issue.v
68.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
// Module instances modified by /home/rws/workarea/rf/sw/bbplayer/tools/necprimfix
//
// 4 instances of an02d1 changed to j_an02.
// 6 instances of an02d2 changed to j_an02.
// 4 instances of an02d3 changed to j_an02.
// 15 instances of an03d2 changed to j_an03.
// 37 instances of an04d2 changed to j_an04.
// 5 instances of an05d2 changed to j_an05.
// 4 instances of an06d2 changed to j_an06.
// 2 instances of ao03d2 changed to j_ao03.
// 4 instances of dfctnh changed to j_dfctnh.
// 6 instances of in01d1 changed to j_in01.
// 44 instances of in01d5 changed to j_in01.
// 52 instances of mx21d1h changed to j_mx21.
// 4 instances of nd02d2 changed to j_nd02.
// 4 instances of nd02d3 changed to j_nd02.
// 10 instances of nd03d2 changed to j_nd03.
// 2 instances of nd05d2 changed to j_nd05.
// 1 instance of ni01d2 changed to j_ni01.
// 39 instances of ni01d5 changed to j_ni01.
// 32 instances of ni01d7 changed to j_ni01.
// 1 instance of nr02d1 changed to j_nr02.
// 1 instance of nr02d3 changed to j_nr02.
// 1 instance of nr03d1 changed to j_nr03.
// 1 instance of nr04d1 changed to j_nr04.
// 1 instance of nr05d1 changed to j_nr05.
// 1 instance of nr05d2 changed to j_nr05.
// 1 instance of nr06d2 changed to j_nr06.
// 5 instances of or02d1 changed to j_or02.
// 1 instance of or02d2 changed to j_or02.
// 7 instances of or04d2 changed to j_or04.
// 7 instances of xo02d1 changed to j_xo02.
//
/**************************************************************************
* *
* Copyright (C) 1994, Silicon Graphics, Inc. *
* *
* These coded instructions, statements, and computer programs contain *
* unpublished proprietary information of Silicon Graphics, Inc., and *
* are protected by Federal copyright law. They may not be disclosed *
* to third parties or copied or duplicated in any form, in whole or *
* in part, without the prior written consent of Silicon Graphics, Inc. *
* *
*************************************************************************/
// $Id: issue.v,v 1.6 2003/01/23 00:05:41 berndt Exp $
// issue.v: RSP issue logic
`timescale 1ns / 10ps
module issue (clk, reset_l, halt, single_step,
pc_in_wr_en, pc_data_in, halting,
br_addr, rd_inst, set_broke,
imem_dma_pif,
taken, adv_ir, kill_re,
su_inst, vu_inst, su_nop_debug, vu_nop_debug,
link_pc_delay_pc, pc,
kill_su_issue, kill_vu_issue, store_xpose_rd);
input clk;
input reset_l;
input halt;
input single_step;
input pc_in_wr_en;
input [11:2] pc_data_in;
input halting;
input [11:2] br_addr;
input [63:0] rd_inst; // imem out. [63:32] is low order inst
input set_broke;
input imem_dma_pif;
input taken;
input adv_ir;
input kill_re;
output [31:0] su_inst;
output [31:0] vu_inst;
output su_nop_debug; // RD stage to nowhere
output vu_nop_debug; // RD stage to nowhere
output [23:0] link_pc_delay_pc; // EX stage to LS
output [11:2] pc;
output kill_su_issue;
output kill_vu_issue;
output store_xpose_rd; // Moved from suvuctl for timing
// Generation of these outputs is moved from suvuctl for timing reasons.
wire should_have_stalled;
wire start_ext_halt;
wire adv_ir;
wire imem_dma_if;
wire imem_stall;
wire old_taken;
wire [4:0] pc_sel;
wire wr_taken_h0;
wire wr_taken_h1;
wire set_taken_h0;
wire set_taken_h1;
wire clear_taken_h0;
wire clear_taken_h1;
wire reset_taken_h1;
wire if_taken_target;
wire [11:2] old_br_addr;
wire wr_br_addr;
wire pc_wr_en;
wire pc_wr_en_h0;
wire pc_wr_en_h1;
wire old_target_pending;
wire set_target_pending;
wire clear_target_pending;
wire wr_target_pending;
wire old_delay_pending;
wire set_delay_pending;
wire clear_delay_pending;
wire wr_delay_pending;
/* ********************************************************************** */
// Issue logic
wire adv_pcs;
wire adv_pcs_h0;
wire [11:3] if_next_pc; // IF stage
wire [11:2] sav_pc; // pc of saved instruction
wire [11:2] int_halt_pc;
wire [63:0] stalled_rd_inst;
wire [63:0] muxed_rd_inst;
wire [31:0] sav_inst;
wire [11:3] next_pc; // RD stage
wire [11:2] cur_rd_pc;
wire [11:2] delay_pc;
wire [11:2] link_pc;
wire [23:0] rd_link_pc_delay_pc; // RD stage
wire if_bubble;
wire if_other_bubble;
wire rd_other_bubble;
wire rd_other_bubble_tmp;
wire if_next_is_target;
wire rd_next_is_target;
wire target;
wire next_br_target;
wire even_target; // target is 64-bit aligned
wire odd_target; // target is not 64-bit aligned
wire delay_slot;
wire sav_br;
wire sav_su;
wire sav_vu;
wire fst_br;
wire snd_br;
wire fst_vu; // first instruction of imem pair is VU type
wire snd_vu; // second instruction of imem pair is VU type
wire next_target;
wire next_delay_slot;
wire next_sav_br;
wire next_sav_su;
wire next_sav_vu;
wire [4:0] su_inst_sel;
wire [4:0] vu_inst_sel;
wire sav_break;
wire fst_break;
wire fst_su_no_sav;
wire fst_vu_no_sav;
wire kill_su_issue_pre;
wire kill_vu_issue_pre;
wire ex_break;
wire issued_sav;
wire issued_fst;
wire issued_sec;
wire prev_stalled;
wire save_rd_inst;
wire rd_bubble;
wire br_target;
wire sav_su_n;
wire sav_vu_n;
pc_mux pc_mux(
.reset_l (reset_l),
.clk (clk),
.if_next_pc (if_next_pc),
.old_br_addr (old_br_addr),
.old_taken (old_taken),
.br_addr (br_addr),
.pc_data_in (pc_data_in),
.pc_in_wr_en (pc_in_wr_en),
.taken (taken),
.int_halt_pc (int_halt_pc),
.halting (halting),
.pc_wr_en (pc_wr_en),
.pc (pc)
);
assign if_next_pc = pc[11:3] + 1;
// Delay_pc is used for branch target calculations. It is the pc of the
// instruction following the branch. If the branch instruction comes
// from sav_inst (sav_br), then delay_pc is the pc of rd_inst. If there
// is no sav_br, but the first instruction of rd_inst is a branch (fst_br),
// the delay_pc is the pc of the second instruction in rd_inst. Finally,
// if there is no sav_br and no fst_br, but the second instruction in rd_inst
// is a branch, then delay_pc is the pc of the next sequential imem access
// after rd_inst. If there is no branch in sight, delay_pc is a don't care.
// Link_pc is the link address used for bxx_al and jalx. It is the pc of
// the second sequential instruction following the branch. If the branch
// instruction comes from sav_inst (sav_br), then link_pc is the pc of the
// second instruction in rd_inst. If there is no sav_br, but the first
// instruction of rd_inst is a branch (fst_br), the link_pc is the pc of
// the next sequential imem access after rd_inst. Finally, if there is no
// sav_br and no fst_br, but the second instruction in rd_inst is a branch,
// then link_pc is the pc of the second instruction in the next sequential
// imem access after rd_inst. If there is no branch in sight, link_pc is a
// don't care.
// *** This use of adv_pcs should be adv_ir ???:
spasdffen_10_0 cur_pc_ff (cur_rd_pc, pc, adv_pcs, clk, 1'b1);
// *** Perhaps this one could be, too:
spasdffen_9_0 su_ir_pc_ff (next_pc, if_next_pc, adv_pcs, clk, 1'b1);
assign delay_pc =
sav_br ? {cur_rd_pc[11:3], 1'b0} :
fst_br ? {cur_rd_pc[11:3], 1'b1} :
/* snd_br */ {next_pc, 1'b0};
assign link_pc =
sav_br ? {cur_rd_pc[11:3], 1'b1} :
fst_br ? {next_pc, 1'b0} :
/* snd_br */ {next_pc, 1'b1};
assign rd_link_pc_delay_pc = {link_pc, 2'b0, delay_pc, 2'b0};
spasdff_24_0 su_re_l_d_pc_ff (link_pc_delay_pc,rd_link_pc_delay_pc,clk,1'b1);
/*
Bubble generation: if pc_sel == 0010, there is a branch in EX, the branch
delay slot is in RD, and the instruction sequentially following the delay
slot is in IF. The instructions in IF have to be killed. (Also, only one
RD instruction is issued.) This is difficult
in IF, because the IR flip-flop is included in the imem module. So we wait
one cycle, then do it in RD. We pipe pc_sel to the next cycle ( *** should
this be conditional on adv_ir? Is adv_ir guaranteed to be 1 at this point?)
and, conditional on it, kill the instruction now in RD.
*/
assign fst_vu = prev_stalled ? (stalled_rd_inst[63:57] == 7'h25) :
(rd_inst[63:57] == 7'h25);
assign snd_vu = prev_stalled ? (stalled_rd_inst[31:25] == 7'h25) :
(rd_inst[31:25] == 7'h25);
assign fst_br = !odd_target && (
(muxed_rd_inst[63:60] == 4'b0001) ||
(muxed_rd_inst[63:59] == 5'b00001) ||
(muxed_rd_inst[63:58] == 6'b000001) ||
((muxed_rd_inst[63:58]==6'b000000) && (muxed_rd_inst[35:33]==3'b100)));
assign snd_br =
(muxed_rd_inst[31:28] == 4'b0001) ||
(muxed_rd_inst[31:27] == 5'b00001) ||
(muxed_rd_inst[31:26] == 6'b000001) ||
((muxed_rd_inst[31:26]==6'b000000) && (muxed_rd_inst[3:1]==3'b100));
/* ***************************************************************** */
// Moved from suctl for timing reasons
// Set a flag indicating that the next instruction to be executed is
// a delay slot instruction.
// Don't need rd_bubble, because it can't be a branch bubble *and* delay slot:
assign set_delay_pending = delay_slot && kill_re;
// Clear delay_pending when the delay slot instruction gets *issued*
assign clear_delay_pending = !kill_re;
assign wr_delay_pending = set_delay_pending || clear_delay_pending;
spasdffen_1_0 su_delpnd_ff (old_delay_pending, set_delay_pending, wr_delay_pending, clk, reset_l);
// Set a flag indicating that the next instruction to be issued is a branch
// target.
assign set_target_pending = (br_target || rd_bubble) && kill_re;
assign clear_target_pending = !kill_re;
assign wr_target_pending = set_target_pending || clear_target_pending;
spasdffen_1_0 su_tarpnd_ff (old_target_pending, set_target_pending, wr_target_pending, clk, reset_l);
/*
If there is a taken branch (pc_sel[2 or 3]) but adv_ir is deasserted, we
have to latch both taken and the branch address until adv_ir is next
asserted and the pc ff can be loaded. Old_br_addr implements the address
latch; taken is latched in suctl.
*/
assign wr_br_addr = taken && (!pc_wr_en || halting);
spasdffen_10_0 is_br_addr_ff (old_br_addr, br_addr,wr_br_addr,clk,reset_l);
// Set a flag indicating that a branch condition has been met but the
// pc hasn't yet been loaded with the target pc, because there's a halt
// condition or no pc write enable.
// !clear_taken is because the halt pc can be loaded with the target
// address in the "taken" cycle.
