWD7;
reg StWD6;
reg StWD5;
reg StWD4;
reg StWD3;
reg StWD2;
reg StWD1;
reg StWD0;
reg StWSi;
reg StWS0;
reg StWS1;
reg StWS2;
reg StWS3;
reg StWS4;
reg StWS5;
reg StAP0;
reg StAP1;
reg StAP2;
reg StAP3;
reg StAP4;
reg StAP5;
reg StAP6;
reg MPend;
reg StRSi;
reg StRS7;
reg StRS6;
reg StRS5;
reg StRS4;
reg StRS3;
reg StRS2;
reg StRS1;
reg StRS0; // Read Start
reg MB1stRASC;
reg MB1stRASD0;
reg MB1stRASD1;
wire TRD2 = (Trdel==3'b010);
wire TRD3 = (Trdel==3'b011);
wire TRD4 = (Trdel==3'b100);
wire TRD5 = (Trdel==3'b101);
wire TWD0 = (Twdel==3'b000);
wire TWD1 = (Twdel==3'b001);
wire TWD2 = (Twdel==3'b010);
wire TWD3 = (Twdel==3'b011);
wire TWD4 = (Twdel==3'b100);
wire TWD5 = (Twdel==3'b101);
wire TWD6 = (Twdel==3'b110);
wire TWD7 = (Twdel==3'b111);
wire BankBusy = ~(StAi & StB0 & OtherStB0 &
StRi & StRSi & StRDi & StWSi);
wire Activate = NAE & Match & ~BankBusy
| Pend & ~BankBusy
| MPend;
wire MBi = StB0 // single bank or the
| StB1 & (TRCD4 | OtherStAi); // the first of a multi
// bank and the other
// bank is idle
reg d1AllDone;
always @(posedge memclk)
d1AllDone <= AllDone;
wire StartRdDly = StA3 & Read & AllCCR & CASMatch & MBi
& d1AllDone & P62p5 & StRDi;
// synopsys translate_off
wire nxt_bugcheck3 = StA3 & Read & AllCCR & CASMatch & MBi
& ~AllDone & d1AllDone & P62p5 & StRDi;
reg bugcheck3;
always @(posedge memclk)
bugcheck3 <= nxt_bugcheck3 & ~Reset;
always @(bugcheck3)
if (bugcheck3) begin
$display("ERROR: %t: %M: StartRdDly bug", $time);
repeat (20) @(posedge memclk);
$finish;
end
// synopsys translate_on
wire StartWrDly = StA3 & ~Read & AllCCW & CASMatch & MBi;
wire RdDlyDone = `DEV_VI ? StRDA : StartRdDly;
wire WrDlyDone = StWS0;
wire StartRdCmd = RdDlyDone & P62p5 // 1st
| Read & ~(StB0 | StB1) & OtherReadDone; // 2nd-5th
wire StartWrCmd = WrDlyDone & P62p5
| ~Read & ~(StB0 | StB1) & OtherWriteDone;
wire Mask = M & (StB0 | StB1);
wire nxt_StAi = StP6
| StAi & ~Activate & ~MB1stAct
| Reset;
wire nxt_StA0 = ~Reset & StAi & Activate & AnyNextCMD;
wire nxt_StA1 = ~Reset & StA0
| ~Reset & StAi & Activate & ~AnyNextCMD;
wire nxt_StAw = ~Reset & StA1 & OtherStA3 & ~OtherLastStA3
| ~Reset & StAw & ~OtherLastStA3;
wire nxt_StA2 = ~Reset & StA1 & ~OtherStA3
| ~Reset & StA1 & OtherLastStA3
| ~Reset & StAw & OtherLastStA3
| ~Reset & StA1 & ~StB0
| ~Reset & StAi & MB1stAct;
wire nxt_StAC =
~Reset & StA2 & TRCD4 & nxt_StB1
| ~Reset & StAC & TRCD4 & ~OtherStAi;
wire nxt_StAD =
~Reset & StA2 & TRCD4 & ~nxt_StB1 & StB0
| ~Reset & StAC & TRCD4 & OtherStAi & ~MB1stRASC;
wire nxt_StA3 =
~Reset & StA2 & TRCD4 & ~nxt_StB1 & ~StB0
| ~Reset & StA2 & ~TRCD4
| ~Reset & StAC & TRCD4 & OtherStAi & MB1stRASC
| ~Reset & StAD & TRCD4
| ~Reset & StA3 & ~StartWrCmd & ~StartRdCmd;
wire nxt_StRF = ~Reset & StA3 & (BrstLen==4'hf) & StartRdCmd;
wire nxt_StRE = ~Reset & StRF;
wire nxt_StRWF = ~Reset & StRE & ~M36
| ~Reset & StA3 & (BrstLen==4'he) & StartRdCmd;
wire nxt_StRWE = ~Reset & StRWF;
wire nxt_StRD = ~Reset & StA3 & (BrstLen==4'hd) & StartRdCmd
| ~Reset & StRE & M36
| ~Reset & StRWE;
wire nxt_StRC = ~Reset & StRD;
wire nxt_StRWD = ~Reset & StRC & ~M36
| ~Reset & StA3 & (BrstLen==4'hc) & StartRdCmd;
wire nxt_StRWC = ~Reset & StRWD;
wire nxt_StRB = ~Reset & StA3 & (BrstLen==4'hb) & StartRdCmd
| ~Reset & StRC & M36
| ~Reset & StRWC;
wire nxt_StRA = ~Reset & StRB;
wire nxt_StRWB = ~Reset & StRA & ~M36
| ~Reset & StA3 & (BrstLen==4'ha) & StartRdCmd;
wire nxt_StRWA = ~Reset & StRWB;
wire nxt_StR9 = ~Reset & StA3 & (BrstLen==4'h9) & StartRdCmd
| ~Reset & StRA & M36
| ~Reset & StRWA;
wire nxt_StR8 = ~Reset & StR9;
wire nxt_StRW9 = ~Reset & StR8 & ~M36
| ~Reset & StA3 & (BrstLen==4'h8) & StartRdCmd;
wire nxt_StRW8 = ~Reset & StRW9;
wire nxt_StR7 = ~Reset & StA3 & (BrstLen==4'h7) & StartRdCmd
| ~Reset & StR8 & M36
| ~Reset & StRW8;
wire nxt_StR6 = ~Reset & StR7;
wire nxt_StRW7 = ~Reset & StR6 & ~M36
| ~Reset & StA3 & (BrstLen==4'h6) & StartRdCmd;
wire nxt_StRW6 = ~Reset & StRW7;
wire nxt_StR5 = ~Reset & StA3 & (BrstLen==4'h5) & StartRdCmd
| ~Reset & StR6 & M36
| ~Reset & StRW6;
wire nxt_StR4 = ~Reset & StR5;
wire nxt_StRW5 = ~Reset & StR4 & ~M36
| ~Reset & StA3 & (BrstLen==4'h4) & StartRdCmd;
wire nxt_StRW4 = ~Reset & StRW5;
wire nxt_StR3 = ~Reset & StA3 & (BrstLen==4'h3) & StartRdCmd
| ~Reset & StR4 & M36
| ~Reset & StRW4;
wire nxt_StR2 = ~Reset & StR3;
wire nxt_StRW3 = ~Reset & StR2 & ~M36
| ~Reset & StA3 & (BrstLen==4'h2) & StartRdCmd;
wire nxt_StRW2 = ~Reset & StRW3;
wire nxt_StR1 = ~Reset & StA3 & (BrstLen==4'h1) & StartRdCmd
| ~Reset & StR2 & M36
| ~Reset & StRW2;
wire nxt_StR0 = ~Reset & StR1;
wire nxt_StRW1 = ~Reset & StR0 & ~M36
| ~Reset & StA3 & (BrstLen==4'h0) & StartRdCmd;
wire nxt_StRW0 = ~Reset & StRW1;
wire nxt_StM0 = ~Reset & StA3 & StartWrCmd & Mask;
wire nxt_StM1 = ~Reset & StM0;
wire nxt_StWF = ~Reset & StA3 & (BrstLen==4'hf) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'hf);
wire nxt_StWE = ~Reset & StWF;
wire nxt_StWWF = ~Reset & StWE & ~M36
| ~Reset & StA3 & (BrstLen==4'he) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'he);
wire nxt_StWWE = ~Reset & StWWF;
wire nxt_StWD = ~Reset & StA3 & (BrstLen==4'hd) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'hd)
| ~Reset & StWE & M36
| ~Reset & StWWE;
wire nxt_StWC = ~Reset & StWD;
wire nxt_StWWD = ~Reset & StWC & ~M36
| ~Reset & StA3 & (BrstLen==4'hc) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'hc);
wire nxt_StWWC = ~Reset & StWWD;
wire nxt_StWB = ~Reset & StA3 & (BrstLen==4'hb) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'hb)
| ~Reset & StWC & M36
| ~Reset & StWWC;
wire nxt_StWA = ~Reset & StWB;
wire nxt_StWWB = ~Reset & StWA & ~M36
| ~Reset & StA3 & (BrstLen==4'ha) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'ha);
wire nxt_StWWA = ~Reset & StWWB;
wire nxt_StW9 = ~Reset & StA3 & (BrstLen==4'h9) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'h9)
| ~Reset & StWA & M36
| ~Reset & StWWA;
wire nxt_StW8 = ~Reset & StW9;
wire nxt_StWW9 = ~Reset & StW8 & ~M36
| ~Reset & StA3 & (BrstLen==4'h8) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'h8);