/*
Original version:
assign set_taken = (taken && !clear_taken && (!pc_wr_en || halting)) || reset_taken;
// Clear old_taken when the target pc gets loaded into the pc:
// pc <- taken || pc <- old_taken || pc <- halt_pc && halt_pc = target addr
// pc_sel[2] || pc_sel[3] || (pc_sel[1] && )
assign clear_taken = !reset_taken && pc_wr_en && // reset_taken should be impossible here
(pc_sel[2] || pc_sel[3] ||
(pc_sel[1] && (
(!(delay_slot && kill_re) && (rd_bubble || (old_target_pending && !br_target))) ||
(delay_slot && !kill_re && taken) ||
(delay_slot && !kill_re && old_taken)
)));
// This addresses the situation where (following a halted state) a delay
// slot instruction is in RD but is unable to issue, the branch target is
// in IF, and halting is asserted again.
spasdffen_1_0 is_clr_taken_ff (if_taken_target, clear_taken, pc_wr_en, clk, reset_l);
assign reset_taken = delay_slot && kill_re && if_taken_target && halting;
assign wr_taken = set_taken || clear_taken;
spasdffen_1_0 is_taken_ff (old_taken, set_taken, wr_taken, clk, reset_l);
*/
// Halting = 0 version
// Enable pc write with pc input or int_halt_pc or "normal" next pc.
// assign adv_pcs = adv_ir && (!imem_stall || pc_sel[2] || pc_sel[3]);
assign adv_pcs_h0 = adv_ir && (!imem_stall || (!pc_in_wr_en && taken) || (!pc_in_wr_en && !taken && old_taken));
assign pc_wr_en_h0 =
pc_in_wr_en || (adv_pcs_h0 && !halt && !imem_dma_if);
assign set_taken_h0 = taken && !clear_taken_h0 && !pc_wr_en_h0;
// Clear old_taken when the target pc gets loaded into the pc:
// pc <- taken || pc <- old_taken || pc <- halt_pc && halt_pc = target addr
// pc_sel[2] || pc_sel[3] || (pc_sel[1] && )
// It's possible to reduce this w.r.t. pc_in_wr_en term in pc_wr_en_h0:
assign clear_taken_h0 = pc_wr_en_h0 && (!pc_in_wr_en && (taken || old_taken));
// This addresses the situation where (following a halted state) a delay
// slot instruction is in RD but is unable to issue, the branch target is
// in IF, and halting is asserted again.
assign wr_taken_h0 = (taken && !pc_wr_en_h0) || clear_taken_h0; // set_taken || clear_taken
// Halting = 1 version.
// Enable pc write with pc input or int_halt_pc or "normal" next pc.
// assign pc_wr_en_h1 = 1'b1;
assign set_taken_h1 = (taken && !clear_taken_h1) || reset_taken_h1;
// Clear old_taken when the target pc gets loaded into the pc:
// pc <- taken || pc <- old_taken || pc <- halt_pc && halt_pc = target addr
// pc_sel[2] || pc_sel[3] || (pc_sel[1] && )
assign clear_taken_h1 = !reset_taken_h1 && // reset_taken should be impossible here
!pc_in_wr_en && (
(!(delay_slot && kill_re) && (rd_bubble || (old_target_pending && !br_target))) ||
(delay_slot && !kill_re && taken) ||
(delay_slot && !kill_re && old_taken)
);
// This addresses the situation where (following a halted state) a delay
// slot instruction is in RD but is unable to issue, the branch target is
// in IF, and halting is asserted again.
assign reset_taken_h1 = delay_slot && kill_re && if_taken_target;
assign wr_taken_h1 = taken || reset_taken_h1 || clear_taken_h1; // set_taken || clear_taken
j_mx21 mx_clr_taken (.z(clear_taken), .i0(clear_taken_h0), .i1(clear_taken_h1), .s(halting));
j_mx21 mx_set_taken (.z(set_taken), .i0(set_taken_h0), .i1(set_taken_h1), .s(halting));
j_mx21 mx_wr_taken (.z(wr_taken), .i0(wr_taken_h0), .i1(wr_taken_h1), .s(halting));
spasdffen_1_0 is_clr_taken_ff (if_taken_target, clear_taken, pc_wr_en, clk, reset_l);
spasdffen_1_0 is_taken_ff (old_taken, set_taken, wr_taken, clk, reset_l);
// Next PC Selection
assign pc_sel[0] = pc_in_wr_en; // pc gets pc_data_in
assign pc_sel[1] = !pc_in_wr_en && halting; // pc gets int_halt_pc
assign pc_sel[2] = !pc_in_wr_en && !halting && taken;
assign pc_sel[3] = !pc_in_wr_en && !halting && !taken && old_taken;
assign pc_sel[4] = !pc_in_wr_en && !halting && !taken && !old_taken;
/* ***************************************************************** */
// Halt sets if_bubble, therefore clearing all of this state during the
// following cycle:
// *** No, it doesn't. To force this, should "halting" also go into
// *** next_delay_slot and next_target?
assign odd_target = target && cur_rd_pc[2];
assign even_target = target && !cur_rd_pc[2];
// *** Is this true in the presence of stalls, etc.? :
assign next_br_target = rd_bubble || rd_next_is_target ||
(old_target_pending && !clear_target_pending);
assign next_target = rd_other_bubble ||
(old_target_pending && !(target && !kill_re));
// Next_delay_slot: there's a branch available to issue and it will issue.
assign next_delay_slot =
!kill_re && !rd_other_bubble && (sav_br ||
(fst_br && !sav_su && !sav_vu) ||
(fst_br && sav_vu && !delay_slot && !kill_su_issue) ||
(snd_br && odd_target) ||
(snd_br && fst_vu && !odd_target &&
!sav_su && !sav_vu && !delay_slot && !kill_su_issue));
// *** check use of !delay_slot in next_sav_br, next_sav_su, next_sav_vu
// *** next_br_target and rd_bubble are somewhat redundant in next_sav_xx
// *** remove redundant !odd target in next_sav_xx clauses.
assign next_sav_br = !next_br_target && !odd_target && !halting && !rd_other_bubble &&
!(delay_slot && (taken || old_taken)) && // = 2nd_br && next_sav_su;
((!fst_vu && snd_br && !odd_target && !sav_su && !sav_vu) ||
(!fst_vu && snd_br && !odd_target && !sav_su &&
!delay_slot && sav_vu && !kill_su_issue) ||
(fst_vu && snd_br && delay_slot && !sav_su && !sav_vu) ||
(fst_vu&& snd_br&& !delay_slot && !sav_br && sav_su && !kill_vu_issue) ||
(fst_vu && snd_br && !odd_target && !delay_slot &&
!sav_su && !sav_vu && kill_su_issue));
assign next_sav_su = !next_br_target && !odd_target && !halting && !rd_other_bubble &&
!(delay_slot && (taken || old_taken)) &&
((!fst_vu && !snd_vu && !odd_target && !sav_su && !sav_vu) ||
(!fst_vu && !snd_vu && !odd_target && !sav_su &&
!delay_slot && sav_vu && !kill_su_issue) ||
(fst_vu && !snd_vu && delay_slot && !sav_su && !sav_vu) ||
(fst_vu && !snd_vu && !delay_slot && !sav_br && sav_su &&
!kill_vu_issue) ||
(fst_vu && !snd_vu && !odd_target && !delay_slot &&
!sav_su && !sav_vu && kill_su_issue));
assign next_sav_vu = !next_br_target && !odd_target && !halting && !rd_other_bubble &&
!(delay_slot && (taken || old_taken)) &&
((fst_vu && snd_vu && !odd_target && !sav_vu && !sav_su) ||
(fst_vu && snd_vu && !odd_target && !sav_vu &&
!delay_slot && !sav_br && sav_su && !kill_vu_issue) ||
(!fst_vu && snd_vu && delay_slot && !sav_su && !sav_vu) ||
(!fst_vu && snd_vu && !delay_slot && sav_vu && !kill_su_issue) ||
(/* !fst_vu && */ snd_vu && !delay_slot && !sav_su && !sav_vu && fst_br) ||
(!fst_vu && snd_vu && !odd_target && !delay_slot &&
!sav_su && !sav_vu && kill_vu_issue));
/*
The enable on the IMem output FF is the same signal as chip select, which
is required to be valid about 1 ns before the *falling* edge of the clock.
We would like to use this FF to hold stalled instructions, but it's
impossible to produce the stall signal (adv_ir) in time. Therefore we
create this side FF to hold instructions which should have been stalled,
and add a leg to the su_inst_sel and vu_inst_sel muxes to choose the stalled
instruction.
*/
/* move should_have_stalled logic from suctl level to here -- Gulbin */
wire reset_l_lat;
wire imem_chip_sel;
spasdff_1_0 su_reset_ff (reset_l_lat, reset_l, clk, 1'b1);
assign imem_chip_sel = !reset_l_lat || imem_dma_if || !halt;
wire pc_sel_2or3 = !pc_in_wr_en && (taken || old_taken); // && !halting, added below
assign should_have_stalled =
(imem_chip_sel && !imem_dma_if && !adv_ir) ||
(imem_chip_sel && !imem_dma_if && imem_stall && !halting && !pc_sel_2or3) ;
spasdff_1_0 prev_imem_stall_ff (prev_stalled, should_have_stalled, clk, reset_l);
assign save_rd_inst = should_have_stalled && !prev_stalled;
spasdffen_64_h rd_inst_ff (stalled_rd_inst, rd_inst, save_rd_inst, clk);
// assign muxed_rd_inst = prev_stalled ? stalled_rd_inst : rd_inst;
muxed_inst muxed_inst (clk, reset_l, should_have_stalled, stalled_rd_inst, rd_inst, muxed_rd_inst);
wire fst_rd_vu;
wire fst_st_vu;
assign fst_rd_vu = (rd_inst[63:57] == 7'h25);
wire fst_rd_vu_custom;
wire not_fst_vu_not_odd;
wire [5:0] su_inst_sel_enc; // Bit [1] is duplicated in bit [5:3] for load reasons.
wire fst_st_vu_n;
spasdffen_1_0 fst_st_vu_ff (fst_st_vu, fst_rd_vu, save_rd_inst, clk, reset_l);
assign fst_st_vu_n = ~fst_st_vu;
su_inst_unit su_inst_unit (
.clk (clk),
.reset_l (reset_l),
.should_have_stalled (should_have_stalled),
.sav_su_n (sav_su_n),
.rd_inst (rd_inst),
.stalled_rd_inst (stalled_rd_inst),
.sav_inst (sav_inst),
.cur_rd_pc2 (cur_rd_pc[2]),
.target (target),
.fst_st_vu (fst_st_vu),
.fst_st_vu_n (fst_st_vu_n),
.su_inst (su_inst),
.fst_rd_vu_custom (fst_rd_vu_custom),
.su_inst_sel_enc (su_inst_sel_enc)
);
assign su_inst_sel[0] = sav_su;
assign su_inst_sel[1] = !prev_stalled && !sav_su && !fst_rd_vu_custom && !odd_target;
assign su_inst_sel[2] = !prev_stalled && !sav_su && (fst_rd_vu || odd_target);
assign su_inst_sel[3] = prev_stalled && !sav_su && !fst_st_vu && !odd_target;
assign su_inst_sel[4] = prev_stalled && !sav_su && (fst_st_vu || odd_target);
wire no_su_inst = (vu_inst_sel[0] && (su_inst_sel[1] || su_inst_sel[3]) && delay_slot) ||
((vu_inst_sel[1] || vu_inst_sel[3]) && (su_inst_sel[2] || su_inst_sel[4]) && delay_slot) ||
((su_inst_sel[2] || su_inst_sel[4]) && snd_vu) ||
(vu_inst_sel[0] && (su_inst_sel[2] || su_inst_sel[4])); // skipped one
vu_inst_unit vu_inst_unit (
.clk (clk),
.reset_l (reset_l),
.should_have_stalled (should_have_stalled),
.sav_vu_n (sav_vu_n),
.rd_inst (rd_inst),
.stalled_rd_inst (stalled_rd_inst),
.sav_inst (sav_inst),
.cur_rd_pc2 (cur_rd_pc[2]),
.target (target),
.fst_st_vu (fst_st_vu),
.fst_st_vu_n (fst_st_vu_n),
.vu_inst (vu_inst)
);
assign vu_inst_sel[0] = sav_vu;
assign vu_inst_sel[1] = !prev_stalled && !sav_vu && fst_rd_vu_custom && !odd_target;
assign vu_inst_sel[2] = !prev_stalled && !sav_vu && (!fst_rd_vu || odd_target);
assign vu_inst_sel[3] = prev_stalled && !sav_vu && fst_st_vu && !odd_target;
assign vu_inst_sel[4] = prev_stalled && !sav_vu && (!fst_st_vu || odd_target);
wire no_vu_inst = (su_inst_sel[0] && (vu_inst_sel[1] || vu_inst_sel[3]) && (delay_slot || sav_br || sav_break)) ||
((su_inst_sel[1] || su_inst_sel[3]) && (vu_inst_sel[2] || vu_inst_sel[4]) && (delay_slot || fst_br || fst_break)) ||
((vu_inst_sel[2] || vu_inst_sel[4]) && !snd_vu) ||
(su_inst_sel[0] && (vu_inst_sel[2] || vu_inst_sel[4])); // skipped one
// Same mux routine as for the su_inst mux, except this is to
// determine whether the su_inst is a store transpose.
wire rd_xpose_fst;
wire rd_xpose_snd;
wire st_xpose_fst;
wire st_xpose_snd;
wire muxed_sav_xp;
wire sav_xpose;
wire xpose_1_a;
wire xpose_1_b;
wire xpose_1_c;
wire xpose_1_d;
wire xpose_2_a;
wire xpose_2_b;
wire st_xpose_unbuf;
assign rd_xpose_snd = rd_inst[31] && (rd_inst[14:11]==4'b1011);
assign rd_xpose_fst = rd_inst[63] && (rd_inst[46:43]==4'b1011);
spasdffen_1_0 fst_xp_vu_ff (st_xpose_snd, rd_xpose_snd, save_rd_inst, clk, reset_l);
spasdffen_1_0 snd_xp_vu_ff (st_xpose_fst, rd_xpose_fst, save_rd_inst, clk, reset_l);
assign muxed_sav_xp =prev_stalled ? st_xpose_snd : rd_xpose_snd;
spasdffen_1_0 su_sav_xp_ff (sav_xpose, muxed_sav_xp,adv_ir, clk,reset_l);
j_mx21 mx_xpose_1_a (.i0(rd_xpose_snd), .i1(st_xpose_snd), .s(su_inst_sel_enc[1]), .z(xpose_1_a));
j_mx21 mx_xpose_1_b (.i0(rd_xpose_fst), .i1(st_xpose_snd), .s(su_inst_sel_enc[3]), .z(xpose_1_b));
j_mx21 mx_xpose_1_c (.i0(st_xpose_fst), .i1(sav_xpose), .s(su_inst_sel_enc[4]), .z(xpose_1_c));
j_mx21 mx_xpose_1_d (.i0(st_xpose_fst), .i1(sav_xpose), .s(su_inst_sel_enc[5]), .z(xpose_1_d));
j_mx21 mx_xpose_2_a (.i0(xpose_1_a), .i1(xpose_1_c), .s(su_inst_sel_enc[2]), .z(xpose_2_a));
j_mx21 mx_xpose_2_b (.i0(xpose_1_b), .i1(xpose_1_d), .s(su_inst_sel_enc[2]), .z(xpose_2_b));
j_mx21 mx_xpose_3_a (.i0(xpose_2_a), .i1(xpose_2_b), .s(su_inst_sel_enc[0]), .z(st_xpose_unbuf));
j_ni01 st_xpose_buf (.i(st_xpose_unbuf), .z(store_xpose_rd));
/*
000: rd_xpose_snd [31:0]
001: rd_xpose_fst [63:32]
010: st_xpose_snd [31:0]
011: st_xpose_snd [31:0]
100: st_xpose_fst [63:32]
101: st_xpose_fst [63:32]
110: sav_xpose
111: sav_xpose
*/
wire [31:0] muxed_sav_inst;
assign muxed_sav_inst =prev_stalled ? stalled_rd_inst[31:0] : rd_inst[31:0];
spasdffen_32_0 su_sav_inst_ff (sav_inst, muxed_sav_inst,adv_ir, clk,reset_l);
assign fst_su_no_sav = !sav_su && !sav_vu && (su_inst_sel[1]||su_inst_sel[3]);
assign fst_vu_no_sav = !sav_su && !sav_vu && (vu_inst_sel[1]||vu_inst_sel[3]);
// If delay slot is stalled one cycle, don't want to kill it. Hence,
// (rd_bubble && !delay_slot).
assign kill_su_issue_pre = rd_other_bubble_tmp || (rd_bubble && !delay_slot) || no_su_inst;
assign kill_vu_issue_pre = rd_other_bubble_tmp || (rd_bubble && !delay_slot) || no_vu_inst;
kill_unit kill_unit (sav_inst, muxed_rd_inst[63:32], muxed_rd_inst[31:0],
sav_su, sav_vu, fst_su_no_sav, fst_vu_no_sav,
single_step, kill_su_issue_pre, kill_vu_issue_pre,
kill_su_issue, kill_vu_issue);
assign su_nop_debug = (kill_su_issue || kill_re);
assign vu_nop_debug = (kill_vu_issue || kill_re);
assign imem_stall = !rd_bubble &&
((sav_su && (!fst_vu || delay_slot || sav_br || kill_vu_issue)) ||
(sav_vu && (fst_vu || delay_slot || kill_su_issue)));
// = (sav_su && !(vu_inst_sel[1] || vu_inst_sel[3])) ||
// (sav_vu && (!su_inst_sel[1] || su_inst_sel[3]));
// Only need bubble when there is no interruption between the taken
// branch and the target instruction. pc_sel[2] indicates there is
// a taken branch in EX and the target pc will enter IF in the next
// cycle.
assign if_bubble = (pc_sel[2] || pc_sel[3]) && pc_wr_en;
// These are used to figure out when we're at the target of a branch even
// though there was no rd_bubble.
assign if_next_is_target = pc_sel[3] && pc_wr_en;
spasdffen_1_0 is_ir_next_tar_ff (rd_next_is_target, if_next_is_target, adv_ir, clk, reset_l);
// if pc is target pc = prev pc_wr_en && prev_pc_mux=
spasdff_1_0 su_pifif_dma_ff(imem_dma_if, imem_dma_pif, clk, reset_l);
assign if_other_bubble = halt || (imem_dma_if & !imem_dma_pif);
spasdffen_1_0 su_ir_bubble_ff (rd_bubble, if_bubble, adv_ir,clk, reset_l);
spasdff_1_0 su_ir_obubble_ff (rd_other_bubble_tmp, if_other_bubble,clk,reset_l);
spasdffen_1_0 su_btarget_ff (br_target, next_br_target,!kill_re,clk, reset_l);
spasdffen_1_0 su_target_ff (target, next_target, adv_ir, clk, reset_l);
wire tmp_delay_slot;
spasdff_1_0 su_sv_br_ff ( // rigged high-perf ff w/ en
sav_br,
((!kill_re||halting) ? next_sav_br : sav_br),
clk, reset_l);
spasdff_1_0 su_sv_su_ff ( // rigged high-perf ff w/ en
sav_su,
((!kill_re||halting) ? next_sav_su : sav_su),
clk, reset_l);
assign sav_su_n = ~sav_su;
spasdff_1_0 su_sv_vu_ff ( // rigged high-perf ff w/ en
sav_vu,
((!kill_re||halting) ? next_sav_vu : sav_vu),
clk, reset_l);
assign sav_vu_n = ~sav_vu;
spasdffen_1_0 su_del_slot_ff(tmp_delay_slot,next_delay_slot,adv_ir,clk,reset_l);
assign delay_slot = tmp_delay_slot || old_delay_pending;
assign rd_other_bubble = rd_other_bubble_tmp || rd_bubble;
spasdffen_10_0 su_sav_pc_ff (sav_pc, {cur_rd_pc[11:3],1'b1},adv_ir,clk,1'b1);
/*
assign su_rd_pc_debug = // for debug only
su_inst_sel[0] ? {sav_pc, 2'b00} :
su_inst_sel[1] ? {cur_rd_pc[11:3], 3'b000} :
su_inst_sel[2] ? {cur_rd_pc[11:3], 3'b100} :
su_inst_sel[3] ? {cur_rd_pc[11:3], 3'b000} :
su_inst_sel[4] ? {cur_rd_pc[11:3], 3'b100} :
12'b0;
assign vu_rd_pc_debug = // for debug only
vu_inst_sel[0] ? {sav_pc, 2'b00} :
vu_inst_sel[1] ? {cur_rd_pc[11:3], 3'b000} :
vu_inst_sel[2] ? {cur_rd_pc[11:3], 3'b100} :
vu_inst_sel[3] ? {cur_rd_pc[11:3], 3'b000} :
vu_inst_sel[4] ? {cur_rd_pc[11:3], 3'b100} :
12'b0;
*/
/* ********************************************************************** */
// Dual-issue hazards
// Detect hazards (VU register and VU control register) between the two
// instructions that are otherwise expected to dual-issue.
// *** This could be very bad, timing-wise.
assign sav_break = (sav_inst[31:26]==6'b000000)&&(sav_inst[5:0]==6'b001101);
assign fst_break = (muxed_rd_inst[63:58]==6'b000000)&&(muxed_rd_inst[37:32]==6'b001101);
// For timing reasons, always single-issue "break" instruction. This
// Makes it unnecessary to include vu register hazard conditions in
// rd_broke_k.
// When halt is deasserted, pc is pointing to the first instruction to execute
// and the rd_inst is garbage. Therefore, when halt is deasserted, *don't*
// issue an instruction in that cycle. Wait til the next one.
// The PC is only written when the RSP is halted. The pipe is empty,
// and cur_rd_pc, link_pc_delay_pc, and next_pc are don't cares (so it's
// ok to write them, too).
// *** What happens here if an instruction is issued but stalls in rd.
// *** It should complete and be unaffected by stall.
// *** But this won't work for IMem DMA, where we have to get out of the way
// *** in a fixed time (2 cycles) for DMA. But DMA shouldn't be happening
// *** where we're executing ... that's a software restriction. (Whether we're
// *** halted or not?)
// *** IMem write: just stall everything, including rd_inst, and continue
// *** when it's done.