wire nxt_StWW8 = ~Reset & StWW9;
wire nxt_StW7 = ~Reset & StA3 & (BrstLen==4'h7) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'h7)
| ~Reset & StW8 & M36
| ~Reset & StWW8;
wire nxt_StW6 = ~Reset & StW7;
wire nxt_StWW7 = ~Reset & StW6 & ~M36
| ~Reset & StA3 & (BrstLen==4'h6) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'h6);
wire nxt_StWW6 = ~Reset & StWW7;
wire nxt_StW5 = ~Reset & StA3 & (BrstLen==4'h5) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'h5)
| ~Reset & StW6 & M36
| ~Reset & StWW6;
wire nxt_StW4 = ~Reset & StW5;
wire nxt_StWW5 = ~Reset & StW4 & ~M36
| ~Reset & StA3 & (BrstLen==4'h4) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'h4);
wire nxt_StWW4 = ~Reset & StWW5;
wire nxt_StW3 = ~Reset & StA3 & (BrstLen==4'h3) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'h3)
| ~Reset & StW4 & M36
| ~Reset & StWW4;
wire nxt_StW2 = ~Reset & StW3;
wire nxt_StWW3 = ~Reset & StW2 & ~M36
| ~Reset & StA3 & (BrstLen==4'h2) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'h2);
wire nxt_StWW2 = ~Reset & StWW3;
wire nxt_StW1 = ~Reset & StA3 & (BrstLen==4'h1) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'h1)
| ~Reset & StW2 & M36
| ~Reset & StWW2;
wire nxt_StW0 = ~Reset & StW1;
wire nxt_StWW1 = ~Reset & StW0 & ~M36
| ~Reset & StA3 & (BrstLen==4'h0) & StartWrCmd & ~Mask
| ~Reset & StM1 & (BrstLen==4'h0);
wire nxt_StWW0 = ~Reset & StWW1;
wire nxt_StWR0= ~Reset & StW0 & M36
| ~Reset & StWW0;
wire nxt_StWR1= ~Reset & StWR0;
wire nxt_StWR2= ~Reset & TRASp2 & StWR1;
wire nxt_StWR3= ~Reset & TRASp2 & StWR2;
wire nxt_StPC = ~Reset & TRASp2 & ~StAP0 & (M36 ? StR0 : StRW0);
wire nxt_StPD = ~Reset & TRASp2 & StPC;
wire nxt_StPE = ~Reset & ~TRASp2 & ~StAP0 & (M36 ? StR0 : StRW0)
| ~Reset & TRASp2 & StPD;
wire nxt_StPF = ~Reset & StPE;
wire nxt_StP0 = ~Reset & StPF;
wire nxt_StP1 = ~Reset & StAP0 & (M36 ? StR0 : StRW0)
| ~Reset & StP0;
wire TRP3 = ~TRP4;
wire nxt_StP2 = ~Reset & StP1 & StAP0 & TCL4 & TRP4
| ~Reset & ~TRASp2 & StWR1 & TRP4
| ~Reset & TRASp2 & StWR3 & TRP4;
wire nxt_StP3 = ~Reset & StP2
| ~Reset & StP1 & StAP0 & (TCL3 & TRP4 | TCL4 & TRP3)
| ~Reset & ~TRASp2 & StWR1 & TRP3
| ~Reset & TRASp2 & StWR3 & TRP3;
wire nxt_StP4 = ~Reset & StP3
| ~Reset & StP1 & StAP0 & (TCL2 & TRP4 | TCL3 & TRP3)
| ~Reset & StP1 & ~StAP0 & TRP4;
wire nxt_StP5 = ~Reset & StP4
| ~Reset & StP1 & StAP0 & ( TCL2 & TRP3)
| ~Reset & StP1 & ~StAP0 & TRP3;
wire nxt_StP6 = ~Reset & StP5;
always @(posedge memclk) begin
StAi <= nxt_StAi;
StA0 <= nxt_StA0;
StA1 <= nxt_StA1;
StAw <= nxt_StAw;
StA2 <= nxt_StA2;
StAC <= nxt_StAC;
StAD <= nxt_StAD;
StA3 <= nxt_StA3;
StM0 <= nxt_StM0;
StM1 <= nxt_StM1;
StRF <= nxt_StRF; StWF <= nxt_StWF;
StRE <= nxt_StRE; StWE <= nxt_StWE;
StRD <= nxt_StRD; StWD <= nxt_StWD;
StRC <= nxt_StRC; StWC <= nxt_StWC;
StRB <= nxt_StRB; StWB <= nxt_StWB;
StRA <= nxt_StRA; StWA <= nxt_StWA;
StR9 <= nxt_StR9; StW9 <= nxt_StW9;
StR8 <= nxt_StR8; StW8 <= nxt_StW8;
StR7 <= nxt_StR7; StW7 <= nxt_StW7;
StR6 <= nxt_StR6; StW6 <= nxt_StW6;
StR5 <= nxt_StR5; StW5 <= nxt_StW5;