// *** IMem read: assume we've already come to a graceful halt
assign issued_sav = (sav_su && !kill_su_issue) ||
(sav_vu && !kill_vu_issue);
assign issued_fst = // issued first implies !odd_target
(((su_inst_sel[1] || su_inst_sel[3]) && !kill_su_issue) ||
((vu_inst_sel[1] || vu_inst_sel[3]) && !kill_vu_issue));
assign issued_sec =
(((su_inst_sel[2] || su_inst_sel[4]) && !kill_su_issue) ||
((vu_inst_sel[2] || vu_inst_sel[4]) && !kill_vu_issue));
/* ******************************************************************* */
// Kill_re = 0
wire [7:0] halt_sel_a;
reg [11:2] int_halt_pc_a_reg;
wire [11:2] int_halt_pc_a;
assign halt_sel_a[0] = (halt_sel_a[2:1]==2'b0) && (rd_bubble || (old_target_pending && !br_target));
assign halt_sel_a[1] = delay_slot && taken;
assign halt_sel_a[2] = delay_slot && !taken && old_taken;
assign halt_sel_a[3] = (halt_sel_a[2:0]==3'b0) && (sav_su || sav_vu) && !issued_sav;
assign halt_sel_a[4] = (halt_sel_a[2:0]==3'b0) && issued_sav && !issued_fst && !issued_sec && !odd_target;
assign halt_sel_a[5] = (halt_sel_a[2:0]==3'b0) && issued_fst && !issued_sec; // !odd_target implied by issued_fst
assign halt_sel_a[6] = (halt_sel_a[2:0]==3'b0) && !issued_sec && odd_target;
assign halt_sel_a[7] = (halt_sel_a[2:0]==3'b0) && issued_sec;
always @(halt_sel_a or pc or sav_pc or cur_rd_pc or br_addr or old_br_addr)
begin
case (1'b1) //
halt_sel_a[0] : int_halt_pc_a_reg = pc[11:2];
halt_sel_a[1] : int_halt_pc_a_reg = br_addr[11:2];
halt_sel_a[2] : int_halt_pc_a_reg = old_br_addr[11:2];
halt_sel_a[3] : int_halt_pc_a_reg = sav_pc[11:2];
halt_sel_a[4] : int_halt_pc_a_reg = {cur_rd_pc[11:3], 1'b0};
halt_sel_a[5] : int_halt_pc_a_reg = {cur_rd_pc[11:3], 1'b1};
halt_sel_a[6] : int_halt_pc_a_reg = {cur_rd_pc[11:3], 1'b1};
halt_sel_a[7] : int_halt_pc_a_reg = {pc[11:3], 1'b0};
default : int_halt_pc_a_reg = {cur_rd_pc[11:3], 1'b0}; // first instruction, used for delay_slot && kill_re && !sav_xu
endcase
end
assign int_halt_pc_a = int_halt_pc_a_reg;
/* *********************************************************************** */
// Kill_re = 1
wire [7:0] halt_sel_b;
reg [11:2] int_halt_pc_b_reg;
wire [11:2] int_halt_pc_b;
assign halt_sel_b[0] = (halt_sel_b[2:1]==2'b0) && !(delay_slot) && (rd_bubble || (old_target_pending && !br_target));
assign halt_sel_b[1] = 0;
assign halt_sel_b[2] = 0;
assign halt_sel_b[3] = (halt_sel_b[2:0]==3'b0) && (sav_su || sav_vu);
assign halt_sel_b[4] = 0;
assign halt_sel_b[5] = 0;
assign halt_sel_b[6] = (halt_sel_b[2:0]==3'b0) && odd_target;
assign halt_sel_b[7] = 0;
always @(halt_sel_b or pc or sav_pc or cur_rd_pc or br_addr or old_br_addr)
begin
case (1'b1) //
halt_sel_b[0] : int_halt_pc_b_reg = pc[11:2];
halt_sel_b[1] : int_halt_pc_b_reg = br_addr[11:2];
halt_sel_b[2] : int_halt_pc_b_reg = old_br_addr[11:2];
halt_sel_b[3] : int_halt_pc_b_reg = sav_pc[11:2];
halt_sel_b[4] : int_halt_pc_b_reg = {cur_rd_pc[11:3], 1'b0};
halt_sel_b[5] : int_halt_pc_b_reg = {cur_rd_pc[11:3], 1'b1};
halt_sel_b[6] : int_halt_pc_b_reg = {cur_rd_pc[11:3], 1'b1};
halt_sel_b[7] : int_halt_pc_b_reg = {pc[11:3], 1'b0};
default : int_halt_pc_b_reg = {cur_rd_pc[11:3], 1'b0}; // first instruction, used for delay_slot && kill_re && !sav_xu
endcase
end
assign int_halt_pc_b = int_halt_pc_b_reg;
/* *********************************************************************** */
mx2h_10 halt_pc_mux (.i0(int_halt_pc_a), .i1(int_halt_pc_b), .s(kill_re), .z(int_halt_pc));
// *** There is an identical ex_break ff in suctl:
spasdff_1_0 is_re_break_ff (ex_break, set_broke, clk, reset_l);
// Enable pc write with pc input or int_halt_pc or "normal" next pc.
assign pc_wr_en =
pc_in_wr_en || // external write
halting ||
(adv_pcs && !halt && !imem_dma_if); // normal condition
// Advance unless there are instructions that have to be executed in the
// IR latch (imem_stall and not taking a branch).
assign adv_pcs = adv_ir && (!imem_stall || pc_sel[2] || pc_sel[3]);
endmodule
module inst_mux_new(z, i0, i1, i2, i3, i4, i5, i6, i7, s);
input [31:0] i0, i1, i2, i3, i4, i5, i6, i7;
input [5:0] s;
output [31:0] z;
wire [31:0] inst_1_a, inst_1_b, inst_1_c, inst_1_d;
wire [31:0] inst_2_a, inst_2_b;
wire [31:0] unbufz;
mx2h_32 mx_level_1_a (.i0(i0), .i1(i2), .s(s[1]), .z(inst_1_a));
mx2h_32 mx_level_1_b (.i0(i1), .i1(i3), .s(s[3]), .z(inst_1_b));
mx2h_32 mx_level_1_c (.i0(i4), .i1(i6), .s(s[4]), .z(inst_1_c));
mx2h_32 mx_level_1_d (.i0(i5), .i1(i7), .s(s[5]), .z(inst_1_d));
mx2h_32 mx_level_2_a (.i0(inst_1_a), .i1(inst_1_c), .s(s[2]), .z(inst_2_a));
mx2h_32 mx_level_2_b (.i0(inst_1_b), .i1(inst_1_d), .s(s[2]), .z(inst_2_b));
mx2h_32 mx_level_3_a (.i0(inst_2_a), .i1(inst_2_b), .s(s[0]), .z(unbufz));
j_ni01 ub_0(.z(z[0]), .i(unbufz[0]));
j_ni01 ub_1(.z(z[1]), .i(unbufz[1]));
j_ni01 ub_2(.z(z[2]), .i(unbufz[2]));
j_ni01 ub_3(.z(z[3]), .i(unbufz[3]));
j_ni01 ub_4(.z(z[4]), .i(unbufz[4]));
j_ni01 ub_5(.z(z[5]), .i(unbufz[5]));
j_ni01 ub_6(.z(z[6]), .i(unbufz[6]));
j_ni01 ub_7(.z(z[7]), .i(unbufz[7]));
j_ni01 ub_8(.z(z[8]), .i(unbufz[8]));
j_ni01 ub_9(.z(z[9]), .i(unbufz[9]));
j_ni01 ub_10(.z(z[10]), .i(unbufz[10]));
j_ni01 ub_11(.z(z[11]), .i(unbufz[11]));
j_ni01 ub_12(.z(z[12]), .i(unbufz[12]));
j_ni01 ub_13(.z(z[13]), .i(unbufz[13]));
j_ni01 ub_14(.z(z[14]), .i(unbufz[14]));
j_ni01 ub_15(.z(z[15]), .i(unbufz[15]));
j_ni01 ub_16(.z(z[16]), .i(unbufz[16]));
j_ni01 ub_17(.z(z[17]), .i(unbufz[17]));
j_ni01 ub_18(.z(z[18]), .i(unbufz[18]));
j_ni01 ub_19(.z(z[19]), .i(unbufz[19]));
j_ni01 ub_20(.z(z[20]), .i(unbufz[20]));
j_ni01 ub_21(.z(z[21]), .i(unbufz[21]));
j_ni01 ub_22(.z(z[22]), .i(unbufz[22]));
j_ni01 ub_23(.z(z[23]), .i(unbufz[23]));
j_ni01 ub_24(.z(z[24]), .i(unbufz[24]));
j_ni01 ub_25(.z(z[25]), .i(unbufz[25]));
j_ni01 ub_26(.z(z[26]), .i(unbufz[26]));
j_ni01 ub_27(.z(z[27]), .i(unbufz[27]));
j_ni01 ub_28(.z(z[28]), .i(unbufz[28]));
j_ni01 ub_29(.z(z[29]), .i(unbufz[29]));
j_ni01 ub_30(.z(z[30]), .i(unbufz[30]));
j_ni01 ub_31(.z(z[31]), .i(unbufz[31]));
endmodule
module mx2h_32 (i0, i1, s, z);
input [31:0] i0;
input [31:0] i1;
input s;
output [31:0] z;
wire sa, sb, sc, sd;
j_ni01 u_sa_2(.z(sa), .i(s));
j_ni01 u_sb_2(.z(sb), .i(s));
j_ni01 u_sc_2(.z(sc), .i(s));
j_ni01 u_sd_2(.z(sd), .i(s));
j_mx21 u_00(.z(z[ 0]), .i0(i0[ 0]), .i1(i1[ 0]), .s(sa));
j_mx21 u_01(.z(z[ 1]), .i0(i0[ 1]), .i1(i1[ 1]), .s(sa));
j_mx21 u_02(.z(z[ 2]), .i0(i0[ 2]), .i1(i1[ 2]), .s(sa));
j_mx21 u_03(.z(z[ 3]), .i0(i0[ 3]), .i1(i1[ 3]), .s(sa));
j_mx21 u_04(.z(z[ 4]), .i0(i0[ 4]), .i1(i1[ 4]), .s(sa));
j_mx21 u_05(.z(z[ 5]), .i0(i0[ 5]), .i1(i1[ 5]), .s(sa));
j_mx21 u_06(.z(z[ 6]), .i0(i0[ 6]), .i1(i1[ 6]), .s(sa));
j_mx21 u_07(.z(z[ 7]), .i0(i0[ 7]), .i1(i1[ 7]), .s(sa));
j_mx21 u_08(.z(z[ 8]), .i0(i0[ 8]), .i1(i1[ 8]), .s(sb));
j_mx21 u_09(.z(z[ 9]), .i0(i0[ 9]), .i1(i1[ 9]), .s(sb));
j_mx21 u_10(.z(z[10]), .i0(i0[10]), .i1(i1[10]), .s(sb));
j_mx21 u_11(.z(z[11]), .i0(i0[11]), .i1(i1[11]), .s(sb));
j_mx21 u_12(.z(z[12]), .i0(i0[12]), .i1(i1[12]), .s(sb));
j_mx21 u_13(.z(z[13]), .i0(i0[13]), .i1(i1[13]), .s(sb));
j_mx21 u_14(.z(z[14]), .i0(i0[14]), .i1(i1[14]), .s(sb));
j_mx21 u_15(.z(z[15]), .i0(i0[15]), .i1(i1[15]), .s(sb));
j_mx21 u_16(.z(z[16]), .i0(i0[16]), .i1(i1[16]), .s(sc));
j_mx21 u_17(.z(z[17]), .i0(i0[17]), .i1(i1[17]), .s(sc));
j_mx21 u_18(.z(z[18]), .i0(i0[18]), .i1(i1[18]), .s(sc));
j_mx21 u_19(.z(z[19]), .i0(i0[19]), .i1(i1[19]), .s(sc));
j_mx21 u_20(.z(z[20]), .i0(i0[20]), .i1(i1[20]), .s(sc));
j_mx21 u_21(.z(z[21]), .i0(i0[21]), .i1(i1[21]), .s(sc));
j_mx21 u_22(.z(z[22]), .i0(i0[22]), .i1(i1[22]), .s(sc));
j_mx21 u_23(.z(z[23]), .i0(i0[23]), .i1(i1[23]), .s(sc));
j_mx21 u_24(.z(z[24]), .i0(i0[24]), .i1(i1[24]), .s(sd));
j_mx21 u_25(.z(z[25]), .i0(i0[25]), .i1(i1[25]), .s(sd));
j_mx21 u_26(.z(z[26]), .i0(i0[26]), .i1(i1[26]), .s(sd));
j_mx21 u_27(.z(z[27]), .i0(i0[27]), .i1(i1[27]), .s(sd));
j_mx21 u_28(.z(z[28]), .i0(i0[28]), .i1(i1[28]), .s(sd));
j_mx21 u_29(.z(z[29]), .i0(i0[29]), .i1(i1[29]), .s(sd));
j_mx21 u_30(.z(z[30]), .i0(i0[30]), .i1(i1[30]), .s(sd));
j_mx21 u_31(.z(z[31]), .i0(i0[31]), .i1(i1[31]), .s(sd));
endmodule
module mx2h_10 (i0, i1, s, z);
input [9:0] i0;
input [9:0] i1;
input s;
output [9:0] z;
j_ni01 u_sa_2(.z(sa), .i(s));
j_ni01 u_sb_2(.z(sb), .i(s));
j_mx21 u_00(.z(z[ 0]), .i0(i0[ 0]), .i1(i1[ 0]), .s(sa));
j_mx21 u_01(.z(z[ 1]), .i0(i0[ 1]), .i1(i1[ 1]), .s(sa));
j_mx21 u_02(.z(z[ 2]), .i0(i0[ 2]), .i1(i1[ 2]), .s(sa));
j_mx21 u_03(.z(z[ 3]), .i0(i0[ 3]), .i1(i1[ 3]), .s(sa));
j_mx21 u_04(.z(z[ 4]), .i0(i0[ 4]), .i1(i1[ 4]), .s(sa));
j_mx21 u_05(.z(z[ 5]), .i0(i0[ 5]), .i1(i1[ 5]), .s(sb));
j_mx21 u_06(.z(z[ 6]), .i0(i0[ 6]), .i1(i1[ 6]), .s(sb));
j_mx21 u_07(.z(z[ 7]), .i0(i0[ 7]), .i1(i1[ 7]), .s(sb));
j_mx21 u_08(.z(z[ 8]), .i0(i0[ 8]), .i1(i1[ 8]), .s(sb));
j_mx21 u_09(.z(z[ 9]), .i0(i0[ 9]), .i1(i1[ 9]), .s(sb));
endmodule
module su_inst_unit (clk, reset_l, should_have_stalled, sav_su_n,
rd_inst, stalled_rd_inst, sav_inst, cur_rd_pc2, target,
fst_st_vu, fst_st_vu_n, su_inst, fst_rd_vu_custom, su_inst_sel_enc);
input clk;
input reset_l;
input should_have_stalled;
input sav_su_n;
input [63:0] rd_inst;
input [63:0] stalled_rd_inst;
input cur_rd_pc2;
input [31:0] sav_inst;
input target;
input fst_st_vu;
input fst_st_vu_n;
output [31:0] su_inst;
output fst_rd_vu_custom;
output [5:0] su_inst_sel_enc; // Bit [1] is duplicated in bit [5:3] for load reasons.
wire local_prev_stalled;
wire rd_inst_62_l;
wire rd_inst_59_l;
wire rd_inst_57_l;
wire fst_rd_vu_custom;
wire odd_target_custom;
wire odd_target_custom_l;
wire su_sel_enc_1a;
wire su_sel_enc_2a;
wire su_sel_enc_2b;
/*
assign su_inst_sel_enc[0] = !fst_rd_vu && !odd_target;
assign su_inst_sel_enc[1] = sav_su || (prev_stalled && (fst_st_vu || odd_target));
assign su_inst_sel_enc[2] = sav_su || (prev_stalled && !fst_st_vu && !odd_target);
fst_st_vu || odd_target = xxx. !(fst_st_vu || odd_target) = !fst_st_vu && !odd_target = !xxx.
fst_rd_vu || odd_target = yyy. !(fst_rd_vu || odd_target) = !fst_rd_vu && !odd_target = !yyy.
assign su_inst_sel_enc[0] = !yyy;
assign su_inst_sel_enc[1] = sav_su || (prev_stalled && xxx);
assign su_inst_sel_enc[2] = sav_su || (prev_stalled && !xxx);
000: !sav_su && !prev_stalled && yyy
001: !sav_su && !prev_stalled && !yyy
010: !sav_su && prev_stalled && xxx && yyy
011: !sav_su && prev_stalled && xxx && !yyy
100: !sav_su && prev_stalled && !xxx && yyy
101: !sav_su && prev_stalled && !xxx && !yyy
110: sav_su && yyy
111: sav_su && !yyy
*/
j_dfctnh is_su_loc_stall (.q(loc_prev_stalled), .d(should_have_stalled), .cp(clk), .cdn(reset_l));
j_in01 in_rd_inst_62 (.i(rd_inst[62]), .zn(rd_inst_62_l));
j_in01 in_rd_inst_59 (.i(rd_inst[59]), .zn(rd_inst_59_l));
j_in01 in_rd_inst_57 (.i(rd_inst[57]), .zn(rd_inst_57_l));
// odd_target and fst_rd_vu, custom version:
j_an02 an_odd_tar (.a1(target), .a2(cur_rd_pc2), .z(odd_target_custom));
j_nd02 nd_odd_tar (.a1(target), .a2(cur_rd_pc2), .zn(odd_target_custom_l));
j_nr05 nr_fst_rd (.a1(rd_inst[63]), .a2(rd_inst_62_l), .a3(rd_inst[60]), .a4(rd_inst_59_l), .a5(rd_inst_57_l), .zn(fst_rd_vu_custom));
j_nr02 nr_su_sel_enc_0 (.a1(fst_rd_vu_custom), .a2(odd_target_custom), .zn(su_inst_sel_enc[0]));
j_nd02 nd_su_sel_enc_1a (.a1(loc_prev_stalled), .a2(fst_st_vu), .zn(su_sel_enc_1a));
j_nd02 nd_su_sel_enc_1b (.a1(loc_prev_stalled), .a2(odd_target_custom), .zn(su_sel_enc_1b));
j_nd03 nd_su_sel_enc_1 (.a1(su_sel_enc_1a), .a2(su_sel_enc_1b), .a3(sav_su_n), .zn(su_inst_sel_enc[1]));
j_nd03 nd_su_sel_enc_3 (.a1(su_sel_enc_1a), .a2(su_sel_enc_1b), .a3(sav_su_n), .zn(su_inst_sel_enc[3]));
j_nd03 nd_su_sel_enc_4 (.a1(su_sel_enc_1a), .a2(su_sel_enc_1b), .a3(sav_su_n), .zn(su_inst_sel_enc[4]));
j_nd03 nd_su_sel_enc_5 (.a1(su_sel_enc_1a), .a2(su_sel_enc_1b), .a3(sav_su_n), .zn(su_inst_sel_enc[5]));
j_nd03 nd_su_sel_enc_2a (.a1(loc_prev_stalled), .a2(fst_st_vu_n), .a3(odd_target_custom_l), .zn(su_sel_enc_2a));
j_nd02 nd_su_sel_enc_2 (.a1(su_sel_enc_2a), .a2(sav_su_n), .zn(su_inst_sel_enc[2]));
inst_mux_new su_inst_mux(
.z(su_inst),
.i0(rd_inst[31:0]),
.i1(rd_inst[63:32]),
.i2(stalled_rd_inst[31:0]),
.i3(stalled_rd_inst[31:0]),
.i4(stalled_rd_inst[63:32]),
.i5(stalled_rd_inst[63:32]),
.i6(sav_inst),
.i7(sav_inst),
.s(su_inst_sel_enc));
endmodule
module vu_inst_unit (clk, reset_l, should_have_stalled, sav_vu_n,
rd_inst, stalled_rd_inst, sav_inst, cur_rd_pc2, target,
fst_st_vu, fst_st_vu_n, vu_inst);
input clk;
input reset_l;
input should_have_stalled;
input sav_vu_n;
input [63:0] rd_inst;
input [63:0] stalled_rd_inst;
input [31:0] sav_inst;
input cur_rd_pc2;
input target;
input fst_st_vu;
input fst_st_vu_n;
output [31:0] vu_inst;
wire loc_prev_stalled;
wire rd_inst_62_l;
wire rd_inst_59_l;
wire rd_inst_57_l;
wire odd_target_custom;
wire odd_target_custom_l;
wire vu_sel_enc_1a;
wire vu_sel_enc_2a;
wire vu_sel_enc_2b;
wire [5:0] vu_inst_sel_enc; // Bit [1] is duplicated in bit [5:3] for load reasons.
/*
assign vu_inst_sel_enc[0] = fst_rd_vu && !odd_target;
assign vu_inst_sel_enc[1] = sav_vu || (prev_stalled && (!fst_st_vu || odd_target));
assign vu_inst_sel_enc[2] = sav_vu || (prev_stalled && fst_st_vu && !odd_target);
!fst_st_vu || odd_target = aaa. !(!fst_st_vu || odd_target) = fst_st_vu && !odd_target = !aaa.
!fst_rd_vu || odd_target = bbb. !(!fst_rd_vu || odd_target) = fst_rd_vu && !odd_target = !bbb.
assign vu_inst_sel_enc[0] = !bbb;
assign vu_inst_sel_enc[1] = sav_vu || (prev_stalled && aaa);
assign vu_inst_sel_enc[2] = sav_vu || (prev_stalled && !aaa);
000: !sav_vu && !prev_stalled && bbb
001: !sav_vu && !prev_stalled && !bbb
010: !sav_vu && prev_stalled && aaa && bbb
011: !sav_vu && prev_stalled && aaa && !bbb
100: !sav_vu && prev_stalled && !aaa && bbb
101: !sav_vu && prev_stalled && !aaa && !bbb
110: sav_vu && bbb
111: sav_vu && !bbb
*/
j_dfctnh is_vu_loc_stall (.q(loc_prev_stalled), .d(should_have_stalled), .cp(clk), .cdn(reset_l));
j_in01 in_rd_inst_62 (.i(rd_inst[62]), .zn(rd_inst_62_l));
j_in01 in_rd_inst_59 (.i(rd_inst[59]), .zn(rd_inst_59_l));
j_in01 in_rd_inst_57 (.i(rd_inst[57]), .zn(rd_inst_57_l));
j_an02 an_odd_tar (.a1(target), .a2(cur_rd_pc2), .z(odd_target_custom));
j_nd02 nd_odd_tar (.a1(target), .a2(cur_rd_pc2), .zn(odd_target_custom_l));
j_nr06 nr_vu_sel_enc_0 (.a1(rd_inst[63]), .a2(rd_inst_62_l), .a3(rd_inst[60]), .a4(rd_inst_59_l), .a5(rd_inst_57_l), .a6(odd_target_custom), .zn(vu_inst_sel_enc[0]));
j_nd02 nd_vu_sel_enc_1a (.a1(loc_prev_stalled), .a2(fst_st_vu_n), .zn(vu_sel_enc_1a));
j_nd02 nd_vu_sel_enc_1b (.a1(loc_prev_stalled), .a2(odd_target_custom), .zn(vu_sel_enc_1b));
j_nd03 nd_vu_sel_enc_1 (.a1(vu_sel_enc_1a), .a2(vu_sel_enc_1b), .a3(sav_vu_n), .zn(vu_inst_sel_enc[1]));
j_nd03 nd_vu_sel_enc_3 (.a1(vu_sel_enc_1a), .a2(vu_sel_enc_1b), .a3(sav_vu_n), .zn(vu_inst_sel_enc[3]));
j_nd03 nd_vu_sel_enc_4 (.a1(vu_sel_enc_1a), .a2(vu_sel_enc_1b), .a3(sav_vu_n), .zn(vu_inst_sel_enc[4]));
j_nd03 nd_vu_sel_enc_5 (.a1(vu_sel_enc_1a), .a2(vu_sel_enc_1b), .a3(sav_vu_n), .zn(vu_inst_sel_enc[5]));
j_nd03 nd_vu_sel_enc_2a (.a1(loc_prev_stalled), .a2(fst_st_vu), .a3(odd_target_custom_l), .zn(vu_sel_enc_2a));
j_nd02 nd_vu_sel_enc_2 (.a1(vu_sel_enc_2a), .a2(sav_vu_n), .zn(vu_inst_sel_enc[2]));
inst_mux_new vu_inst_mux(
.z(vu_inst),
.i0(rd_inst[31:0]),
.i1(rd_inst[63:32]),
.i2(stalled_rd_inst[31:0]),
.i3(stalled_rd_inst[31:0]),
.i4(stalled_rd_inst[63:32]),
.i5(stalled_rd_inst[63:32]),
.i6(sav_inst),
.i7(sav_inst),
.s(vu_inst_sel_enc));
endmodule
module pc_mux(reset_l, clk, if_next_pc, old_br_addr, old_taken, br_addr,
pc_data_in, pc_in_wr_en, taken, int_halt_pc, halting,
pc_wr_en, pc);
input reset_l;
input clk;
input [11:3] if_next_pc;
input [11:2] old_br_addr;
input old_taken;
input [11:2] br_addr;
input [11:2] pc_data_in;
input pc_in_wr_en;
input taken;
input [11:2] int_halt_pc;
input halting;
input pc_wr_en;
output [11:2] pc;
wire [11:2] pc_mux_1a;
wire [11:2] pc_mux_1b;
wire taken_or_pc_wr;
wire [11:2] pc_mux_2a;
wire [11:2] pc_mux_2b;
wire [11:2] pc_mux_out;
wire [11:2] unbuf_pc;
j_or02 is_or_taken_or_pc (.a1(taken), .a2(pc_in_wr_en), .z(taken_or_pc_wr));
mx2h_10 is_pc_mux_1a (.i0({if_next_pc, 1'b0}), .i1(old_br_addr), .s(old_taken), .z(pc_mux_1a));
mx2h_10 is_pc_mux_1b (.i0(br_addr), .i1(pc_data_in), .s(pc_in_wr_en), .z(pc_mux_1b));
mx2h_10 is_pc_mux_2a (.i0(pc_mux_1a), .i1(pc_mux_1b), .s(taken_or_pc_wr), .z(pc_mux_2a));
mx2h_10 is_pc_mux_2b (.i0(int_halt_pc), .i1(pc_data_in), .s(pc_in_wr_en), .z(pc_mux_2b));
mx2h_10 is_pc_mux_3 (.i0(pc_mux_2a), .i1(pc_mux_2b), .s(halting), .z(pc_mux_out));
spasdffen_10_0 pc_ff (unbuf_pc, pc_mux_out, pc_wr_en, clk, reset_l);
assign pc = unbuf_pc;
endmodule
module kill_unit (sav_inst, fst_inst, sec_inst,
sav_su, sav_vu, fst_su_no_sav, fst_vu_no_sav,
single_step, kill_su_issue_pre, kill_vu_issue_pre,
kill_su_issue, kill_vu_issue);