StR4 <= nxt_StR4; StW4 <= nxt_StW4;
StR3 <= nxt_StR3; StW3 <= nxt_StW3;
StR2 <= nxt_StR2; StW2 <= nxt_StW2;
StR1 <= nxt_StR1; StW1 <= nxt_StW1;
StR0 <= nxt_StR0; StW0 <= nxt_StW0;
StRWF <= nxt_StRWF; StWWF <= nxt_StWWF;
StRWE <= nxt_StRWE; StWWE <= nxt_StWWE;
StRWD <= nxt_StRWD; StWWD <= nxt_StWWD;
StRWC <= nxt_StRWC; StWWC <= nxt_StWWC;
StRWB <= nxt_StRWB; StWWB <= nxt_StWWB;
StRWA <= nxt_StRWA; StWWA <= nxt_StWWA;
StRW9 <= nxt_StRW9; StWW9 <= nxt_StWW9;
StRW8 <= nxt_StRW8; StWW8 <= nxt_StWW8;
StRW7 <= nxt_StRW7; StWW7 <= nxt_StWW7;
StRW6 <= nxt_StRW6; StWW6 <= nxt_StWW6;
StRW5 <= nxt_StRW5; StWW5 <= nxt_StWW5;
StRW4 <= nxt_StRW4; StWW4 <= nxt_StWW4;
StRW3 <= nxt_StRW3; StWW3 <= nxt_StWW3;
StRW2 <= nxt_StRW2; StWW2 <= nxt_StWW2;
StRW1 <= nxt_StRW1; StWW1 <= nxt_StWW1;
StRW0 <= nxt_StRW0; StWW0 <= nxt_StWW0;
StWR0<= nxt_StWR0;
StWR1<= nxt_StWR1;
StWR2<= nxt_StWR2;
StWR3<= nxt_StWR3;
StPC <= nxt_StPC;
StPD <= nxt_StPD;
StPE <= nxt_StPE;
StPF <= nxt_StPF;
StP0 <= nxt_StP0;
StP1 <= nxt_StP1;
StP2 <= nxt_StP2;
StP3 <= nxt_StP3;
StP4 <= nxt_StP4;
StP5 <= nxt_StP5;
StP6 <= nxt_StP6;
end
reg BCnt0;
reg BCnt1;
reg BCnt2;
// De-assert dma_ready on the departure from StAi only for
// the first bank access.
// Re-assert prior to asserting Start
wire StartRS;
wire StartWS;
wire nxt_WrStart;
reg WrStart;
// Assert dma_ready one clock before the dma_start is asserted
// to match the rcp
reg BlockRdy;
wire nxt_BlockRdy = ~BlockRdy & StA1 & ~MPend
| BlockRdy & ~StRS0 & ~nxt_WrStart;
always @(posedge memclk)
BlockRdy <= ~Reset & nxt_BlockRdy;
always @(posedge memclk)
StA1_del <= ~Reset & StA1;
reg AnyCMD;
always @(posedge memclk)
AnyCMD <= ~Reset & AnyNextCMD;
wire LastStA3 = StA3 & (StartWrCmd | StartRdCmd);
wire WriteDone = M36 ? StW0 : StWW0;
wire ReadDone = M36 ? StR0 : StRW0;
// The following generates RAS for the first
// activate to the opposite bank in a multi-bank
// operation. States AC and AD were added to
// for increasing Trcd=4.
wire nxt_MB1stRASC = ~StB0 & StAC & OtherStAi & ~AnyNextCMD;
wire nxt_MB1stRASD0 = ~StB0 & StAC & OtherStAi & AnyNextCMD;
always @(posedge memclk) begin
MB1stRASC <= ~Reset & nxt_MB1stRASC;
MB1stRASD0 <= ~Reset & nxt_MB1stRASD0;
MB1stRASD1 <= ~Reset & MB1stRASD0;
end
wire MB1stRASout = MB1stRASC | MB1stRASD1;
wire nxt_bugcheck2 = MB1stRASout & AnyCMD;
reg bugcheck2;
always @(posedge memclk)
bugcheck2 <= nxt_bugcheck2 & ~Reset;
// synopsys translate_off
always @(bugcheck2)
if (bugcheck2) begin
$display("ERROR: %t: %M: command overlap", $time);
repeat (20) @(posedge memclk);
$finish;
end
// synopsys translate_on
// Auto-Precharge Detection State Machine
// Determines whether an READA can be issued
// based on whether Tras has been satisfied
// Tras=7clocks if TRASp2=0
// Tras=9clocks if TRASp2=1
wire RAS;
wire nxt_StAP0 = StAP0 & ~RAS
| StAP6 & ~(StP0 | StPC | StPD |
StPE | StPF |
(M36 ? (StR1 | StR0)
: (StRW1 | StRW0)))
| Reset;
wire nxt_StAP1 = ~Reset & StAP0 & RAS;
wire nxt_StAP2 = ~Reset & StAP1;
wire nxt_StAP3 = ~Reset & StAP2;