input [31:0] sav_inst;
input [31:0] fst_inst;
input [31:0] sec_inst;
input sav_su;
input sav_vu;
input fst_su_no_sav;
input fst_vu_no_sav;
input single_step;
input kill_su_issue_pre;
input kill_vu_issue_pre;
output kill_su_issue;
output kill_vu_issue;
hazard_unit s_f_haz (sav_inst, fst_inst, single_step, sav_su_first_hazard, sav_vu_first_hazard);
hazard_unit f_s_haz (fst_inst, sec_inst, single_step, fst_su_first_hazard, fst_vu_first_hazard);
/*
assign kill_su_issue = kill_su_issue_pre ||
(sav_vu && sav_vu_first_hazard) || (fst_vu_no_sav && fst_vu_first_hazard);
assign kill_vu_issue = kill_vu_issue_pre ||
(sav_su && sav_su_first_hazard) || (fst_su_no_sav && fst_su_first_hazard);
*/
j_ao03 ao_kill_su (.a1(fst_vu_no_sav), .a2(fst_vu_first_hazard), .b1(sav_vu), .b2(sav_vu_first_hazard),
.c(kill_su_issue_pre), .zn(kill_su_issue_l));
j_ao03 ao_kill_vu (.a1(sav_su), .a2(sav_su_first_hazard), .b1(fst_su_no_sav), .b2(fst_su_first_hazard),
.c(kill_vu_issue_pre), .zn(kill_vu_issue_l));
j_in01 in_kill_su (.i(kill_su_issue_l), .zn(kill_su_issue));
j_in01 in_kill_vu (.i(kill_vu_issue_l), .zn(kill_vu_issue));
endmodule
module hazard_unit (first_inst, second_inst, single_step, su_first_hazard, vu_first_hazard);
input [31:0] first_inst;
input [31:0] second_inst;
input single_step;
output su_first_hazard;
output vu_first_hazard;
wire [4:0] first_vs;
wire [4:0] first_vt;
wire [4:0] first_vd;
wire [4:0] first_rt;
wire [4:0] first_rd;
wire [4:0] second_vs;
wire [4:0] second_vt;
wire [4:0] second_vd;
wire [4:0] second_rt;
wire [4:0] second_rd;
wire rt_eq_vs;
wire rt_eq_vt;
wire rt_eq_vd;
wire vd_eq_rt;
wire vd_eq_rd;
wire vd_eq_rt_hi;
wire [31:0] f_h; // local copy of first instruction
wire [31:0] f_l; // and its inverse
wire [31:0] s_h; // local copy of second instruction
wire [31:0] s_l; // and its inverse
assign first_vs = f_h[15:11];
assign first_vt = f_h[20:16];
assign first_vd = f_h[10:6];
assign first_rt = f_h[20:16];
assign first_rd = f_h[15:11];
assign second_vs = s_h[15:11];
assign second_vt = s_h[20:16];
assign second_vd = s_h[10:6];
assign second_rt = s_h[20:16];
assign second_rd = s_h[15:11];
xor_5 xor_rt_eq_vs_5 (.a1(first_rt), .a2(second_vs), .eq(rt_eq_vs));
xor_5 xor_rt_eq_vt_5 (.a1(first_rt), .a2(second_vt), .eq(rt_eq_vt));
xor_5 xor_rt_eq_vd_5 (.a1(first_rt), .a2(second_vd), .eq(rt_eq_vd));
xor_5 xor_rd_eq_vs_5 (.a1(first_rd), .a2(second_vs), .eq(rd_eq_vs));
xor_5 xor_rd_eq_vt_5 (.a1(first_rd), .a2(second_vt), .eq(rd_eq_vt));
xor_5 xor_rd_eq_vd_5 (.a1(first_rd), .a2(second_vd), .eq(rd_eq_vd));
xor_5 xor_vd_eq_rt_5 (.a1(first_vd), .a2(second_rt), .eq(vd_eq_rt));
xor_5 xor_vd_eq_rd_5 (.a1(first_vd), .a2(second_rd), .eq(vd_eq_rd));
xor_2 xor_rt_eq_vs_2 (.a1(first_rt[4:3]), .a2(second_vs[4:3]), .eq(rt_eq_vs_hi));
xor_2 xor_rt_eq_vt_2 (.a1(first_rt[4:3]), .a2(second_vt[4:3]), .eq(rt_eq_vt_hi));
xor_2 xor_rt_eq_vd_2 (.a1(first_rt[4:3]), .a2(second_vd[4:3]), .eq(rt_eq_vd_hi));
xor_2 xor_vd_eq_rt_2 (.a1(first_vd[4:3]), .a2(second_rt[4:3]), .eq(vd_eq_rt_hi));
wire first_lwc2;
wire first_mtc2_a;
wire first_mtc2_b;
wire first_mtc2;
wire first_lst;
wire first_ctc2_vc_a;
wire first_ctc2_vc_b;
wire first_ctc2_vc0_c;
wire first_ctc2_vc0;
wire first_ctc2_vc1_c;
wire first_ctc2_vc1;
wire first_ctc2_vc2_c;
wire first_ctc2_vc2;
wire second_break;
wire second_break_a;
wire second_break_b;
wire second_break_c;
wire second_nop;
wire second_macq;
wire second_sum_sar;
wire second_rnd;
wire second_sum_sar_ext;
// In some cases instructions that don't actually have the described
// behavior are included in the following use/set assignments for
// hardware convenience.
// vco: use_vc0: vabs and vmrg; set_vc0: vabs, vaddb, vsubb, and vmrg
// vcc: use_vc1: vmrg, cl, cr; set_vc1: all selects
// (vmrg doesn't really set vc1, but we say it does to prevent
// it from dual issuing with ctc2)
// vce: use_vc2: cl; set_vc2: cl, ch, cr
wire second_use_vs;
wire second_use_vt;
wire second_vu_rd_wr_en;
wire second_vu_comp;
ni01d5_32 ni_f_buf (.i(first_inst), .z(f_h)); // All 32 bits are probably unnecessary
in01d5_32 in_f_buf (.i(first_inst), .zn(f_l));
ni01d5_32 ni_s_buf (.i(second_inst), .z(s_h));
in01d5_32 in_s_buf (.i(second_inst), .zn(s_l));
// fst_inst[31:26]==6'b110010
j_an06 an_first_lwc2 (.a1(f_h[31]), .a2(f_h[30]), .a3(f_l[29]), .a4(f_l[28]), .a5(f_h[27]), .a6(f_l[26]), .z(first_lwc2));
// (fst_inst[31:22]==10'b0100100010);
j_an04 an_first_mtc2_a (.a1(f_l[31]), .a2(f_h[30]), .a3(f_l[29]), .a4(f_l[28]), .z(first_mtc2_a));
j_an04 an_first_mtc2_b (.a1(f_h[27]), .a2(f_l[26]), .a3(f_l[25]), .a4(f_l[24]), .z(first_mtc2_b));
j_an04 an_first_mtc2 (.a1(f_h[23]), .a2(f_l[22]), .a3(first_mtc2_a), .a4(first_mtc2_b), .z(first_mtc2));
// (fst_inst[14:11]==4'b1011);
j_an04 an_first_lst (.a1(f_h[14]), .a2(f_l[13]), .a3(f_h[12]), .a4(f_h[11]), .z(first_lst));
// (fst_inst[31:22]==10'b0100100011) && (fst_rd[1:0]==2'b00);
j_an04 an_first_ctc2_a (.a1(f_l[31]), .a2(f_h[30]), .a3(f_l[29]), .a4(f_l[28]), .z(first_ctc2_vc_a));
j_an04 an_first_ctc2_b (.a1(f_h[27]), .a2(f_l[26]), .a3(f_l[25]), .a4(f_l[24]), .z(first_ctc2_vc_b));
j_an04 an_first_ctc2_0c (.a1(f_h[23]), .a2(f_h[22]), .a3(f_l[12]), .a4(f_l[11]), .z(first_ctc2_vc0_c));
j_an03 an_first_ctc2_0 (.a1(first_ctc2_vc_a), .a2(first_ctc2_vc_b), .a3(first_ctc2_vc0_c), .z(first_ctc2_vc0));
// (fst_inst[31:22]==10'b0100100011) && (fst_rd[1:0]==2'b01);
j_an04 an_first_ctc2_1c (.a1(f_h[23]), .a2(f_h[22]), .a3(f_l[12]), .a4(f_h[11]), .z(first_ctc2_vc1_c));
j_an03 an_first_ctc2_1 (.a1(first_ctc2_vc_a), .a2(first_ctc2_vc_b), .a3(first_ctc2_vc1_c), .z(first_ctc2_vc1));
// (fst_inst[31:22]==10'b0100100011) && (fst_rd[1:0]==2'b10);
j_an04 an_first_ctc2_2c (.a1(f_h[23]), .a2(f_h[22]), .a3(f_h[12]), .a4(f_l[11]), .z(first_ctc2_vc2_c));
j_an03 an_first_ctc2_2 (.a1(first_ctc2_vc_a), .a2(first_ctc2_vc_b), .a3(first_ctc2_vc2_c), .z(first_ctc2_vc2));
// second_break
j_an04 an_second_break_a (.a1(f_l[31]), .a2(f_l[30]), .a3(f_l[29]), .a4(f_l[28]), .z(second_break_a));
j_an04 an_second_break_b (.a1(f_l[27]), .a2(f_l[26]), .a3(f_l[5]), .a4(f_l[4]), .z(second_break_b));
j_an04 an_second_break_c (.a1(f_h[3]), .a2(f_h[2]), .a3(f_l[1]), .a4(f_h[0]), .z(second_break_c));
j_an03 an_second_break (.a1(second_break_a), .a2(second_break_b), .a3(second_break_c), .z(second_break));
// (second_cfc2 || second_ctc2) && fst_rd[1:0] == vcx
// = (second_inst[31:24]==8'b01001000 && second_inst[22]==1'b1);
j_an04 an_second_ctcf_a (.a1(s_l[31]), .a2(s_h[30]), .a3(s_l[29]), .a4(s_l[28]), .z(second_ctcf_vc_a));
j_an05 an_second_ctcf_b (.a1(s_h[27]), .a2(s_l[26]), .a3(s_l[25]), .a4(s_l[24]), .a5(s_h[22]), .z(second_ctcf_vc_b));
j_an04 an_second_ctcf0 (.a1(s_l[12]), .a2(s_l[11]), .a3(second_ctcf_vc_a), .a4(second_ctcf_vc_b), .z(second_ctcf_vc0));
j_an04 an_second_ctcf1 (.a1(s_l[12]), .a2(s_h[11]), .a3(second_ctcf_vc_a), .a4(second_ctcf_vc_b), .z(second_ctcf_vc1));
j_an04 an_second_ctcf2 (.a1(s_h[12]), .a2(s_l[11]), .a3(second_ctcf_vc_a), .a4(second_ctcf_vc_b), .z(second_ctcf_vc2));
// (second_inst[5:0] == 6'b11x111)
j_an05 an_second_nop (.a1(s_h[5]), .a2(s_h[4]), .a3(s_h[2]), .a4(s_h[1]), .a5(s_h[0]), .z(second_nop));
j_nd05 an_second_nop_l (.a1(s_h[5]), .a2(s_h[4]), .a3(s_h[2]), .a4(s_h[1]), .a5(s_h[0]), .zn(second_nop_l));
// (second_inst[5:0] == 6'b001011)
j_an06 an_second_macq (.a1(s_l[5]), .a2(s_l[4]), .a3(s_h[3]), .a4(s_l[2]), .a5(s_h[1]), .a6(s_h[0]), .z(second_macq));
// (second_inst[5:2] == 6'b0111)
j_an04 an_second_smsr (.a1(s_l[5]), .a2(s_h[4]), .a3(s_h[3]), .a4(s_h[2]), .z(second_sum_sar));
// (second_inst[5:0] == 6'b00x010)
j_an05 an_second_rnd (.a1(s_l[5]), .a2(s_l[4]), .a3(s_l[2]), .a4(s_h[1]), .a5(s_l[0]), .z(second_rnd));
// (second_inst[5:2] == 6'bx111)
j_an03 an_second_smsrex (.a1(s_h[4]), .a2(s_h[3]), .a3(s_h[2]), .z(second_sum_sar_ext));
// (second_inst[31:25] == 7'b0100101);
j_an04 an_second_comp_a (.a1(s_l[31]), .a2(s_h[30]), .a3(s_l[29]), .a4(s_l[28]), .z(second_vu_comp_a));
j_an04 an_second_comp (.a1(s_h[27]), .a2(s_l[26]), .a3(s_h[25]), .a4(second_vu_comp_a), .z(second_vu_comp));
// sec_vu_comp && (second_inst[5:3] == 3'b010)
j_an04 an_second_us0_a (.a1(second_vu_comp), .a2(s_l[5]), .a3(s_h[4]), .a4(s_l[3]), .z(second_vu_us0_a));
// sec_vu_comp && (second_inst[5:3] == 3'b100)
j_an04 an_second_us1 (.a1(second_vu_comp), .a2(s_h[5]), .a3(s_l[4]), .a4(s_l[3]), .z(second_vu_us1));
j_or02 or_second_us0 (.a1(second_vu_us0_a), .a2(second_vu_us1), .z(second_vu_us0));
// ((second_inst[5:1]==5'b10010x) || (second_inst[5:0]==6'b100110)
j_an05 an_second_us2a (.a1(second_vu_comp), .a2(s_h[5]), .a3(s_l[4]), .a4(s_l[3]), .a5(s_h[2]), .z(second_vu_us2a));
j_or02 oa_second_us2b (.a1(s_l[1]), .a2(s_l[0]), .z(second_vu_us2b));
j_an02 an_second_us2 (.a1(second_vu_us2a), .a2(second_vu_us2b), .z(second_vu_us2));
/*
second_set_vc0 = second_use_or_set_vc0;
second_set_vc1 = second_use_or_set_vc1;
second_set_vc2 = second_use_or_set_vc2;
*/
// sec_vu_comp && !(second_nop || second_macq || second_sum_sar || second_rnd)
j_nr04 nr_use_vs (.a1(second_nop), .a2(second_macq), .a3(second_sum_sar), .a4(second_rnd), .zn(second_use_vs_a));
j_an02 an_use_vs (.a1(second_vu_comp), .a2(second_use_vs_a), .z(second_use_vs));
// sec_vu_comp && !(second_nop || second_macq || second_sum_sar_ext);
j_nr03 nr_use_vt (.a1(second_nop), .a2(second_macq), .a3(second_sum_sar_ext), .zn(second_use_vt_a));
j_an02 an_use_vt (.a1(second_vu_comp), .a2(second_use_vt_a), .z(second_use_vt));
j_an02 an_second_rdwren (.a1(second_vu_comp), .a2(second_nop_l), .z(second_vu_rd_wr_en));
j_an03 an_haz_term_su_0 (.a1(first_lwc2), .a2(rt_eq_vs), .a3(second_use_vs), .z(term_su0));
j_an03 an_haz_term_su_1 (.a1(first_lwc2), .a2(rt_eq_vt), .a3(second_use_vt), .z(term_su1));
j_an03 an_haz_term_su_2 (.a1(first_lwc2), .a2(rt_eq_vd), .a3(second_vu_rd_wr_en), .z(term_su2));
j_an03 an_haz_term_su_3 (.a1(first_mtc2), .a2(rd_eq_vs), .a3(second_use_vs), .z(term_su3));
j_an03 an_haz_term_su_4 (.a1(first_mtc2), .a2(rd_eq_vt), .a3(second_use_vt), .z(term_su4));
j_an03 an_haz_term_su_5 (.a1(first_mtc2), .a2(rd_eq_vd), .a3(second_vu_comp), .z(term_su5));
j_an04 an_haz_term_su_6 (.a1(first_lwc2), .a2(first_lst), .a3(rt_eq_vs_hi), .a4(second_use_vs), .z(term_su6));
j_an04 an_haz_term_su_7 (.a1(first_lwc2), .a2(first_lst), .a3(rt_eq_vt_hi), .a4(second_use_vt), .z(term_su7));
j_an04 an_haz_term_su_8 (.a1(first_lwc2), .a2(first_lst), .a3(rt_eq_vd_hi), .a4(second_vu_comp), .z(term_su8));
j_an02 an_haz_term_su_9 (.a1(first_ctc2_vc0), .a2(second_vu_us0), .z(term_su9));
j_an02 an_haz_term_su_10 (.a1(first_ctc2_vc1), .a2(second_vu_us1), .z(term_su10));
j_an02 an_haz_term_su_11 (.a1(first_ctc2_vc2), .a2(second_vu_us2), .z(term_su11));
j_or04 or_haz_term_su_a (.a1(term_su0), .a2(term_su1), .a3(term_su2), .a4(term_su3), .z(term_su_a));
j_or04 or_haz_term_su_b (.a1(term_su4), .a2(term_su5), .a3(term_su6), .a4(term_su7), .z(term_su_b));
j_or04 or_haz_term_su_c (.a1(term_su8), .a2(term_su9), .a3(term_su10), .a4(term_su11), .z(term_su_c));
j_or04 or_haz_term_su (.a1(term_su_a), .a2(term_su_b), .a3(term_su_c), .a4(single_step), .z(su_first_hazard));
// (first_inst[5:0] == 6'b11x111)
j_nd05 an_first_nop_l (.a1(f_h[5]), .a2(f_h[4]), .a3(f_h[2]), .a4(f_h[1]), .a5(f_h[0]), .zn(first_nop_l));
// (first_inst[31:25] == 7'b0100101);
j_an04 an_first_comp_a (.a1(f_l[31]), .a2(f_h[30]), .a3(f_l[29]), .a4(f_l[28]), .z(first_vu_comp_a));
j_an04 an_first_comp (.a1(f_h[27]), .a2(f_l[26]), .a3(f_h[25]), .a4(first_vu_comp_a), .z(first_vu_comp));
j_an02 an_first_rdwren (.a1(first_vu_comp), .a2(first_nop_l), .z(first_vu_rd_wr_en));
// second_lwc2: second_inst[31:26]==6'b110010
j_an06 an_second_lwc2 (.a1(s_h[31]), .a2(s_h[30]), .a3(s_l[29]), .a4(s_l[28]), .a5(s_h[27]), .a6(s_l[26]), .z(second_lwc2));
// second_swc2: second_inst[31:26]==6'b111010
j_an06 an_second_swc2 (.a1(s_h[31]), .a2(s_h[30]), .a3(s_h[29]), .a4(s_l[28]), .a5(s_h[27]), .a6(s_l[26]), .z(second_swc2));
// load/store transpose: second_lst: second_inst[14:11]==4'b1011
j_an04 an_second_lst (.a1(s_h[14]), .a2(s_l[13]), .a3(s_h[12]), .a4(s_h[11]), .z(second_lst));
// first_vu_comp && (first_inst[5:3] == 3'b010)
j_an04 an_first_us0_a (.a1(first_vu_comp), .a2(f_l[5]), .a3(f_h[4]), .a4(f_l[3]), .z(first_vu_us0_a));
// first_vu_comp && (first_inst[5:3] == 3'b100)
j_an04 an_first_us1 (.a1(first_vu_comp), .a2(f_h[5]), .a3(f_l[4]), .a4(f_l[3]), .z(first_vu_us1));
j_or02 or_first_us0 (.a1(first_vu_us0_a), .a2(first_vu_us1), .z(first_vu_us0));
// ((first_inst[5:1]==5'b10010x) || (first_inst[5:0]==6'b100110)
j_an05 an_first_us2a (.a1(first_vu_comp), .a2(f_h[5]), .a3(f_l[4]), .a4(f_l[3]), .a5(f_h[2]), .z(first_vu_us2a));
j_or02 oa_first_us2b (.a1(f_l[1]), .a2(f_l[0]), .z(first_vu_us2b));
j_an02 an_first_us2 (.a1(first_vu_us2a), .a2(first_vu_us2b), .z(first_vu_us2));
/*
first_set_vc0 = first_use_or_set_vc0;
first_set_vc1 = first_use_or_set_vc1;
first_set_vc2 = first_use_or_set_vc2;
*/
// (sec_inst[31:22]==10'b0100100010);
j_an04 an_second_mtc2_a (.a1(s_l[31]), .a2(s_h[30]), .a3(s_l[29]), .a4(s_l[28]), .z(second_mtc2_a));
j_an04 an_second_mtc2_b (.a1(s_h[27]), .a2(s_l[26]), .a3(s_l[25]), .a4(s_l[24]), .z(second_mtc2_b));
j_an04 an_second_mtc2 (.a1(s_h[23]), .a2(s_l[22]), .a3(second_mtc2_a), .a4(second_mtc2_b), .z(second_mtc2));
// (sec_inst[31:22]==10'b0100100000);
j_an04 an_second_mfc2_a (.a1(s_l[31]), .a2(s_h[30]), .a3(s_l[29]), .a4(s_l[28]), .z(second_mfc2_a));
j_an04 an_second_mfc2_b (.a1(s_h[27]), .a2(s_l[26]), .a3(s_l[25]), .a4(s_l[24]), .z(second_mfc2_b));
j_an04 an_second_mfc2 (.a1(s_l[23]), .a2(s_l[22]), .a3(second_mfc2_a), .a4(second_mfc2_b), .z(second_mfc2));
j_ni01 ni_haz_term_vu_0 (.i(second_break), .z(term_vu0));
j_an03 an_haz_term_vu_1 (.a1(first_vu_rd_wr_en), .a2(vd_eq_rt), .a3(second_swc2), .z(term_vu1));
j_an03 an_haz_term_vu_2 (.a1(first_vu_rd_wr_en), .a2(vd_eq_rd), .a3(second_mfc2), .z(term_vu2));
j_an03 an_haz_term_vu_3 (.a1(first_vu_rd_wr_en), .a2(vd_eq_rd), .a3(second_mtc2), .z(term_vu3));
j_an03 an_haz_term_vu_4 (.a1(first_vu_rd_wr_en), .a2(vd_eq_rt), .a3(second_lwc2), .z(term_vu4));
j_an04 an_haz_term_vu_5 (.a1(first_vu_rd_wr_en), .a2(vd_eq_rt_hi), .a3(second_swc2), .a4(second_lst), .z(term_vu5));
j_an04 an_haz_term_vu_6 (.a1(first_vu_rd_wr_en), .a2(vd_eq_rt_hi), .a3(second_lwc2), .a4(second_lst), .z(term_vu6));
j_an02 an_haz_term_vu_7 (.a1(first_vu_us0), .a2(second_ctcf_vc0), .z(term_vu7));
j_an02 an_haz_term_vu_8 (.a1(first_vu_us1), .a2(second_ctcf_vc1), .z(term_vu8));
j_an02 an_haz_term_vu_9 (.a1(first_vu_us2), .a2(second_ctcf_vc2), .z(term_vu9));
j_or04 or_haz_term_vu_a (.a1(term_vu0), .a2(term_vu1), .a3(term_vu2), .a4(term_vu3), .z(term_vu_a));
j_or04 or_haz_term_vu_b (.a1(term_vu4), .a2(term_vu5), .a3(term_vu6), .a4(term_vu7), .z(term_vu_b));