wire nxt_StAP4 = ~Reset & StAP3 & TRASp2;
wire nxt_StAP5 = ~Reset & StAP4;
wire nxt_StAP6 = ~Reset & StAP3 & ~TRASp2
| ~Reset & StAP5
| ~Reset & StAP6 & (StP0 | StPC | StPD |
StPE | StPF |
(M36 ? (StR1 | StR0)
: (StRW1 | StRW0)));
always @(posedge memclk) begin
StAP0 <= nxt_StAP0;
StAP1 <= nxt_StAP1;
StAP2 <= nxt_StAP2;
StAP3 <= nxt_StAP3;
StAP4 <= nxt_StAP4;
StAP5 <= nxt_StAP5;
StAP6 <= nxt_StAP6;
end
// Bank Pending - CBus Address tried to access, but the bank
// is busy or a multibank operation is ongoing
reg Pend;
wire nxt_Pend = ~Reset & ~Pend & NAE & Match & BankBusy
| ~Reset & Pend & ~StA1
| ~Reset & Pend & MPend;
always @(posedge memclk)
Pend <= nxt_Pend;
// Multi-Bank Pending
// An operation is pending due to a subsequent
// (i.e. not the first) activate of a multi-bank operation
wire MB234Act = MBAct & ~MB1stAct;
wire nxt_MPend = ~Reset & ~MPend & MB234Act
| ~Reset & MPend & ~StA1;
always @(posedge memclk)
MPend <= nxt_MPend;
// Read Delay State Machine
wire nxt_StRDi = StRDi & ~(StartRdDly)
| StRD0;
wire nxt_StRDH = StRDi & StartRdDly & `DEV_VI;
wire nxt_StRDG = StRDH;
wire nxt_StRDF = StRDG;
wire nxt_StRDE = StRDF;
wire nxt_StRDD = StRDE;
wire nxt_StRDC = StRDD;
wire nxt_StRDB = StRDC;
wire nxt_StRDA = StRDB;
wire nxt_StRD9 = StRDi & StartRdDly & TRD5 & ~(`DEV_VI)
| StRDA & TRD5;
wire nxt_StRD8 = StRD9;
wire nxt_StRD7 = StRD8
| StRDi & StartRdDly & TRD4 & ~(`DEV_VI)
| StRDA & TRD4;
wire nxt_StRD6 = StRD7;
wire nxt_StRD5 = StRD6
| StRDi & StartRdDly & TRD3 & ~(`DEV_VI)
| StRDA & TRD3;
wire nxt_StRD4 = StRD5;
wire nxt_StRD3 = StRD4
| StRDi & StartRdDly & TRD2 & ~(`DEV_VI)
| StRDA & TRD2;
wire nxt_StRD2 = StRD3;
wire nxt_StRD1 = StRD2;
wire nxt_StRD0 = StRD1;
always @(posedge memclk) begin
StRDi <= nxt_StRDi | Reset;
StRDH <= nxt_StRDH & ~Reset;
StRDG <= nxt_StRDG & ~Reset;
StRDF <= nxt_StRDF & ~Reset;
StRDE <= nxt_StRDE & ~Reset;
StRDD <= nxt_StRDD & ~Reset;
StRDC <= nxt_StRDC & ~Reset;
StRDB <= nxt_StRDB & ~Reset;
StRDA <= nxt_StRDA & ~Reset;
StRD9 <= nxt_StRD9 & ~Reset;
StRD8 <= nxt_StRD8 & ~Reset;
StRD7 <= nxt_StRD7 & ~Reset;
StRD6 <= nxt_StRD6 & ~Reset;
StRD5 <= nxt_StRD5 & ~Reset;
StRD4 <= nxt_StRD4 & ~Reset;
StRD3 <= nxt_StRD3 & ~Reset;
StRD2 <= nxt_StRD2 & ~Reset;
StRD1 <= nxt_StRD1 & ~Reset;
StRD0 <= nxt_StRD0 & ~Reset;
end
// Read Start State Machine
// Pipeline state machine, so the we return to StRSi when
// entering StRS0. Need to make sure that VI cycle doesn't
// cause problems XXX
assign StartRS = StRDA & `DEV_VI
| StRD0 & ~(`DEV_VI);
wire nxt_StRSi = StRSi & ~StartRS
| StRS0 & ~P62p5
| StRS1
| Reset;
wire nxt_StRS7 = ~Reset & StRSi & StartRS & `DEV_SI
| ~Reset & StRSi & StartRS & `DEV_AI
| ~Reset & StRSi & StartRS & `DEV_PI
| ~Reset & StRSi & StartRS & `DEV_SP
| ~Reset & StRSi & StartRS & `DEV_CMD
| ~Reset & StRSi & StartRS & `DEV_SPAN
| ~Reset & StRSi & StartRS & `DEV_UI
| ~Reset & StRSi & StartRS & `DEV_VI & TRD5;
wire nxt_StRS6 = ~Reset & StRS7;
wire nxt_StRS5 = ~Reset & StRSi & StartRS & `DEV_MI
| ~Reset & StRSi & StartRS & `DEV_VI & TRD4
| ~Reset & StRS6;