j_or02 or_haz_term_vu_c (.a1(term_vu8), .a2(term_vu9), .z(term_vu_c));
j_or04 or_haz_term_vu (.a1(term_vu_a), .a2(term_vu_b), .a3(term_vu_c), .a4(single_step), .z(vu_first_hazard));
endmodule
module xor_5 (a1, a2, eq);
input [4:0] a1;
input [4:0] a2;
output eq;
wire [4:0] z;
j_xo02 xor_bit_0 (.a1(a1[0]), .a2(a2[0]), .z(z[0]));
j_xo02 xor_bit_1 (.a1(a1[1]), .a2(a2[1]), .z(z[1]));
j_xo02 xor_bit_2 (.a1(a1[2]), .a2(a2[2]), .z(z[2]));
j_xo02 xor_bit_3 (.a1(a1[3]), .a2(a2[3]), .z(z[3]));
j_xo02 xor_bit_4 (.a1(a1[4]), .a2(a2[4]), .z(z[4]));
j_nr05 xnr_5 (.a1(z[0]), .a2(z[1]), .a3(z[2]), .a4(z[3]), .a5(z[4]), .zn(eq));
endmodule
module xor_2 (a1, a2, eq);
input [1:0] a1;
input [1:0] a2;
output eq;
wire [1:0] z;
j_xo02 xor_bit_0 (.a1(a1[0]), .a2(a2[0]), .z(z[0]));
j_xo02 xor_bit_1 (.a1(a1[1]), .a2(a2[1]), .z(z[1]));
j_nr02 xor_2 (.a1(z[0]), .a2(z[1]), .zn(eq));
endmodule
module in01d5_32(i, zn);
input [31:0] i;
output [31:0] zn;
j_in01 u_00(.zn(zn[ 0]), .i(i[ 0]));
j_in01 u_01(.zn(zn[ 1]), .i(i[ 1]));
j_in01 u_02(.zn(zn[ 2]), .i(i[ 2]));
j_in01 u_03(.zn(zn[ 3]), .i(i[ 3]));
j_in01 u_04(.zn(zn[ 4]), .i(i[ 4]));
j_in01 u_05(.zn(zn[ 5]), .i(i[ 5]));
j_in01 u_06(.zn(zn[ 6]), .i(i[ 6]));
j_in01 u_07(.zn(zn[ 7]), .i(i[ 7]));
j_in01 u_08(.zn(zn[ 8]), .i(i[ 8]));
j_in01 u_09(.zn(zn[ 9]), .i(i[ 9]));
j_in01 u_10(.zn(zn[10]), .i(i[10]));
j_in01 u_11(.zn(zn[11]), .i(i[11]));
j_in01 u_12(.zn(zn[12]), .i(i[12]));
j_in01 u_13(.zn(zn[13]), .i(i[13]));
j_in01 u_14(.zn(zn[14]), .i(i[14]));
j_in01 u_15(.zn(zn[15]), .i(i[15]));
j_in01 u_16(.zn(zn[16]), .i(i[16]));
j_in01 u_17(.zn(zn[17]), .i(i[17]));
j_in01 u_18(.zn(zn[18]), .i(i[18]));
j_in01 u_19(.zn(zn[19]), .i(i[19]));
j_in01 u_20(.zn(zn[20]), .i(i[20]));
j_in01 u_21(.zn(zn[21]), .i(i[21]));
j_in01 u_22(.zn(zn[22]), .i(i[22]));
j_in01 u_23(.zn(zn[23]), .i(i[23]));
j_in01 u_24(.zn(zn[24]), .i(i[24]));
j_in01 u_25(.zn(zn[25]), .i(i[25]));
j_in01 u_26(.zn(zn[26]), .i(i[26]));
j_in01 u_27(.zn(zn[27]), .i(i[27]));
j_in01 u_28(.zn(zn[28]), .i(i[28]));
j_in01 u_29(.zn(zn[29]), .i(i[29]));
j_in01 u_30(.zn(zn[30]), .i(i[30]));
j_in01 u_31(.zn(zn[31]), .i(i[31]));
endmodule
module ni01d5_32(i, z);
input [31:0] i;
output [31:0] z;
j_ni01 u_00(.z(z[ 0]), .i(i[ 0]));
j_ni01 u_01(.z(z[ 1]), .i(i[ 1]));
j_ni01 u_02(.z(z[ 2]), .i(i[ 2]));
j_ni01 u_03(.z(z[ 3]), .i(i[ 3]));
j_ni01 u_04(.z(z[ 4]), .i(i[ 4]));
j_ni01 u_05(.z(z[ 5]), .i(i[ 5]));
j_ni01 u_06(.z(z[ 6]), .i(i[ 6]));
j_ni01 u_07(.z(z[ 7]), .i(i[ 7]));
j_ni01 u_08(.z(z[ 8]), .i(i[ 8]));
j_ni01 u_09(.z(z[ 9]), .i(i[ 9]));
j_ni01 u_10(.z(z[10]), .i(i[10]));
j_ni01 u_11(.z(z[11]), .i(i[11]));
j_ni01 u_12(.z(z[12]), .i(i[12]));
j_ni01 u_13(.z(z[13]), .i(i[13]));
j_ni01 u_14(.z(z[14]), .i(i[14]));
j_ni01 u_15(.z(z[15]), .i(i[15]));
j_ni01 u_16(.z(z[16]), .i(i[16]));
j_ni01 u_17(.z(z[17]), .i(i[17]));
j_ni01 u_18(.z(z[18]), .i(i[18]));
j_ni01 u_19(.z(z[19]), .i(i[19]));
j_ni01 u_20(.z(z[20]), .i(i[20]));
j_ni01 u_21(.z(z[21]), .i(i[21]));
j_ni01 u_22(.z(z[22]), .i(i[22]));
j_ni01 u_23(.z(z[23]), .i(i[23]));
j_ni01 u_24(.z(z[24]), .i(i[24]));
j_ni01 u_25(.z(z[25]), .i(i[25]));
j_ni01 u_26(.z(z[26]), .i(i[26]));
j_ni01 u_27(.z(z[27]), .i(i[27]));
j_ni01 u_28(.z(z[28]), .i(i[28]));
j_ni01 u_29(.z(z[29]), .i(i[29]));
j_ni01 u_30(.z(z[30]), .i(i[30]));
j_ni01 u_31(.z(z[31]), .i(i[31]));
endmodule
module muxed_inst (clk, reset_l, should_have_stalled, stalled_rd_inst, rd_inst, muxed_rd_inst);
input clk;
input reset_l;
input should_have_stalled;
input [63:0] stalled_rd_inst;
input [63:0] rd_inst;
output [63:0] muxed_rd_inst;
wire prev_stalled_a;
wire prev_stalled_b;
j_dfctnh mx_inst_prev_st_a (.q(prev_stalled_a), .d(should_have_stalled), .cp(clk), .cdn(reset_l));
j_dfctnh mx_inst_prev_st_b (.q(prev_stalled_b), .d(should_have_stalled), .cp(clk), .cdn(reset_l));
mx2h_32 mx_32_muxed_inst_hi (.i0(rd_inst[63:32]), .i1(stalled_rd_inst[63:32]), .s(prev_stalled_a), .z(muxed_rd_inst[63:32]));
mx2h_32 mx_32_muxed_inst_lo (.i0(rd_inst[31:0]), .i1(stalled_rd_inst[31:0]), .s(prev_stalled_b), .z(muxed_rd_inst[31:0]));
endmodule
/*
History/Documentation for kill_unit
assign kill_su_issue = rd_other_bubble_tmp || (rd_bubble && !delay_slot) ||
((su_inst_sel[1]||su_inst_sel[3])&&s_f_dep) ||
((vu_inst_sel[1] || vu_inst_sel[3]) && f_s_dep) ||
no_su_inst;
assign kill_vu_issue = rd_other_bubble_tmp || (rd_bubble && !delay_slot) ||
((vu_inst_sel[1] || vu_inst_sel[3]) && s_f_dep) ||
((su_inst_sel[1] || su_inst_sel[3]) && f_s_dep) ||
no_vu_inst;
assign s_f_dep = sav_fst_hazard || ((sav_su || sav_vu) && single_step);
assign f_s_dep = fst_sec_hazard || ((!sav_su && !sav_vu) && single_step);
assign sav_fst_hazard =
(sav_su && (
(sav_lwc2 && (sav_rt == fst_vs) && fst_use_vs) ||
(sav_lwc2 && (sav_rt == fst_vt) && fst_use_vt) ||
(sav_lwc2 && (sav_rt == fst_vd) && fst_vu_rd_wr_en) || // dest to dest
(sav_mtc2 && (sav_rd==fst_vs) && fst_use_vs) ||
(sav_mtc2 && (sav_rd==fst_vt) && fst_use_vt) ||
(sav_mtc2 && (sav_rd==fst_vd) && fst_vu_comp) || // dest to dest
(sav_lwc2 &&sav_lst&&(sav_rt[4:3]==fst_vs[4:3])&&fst_use_vs) ||
(sav_lwc2 &&sav_lst&&(sav_rt[4:3]==fst_vt[4:3])&&fst_use_vt) ||
(sav_lwc2 &&sav_lst&&(sav_rt[4:3]==fst_vd[4:3])&&fst_vu_comp) || // dest to dest
(sav_ctc2_vc0 && (fst_use_vc0 || fst_set_vc0)) ||
(sav_ctc2_vc1 && (fst_use_vc1 || fst_set_vc1)) ||
(sav_ctc2_vc2 && (fst_use_vc2 || fst_set_vc2)))) ||
(sav_vu && (
(fst_break) || // always single-issue break
(sav_vu_rd_wr_en && (sav_vd == fst_rt) && fst_swc2) ||
(sav_vu_rd_wr_en && (sav_vd == fst_rd) && fst_mfc2) ||
(sav_vu_rd_wr_en && (sav_vd == fst_rd) && fst_mtc2) || // dest to dest
(sav_vu_rd_wr_en && (sav_vd == fst_rt) && fst_lwc2) || // dest to dest
(sav_vu_rd_wr_en && (sav_vd[4:3]==fst_rt[4:3]) && fst_swc2&&fst_lst) ||
(sav_vu_rd_wr_en && (sav_vd[4:3]==fst_rt[4:3]) && fst_lwc2 && fst_lst) || // dest to dest
(sav_set_vc0 && (fst_cfc2_vc0 || fst_ctc2_vc0)) ||
(sav_set_vc1 && (fst_cfc2_vc1 || fst_ctc2_vc1)) ||
(sav_set_vc2 && (fst_cfc2_vc2 || fst_ctc2_vc2))));
assign fst_sec_hazard = !odd_target && !sav_su && !sav_vu &&
((!fst_vu && (
(fst_lwc2 && (fst_rt == sec_vs) && sec_use_vs) ||
(fst_lwc2 && (fst_rt == sec_vt) && sec_use_vt) ||
(fst_lwc2 && (fst_rt == sec_vd) && sec_vu_rd_wr_en) || // dest to dest
(fst_mtc2 && (fst_rd==sec_vs) && sec_use_vs) ||
(fst_mtc2 && (fst_rd==sec_vt) && sec_use_vt) ||
(fst_mtc2 && (fst_rd==sec_vd) && sec_vu_rd_wr_en) || // dest to dest
(fst_lwc2 &&fst_lst&&(fst_rt[4:3]==sec_vs[4:3])&&sec_use_vs) ||
(fst_lwc2 &&fst_lst&&(fst_rt[4:3]==sec_vt[4:3])&&sec_use_vt) ||
(fst_lwc2 &&fst_lst&&(fst_rt[4:3]==sec_vd[4:3])&&sec_vu_comp) || // dest to dest
(fst_ctc2_vc0 && (sec_use_vc0 || sec_set_vc0)) ||
(fst_ctc2_vc1 && (sec_use_vc1 || sec_set_vc1)) ||
(fst_ctc2_vc2 && (sec_use_vc2 || sec_set_vc2)))) ||
(fst_vu && (
(sec_break) || // always single-issue break
(fst_vu_rd_wr_en && (fst_vd == sec_rt) && sec_swc2) ||
(fst_vu_rd_wr_en && (fst_vd == sec_rd) && sec_mfc2) ||
(fst_vu_rd_wr_en && (fst_vd == sec_rd) && sec_mtc2) || // dest to dest
(fst_vu_rd_wr_en && (fst_vd == sec_rt) && sec_lwc2) || // dest to dest
(fst_vu_rd_wr_en && (fst_vd[4:3]==sec_rt[4:3]) && sec_swc2&&sec_lst) ||
(fst_vu_rd_wr_en && (fst_vd[4:3]==sec_rt[4:3]) && sec_lwc2 && sec_lst) || // dest to dest
(fst_set_vc0 && (sec_cfc2_vc0 || sec_ctc2_vc0)) ||
(fst_set_vc1 && (sec_cfc2_vc1 || sec_ctc2_vc1)) ||
(fst_set_vc2 && (sec_cfc2_vc2 || sec_ctc2_vc2)))));
*/