wire nxt_StRS4 = ~Reset & StRS5;
wire nxt_StRS3 = ~Reset & StRS4
| ~Reset & StRSi & StartRS & `DEV_VI & TRD3;
wire nxt_StRS2 = ~Reset & StRS3;
wire nxt_StRS1 = ~Reset & StRS2
| ~Reset & StRSi & StartRS & `DEV_VI & TRD2;
wire nxt_StRS0 = ~Reset & StRS1
| ~Reset & StRS0 & P62p5;
always @(posedge memclk) begin
StRSi <= nxt_StRSi;
StRS0 <= nxt_StRS0;
StRS1 <= nxt_StRS1;
StRS2 <= nxt_StRS2;
StRS3 <= nxt_StRS3;
StRS4 <= nxt_StRS4;
StRS5 <= nxt_StRS5;
StRS6 <= nxt_StRS6;
StRS7 <= nxt_StRS7;
end
// Write Delay State Machine
wire nxt_StWDi = StWDi & ~(StartWrDly)
| StWDi & P62p5
| StWDi & ~P62p5 & StartWrDly & TWD0
| StWDi & ~StWSi
| StWD0;
wire nxt_StWDD = StWDi & StWSi & ~P62p5 & StartWrDly & TWD7;
wire nxt_StWDC = StWDD;
wire nxt_StWDB = StWDC
| StWDi & StWSi & ~P62p5 & StartWrDly & TWD6;
wire nxt_StWDA = StWDB;
wire nxt_StWD9 = StWDA
| StWDi & StWSi & ~P62p5 & StartWrDly & TWD5;
wire nxt_StWD8 = StWD9;
wire nxt_StWD7 = StWD8
| StWDi & StWSi & ~P62p5 & StartWrDly & TWD4;
wire nxt_StWD6 = StWD7;
wire nxt_StWD5 = StWD6
| StWDi & StWSi & ~P62p5 & StartWrDly & TWD3;
wire nxt_StWD4 = StWD5;
wire nxt_StWD3 = StWD4
| StWDi & StWSi & ~P62p5 & StartWrDly & TWD2;
wire nxt_StWD2 = StWD3;
wire nxt_StWD1 = StWD2
| StWDi & StWSi & ~P62p5 & StartWrDly & TWD1;
wire nxt_StWD0 = StWD1;
always @(posedge memclk) begin
StWDi <= nxt_StWDi | Reset;
StWDD <= nxt_StWDD & ~Reset;
StWDC <= nxt_StWDC & ~Reset;
StWDB <= nxt_StWDB & ~Reset;
StWDA <= nxt_StWDA & ~Reset;
StWD9 <= nxt_StWD9 & ~Reset;
StWD8 <= nxt_StWD8 & ~Reset;
StWD7 <= nxt_StWD7 & ~Reset;
StWD6 <= nxt_StWD6 & ~Reset;
StWD5 <= nxt_StWD5 & ~Reset;
StWD4 <= nxt_StWD4 & ~Reset;
StWD3 <= nxt_StWD3 & ~Reset;
StWD2 <= nxt_StWD2 & ~Reset;
StWD1 <= nxt_StWD1 & ~Reset;
StWD0 <= nxt_StWD0 & ~Reset;
end
// Write Start State Machine
// start signal occurs x number of clocks before
// the device is able to provide data where:
// Device x
// MI 1
// SI 2
// SPAN 2
// PI 4
// SP 5
assign StartWS = StartWrDly & StWSi & StWDi & TWD0
| StWSi & StWD0 & ~TWD0;
wire nxt_StWSi = StWSi & ~StartWS
| StWSi & P62p5
| StWS0 & ~P62p5
| Reset;
wire nxt_StWS0 = ~Reset & StWS1 & ~P62p5
| ~Reset & StWS0 & P62p5;
wire nxt_StWS1 = ~Reset & StWSi & ~P62p5 & StartWS & `DEV_MI
| ~Reset & StWSi & ~P62p5 & StartWS & `DEV_UI
| ~Reset & StWS2 & ~P62p5
| ~Reset & StWS1 & P62p5;
wire nxt_StWS2 = ~Reset & StWSi & ~P62p5 & StartWS & `DEV_SPAN
| ~Reset & StWSi & ~P62p5 & StartWS & `DEV_SI
| ~Reset & StWS3 & ~P62p5
| ~Reset & StWS2 & P62p5;
wire nxt_StWS3 = ~Reset & StWS4 & ~P62p5
| ~Reset & StWS3 & P62p5;
wire nxt_StWS4 = ~Reset & StWSi & ~P62p5 & StartWS & `DEV_PI
| ~Reset & StWS5 & ~P62p5
| ~Reset & StWS4 & P62p5;
wire nxt_StWS5 = ~Reset & StWSi & ~P62p5 & StartWS & `DEV_SP
| ~Reset & StWS5 & P62p5;
always @(posedge memclk) begin
StWSi <= nxt_StWSi;
StWS0 <= nxt_StWS0;
StWS1 <= nxt_StWS1;
StWS2 <= nxt_StWS2;
StWS3 <= nxt_StWS3;
StWS4 <= nxt_StWS4;
StWS5 <= nxt_StWS5;
end
// CBus Start Signal for DMA Read/Write Operations
reg Start;
assign nxt_WrStart = ~Reset & ~WrStart & StartWS & ~P62p5
| ~Reset & WrStart & P62p5;
wire nxt_Start = nxt_WrStart | nxt_StRS0;
wire pre_start = nxt_WrStart
| (TRD2 ? nxt_StRS0 : (nxt_StRS2 | nxt_StRS1));
always @(posedge memclk) begin
WrStart <= nxt_WrStart;
Start <= nxt_Start;
end
// CBus Last Signal for DMA Read/Write Operations
reg Last;
reg Done;
reg [4:0] DWCnt;
reg [4:0] InitCnt;
wire [4:0] nxt_InitCnt =
Reset ? 5'b0
: StA1_del ? (Length[6:3] + {3'b0, M})
: InitCnt;
// InitCnt is pipelined due to Length going away in StA2
// XXX need to go over this carefully and maybe have seperate
// InitCnt for WrStart and RdStart
always @(posedge memclk)
InitCnt <= nxt_InitCnt;
wire [4:0] nxt_DWCnt =
Reset ? 5'b0
: P62p5 ? DWCnt
: nxt_Start ? InitCnt
: Done ? 5'b0
: DWCnt - 5'b1;
wire nxt_Done = nxt_DWCnt==5'h00;
wire nxt_Last = ~Reset & ~P62p5 & (nxt_DWCnt==5'h00) & ~Done
| ~Reset & ~P62p5 & (nxt_DWCnt==5'h00) & nxt_Start
| ~Reset & P62p5 & Last;
always @(posedge memclk) begin
Last <= nxt_Last;
Done <= nxt_Done;
DWCnt <= nxt_DWCnt;
end
// Generate Burst Length for each bank access
wire AnyStA2 = StA2 | OtherStA2;
// BCnt (0,1,2) keep track of which bank access
// is currently is the A3 branch point
wire nxt_BCnt0 = BCnt0 & ~(AnyStA2 & ~StB0)
| BCnt1 & AnyStA2 & StB0
| BCnt2 & AnyStA2 & StB0
| Reset;
wire nxt_BCnt1 = ~Reset & BCnt0 & AnyStA2 & ~StB0
| ~Reset & BCnt1 & ~AnyStA2;
wire nxt_BCnt2 = ~Reset & BCnt1 & AnyStA2 & ~StB0
| ~Reset & BCnt2 & ~AnyStA2;
always @(posedge memclk) begin
BCnt0 <= nxt_BCnt0;
BCnt1 <= nxt_BCnt1;
BCnt2 <= nxt_BCnt2;
end
// For M36:
// Bnum[7:6] = number of bank accesses (lenght + starting
// address double word offset into bank (i.e. 64 byte
// alligned block)
// EA[5:3] = ending adddress double word offset
// For M64:
// Bnum[7] = number of bank accesses (128 byte alligned block)
// EA[6:3] = ending adddress double word offset
// add a pipeline stage for timing
reg [6:3] d1Addr;
always @(posedge memclk)
d1Addr <= Addr;
wire [7:3] EAup = Length[6:3] + (I ? 4'b0
: (M36 ? {1'b0,d1Addr[6:4]}
: d1Addr[6:3]));
wire [7:3] EAdn = ~Length[6:3] + 4'b1 + (M36 ? {1'b0,d1Addr[6:4]}
: d1Addr[6:3]);
wire [7:3] EA = D ? EAdn : EAup;
wire [7:6] Bnum = D ? {(EAdn[7] ^ EAdn[6]),EAdn[6]} : EAup[7:6];
wire SingleBank = M36 ? (Bnum[7:6]==2'h0)
: (Bnum[7]==1'b0);
wire LastBank = M36 ? ((Bnum[7:6]==2'h0) & BCnt0
| (Bnum[7:6]==2'h1) & BCnt1
| (Bnum[7:6]==2'h2) & BCnt2)
: ((Bnum[7]==1'b0) & BCnt0
| (Bnum[7]==1'b1) & BCnt1);
wire [2:0] M36BrstLen =
(I ? Length[5:3]
: BCnt0 ? (SingleBank ? Length[5:3]
: (D ? d1Addr[6:4] : ~d1Addr[6:4]))
: (~LastBank ? 3'b111
: (D ? ~EA[5:3] : EA[5:3])));
wire [3:0] M64BrstLen =
(I ? Length[6:3]
: BCnt0 ? (SingleBank ? Length[6:3]
: (D ? d1Addr[6:3] : ~d1Addr[6:3]))
: (D ? ~EA[6:3] : EA[6:3]));
assign BrstLen = M36 ? {M36BrstLen,1'b1} : M64BrstLen;
// Transfer count = the number of double words CAS'ed
// used to generate A[5:3] and the Byte Mask
wire RCAS;
wire WCAS;
wire DCAS;
wire CAS = RCAS | WCAS | DCAS;
reg [3:0] XCnt;
wire IncXCnt = SBSel & CAS // Single Bank
| ~SBSel & (CAS | OtherCAS
| OtherDCAS); // Multi Bank
// OtherCAS can occur in state A2, which means that Length
// needs to be available in A2
wire LastDW = (Length[6:3]==XCnt);
wire [3:0] nxt_XCnt = IncXCnt ? (LastDW ? 4'h0 : XCnt + 4'h1)
: XCnt;
always @(posedge memclk)
if (Reset) XCnt <= 4'b0000;
else XCnt <= nxt_XCnt;
// Generate signal indicating that a non-Activate command
// will issue in the next clock which will prevent other banks
// from issuing an activate command at the same time
wire NextCMD = nxt_StRF | nxt_StRD | nxt_StRB | nxt_StR9
| nxt_StR7 | nxt_StR5 | nxt_StR3 | nxt_StR1
| nxt_StRWF | nxt_StRWD | nxt_StRWB | nxt_StRW9
| nxt_StRW7 | nxt_StRW5 | nxt_StRW3 | nxt_StRW1
| nxt_StWF | nxt_StWD | nxt_StWB | nxt_StW9
| nxt_StW7 | nxt_StW5 | nxt_StW3 | nxt_StW1
| nxt_StWWF | nxt_StWWD | nxt_StWWB | nxt_StWW9
| nxt_StWW7 | nxt_StWW5 | nxt_StWW3 | nxt_StWW1
| (nxt_StP1 & ~nxt_StAP0 & ~APrechrg);
// Generate preliminary DRAM controls
assign WCAS = StWF | StWD | StWB | StW9
| StW7 | StW5 | StW3 | StW1
| StWWF | StWWD | StWWB | StWW9
| StWW7 | StWW5 | StWW3 | StWW1;
assign RCAS = StRF | StRD | StRB | StR9
| StR7 | StR5 | StR3 | StR1
| StRWF | StRWD | StRWB | StRW9
| StRW7 | StRW5 | StRW3 | StRW1;
assign DCAS = StWWF | StWWD | StWWB | StWW9
| StWW7 | StWW5 | StWW3 | StWW1
| StRWF | StRWD | StRWB | StRW9
| StRW7 | StRW5 | StRW3 | StRW1;
// Changed design to always issue auto precharge read commands (READA)
wire PRAS = ~APrechrg & StP1 & ~StAP0; // Assert PRAS to
// issue Manual-Pre
wire APRCAS = (M36 ? (StR1 & (StAP0 | APrechrg))
: (StRW1 & (StAP0 | APrechrg)));
wire APWCAS = (M36 ? StW1 : StWW1);
wire APCAS = APRCAS | APWCAS;
assign RAS = StA1 | (TRCD4 ? MB1stRAS : (StAi & MB1stAct));
wire nxt_bugcheck1 = ~StAi & MB1stAct;
reg bugcheck1;
always @(posedge memclk)
bugcheck1 <= nxt_bugcheck1 & ~Reset;
// synopsys translate_off
always @(bugcheck1)
if (bugcheck1) begin
$display("ERROR: %t: %M: (~StAi & MB1stAct)=1", $time);
repeat (20) @(posedge memclk);
$finish;
end
// synopsys translate_on
wire LastWCAS = (M36 ? StW1 : StWW1);
wire LastCAS = (M36 ? StW1 : StWW1)
| (M36 ? StR1 : StRW1);
// Generate Read Data Path control signals
// CCR - Cycle Complete ready for a Read
// Indicates when the next Read cycle can start
// Extended when manual precharge occurs (StAP0)
reg CCR;
wire nxt_CCR = CCR & ~LastStA3
| ~CCR & (StWR1 | (StAP0 ? (M36 ? StR1 : StRW1)
: StP1))
| Reset;
always @(posedge memclk)
CCR <= nxt_CCR;
// Initiates read Data Path
wire DBusInEn = StartWrCmd | StM1
| StWE | StWC | StWA | StW8
| StW6 | StW4 | StW2 | StW0 & ~M36
| StWWE | StWWC | StWWA | StWW8
| StWW6 | StWW4 | StWW2;
reg ReadEn;
wire M36ReadEn = ~Reset & ~ReadEn & (StRF | StRD | StRB | StR9
| StR7 | StR5 | StR3 | StR1)
| ~Reset & ReadEn & (StRD | StRB | StR9 | StR7
| StR5 | StR3 | StR1 | P62p5);
wire M64ReadEn = ~Reset & (StRF | StRD | StRB | StR9
| StR7 | StR5 | StR3 | StR1
| StRWF | StRWD | StRWB | StRW9
| StRW7 | StRW5 | StRW3 | StRW1);
always @(posedge memclk)
ReadEn <= M36 ? M36ReadEn : M64ReadEn;
endmodule