vi_controller.v 18.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
 /************************************************************************\
 |                                                                        |
 |               Copyright (C) 1994, Silicon Graphics, Inc.               |
 |                                                                        |
 |  These coded instructions, statements, and computer programs  contain  |
 |  unpublished  proprietary  information of Silicon Graphics, Inc., and  |
 |  are protected by Federal copyright  law.  They  may not be disclosed  |
 |  to  third  parties  or cosied or duplicated in any form, in whole or  |
 |  in part, without the prior written consent of Silicon Graphics, Inc.  |
 |                                                                        |
 \************************************************************************/

// $Id: vi_controller.v,v 1.1 2002/03/28 00:26:14 berndt Exp $

////////////////////////////////////////////////////////////////////////
//
// Project Reality
//
// module:	vi_controller
// description:	DMA request FSM for video interface.
//
// designer:	Phil Gossett
// date:	5/29/95
//
////////////////////////////////////////////////////////////////////////

module vi_controller(clk, reset_l,
   dma_grant, dma_start, dma_last,
   reg_write_data, reg_address, reg_write_enable, v_current,
   block_address, block_length, block_word, bank_sel,
   block_start, block_count, read_addr, pre_int,
   horizontal_flag, di, dout_a, dout_b,
   block_partial, wen_a, wen_b, addr_a, addr_b, do,
   dma_address, dma_length, dma_request, block_grant, reg_read_data,
   vbus_clock_enable_l, ctrl, origin, width, v_int,
   hsync_width, burst_width, vsync_width, burst_start,
   v_sync_period, h_sync_period, leap_pattern,
   hsync_leap_b, hsync_leap_a, h_video_end, h_video_start,
   v_video_end, v_video_start, v_burst_end, v_burst_start,
   x_scale, y_scale, x_offset, y_offset, vi_int, refresh_strobe);

`include "vi.vh"

input clk;                                   // system clock
input reset_l;                               // system reset_l
input dma_grant;                             // grant the DMA operation
input dma_start;                             // start the DMA operation
input dma_last;                              // end the DMA operation
input [CBUS_DATA_SIZE-1:0] reg_write_data;   // register write data from cbus
input [VI_REG_ADDRESS_SIZE-1:0] reg_address; // register read/write address
input reg_write_enable;                      // register write enable
input [9:0] v_current;			     // lines read only reg
input [DRAM_ADDRESS_SIZE-1:0] block_address;
input [DMA_LENGTH_SIZE-1:0] block_length;
input [3:0] block_word;                      // location in span buffers
input bank_sel;				     // buffer bank select
input block_start;			     // treat as consecutive req's
input [1:0] block_count;		     // number of consec req's - 1
input [3:0] read_addr;			     // buffer read address
input pre_int;                               // for synchronization
input horizontal_flag;                       // for refresh strobe
input [EBUS_DATA_SIZE+DBUS_DATA_SIZE-1:0] di;
input [EBUS_DATA_SIZE+DBUS_DATA_SIZE-1:0] dout_a;
input [EBUS_DATA_SIZE+DBUS_DATA_SIZE-1:0] dout_b;

output block_partial;                        // some partially covered
output wen_a;                                // buffer write enable
output wen_b;                                // buffer write enable
output [3:0] addr_a;
output [3:0] addr_b;
output [EBUS_DATA_SIZE+DBUS_DATA_SIZE-1:0] do;
output [DRAM_ADDRESS_SIZE-1:0] dma_address;
output [DMA_LENGTH_SIZE-1:0] dma_length;
output dma_request;                          // request a DMA read cycle
output block_grant;
output [CBUS_DATA_SIZE-1:0] reg_read_data;   // read data to cbus
output vbus_clock_enable_l;
output [16:0] ctrl;		// bits
output [23:0] origin;		// bytes
output [11:0] width;		// pixels
output [9:0] v_int;		// half lines
output [7:0] hsync_width;	// pixels
output [7:0] burst_width;	// pixels
output [3:0] vsync_width;	// pixels
output [9:0] burst_start;	// pixels
output [9:0] v_sync_period;	// half lines
output [11:0] h_sync_period;	// clocks
output [4:0] leap_pattern;	// fields
output [11:0] hsync_leap_b;	// clocks
output [11:0] hsync_leap_a;	// clocks
output [9:0] h_video_end;	// pixels
output [9:0] h_video_start;	// pixels
output [9:0] v_video_end;	// half lines
output [9:0] v_video_start;	// half lines
output [9:0] v_burst_end;	// half lines
output [9:0] v_burst_start;	// half lines
output [11:0] x_scale;		// 2.10
output [11:0] y_scale;		// 2.10
output [11:0] x_offset;		// 2.10
output [11:0] y_offset;		// 2.10
output vi_int;				// synchronized interrupt
output refresh_strobe;			// synchronized refresh request

// output registers
reg block_partial;
reg dma_request;
reg block_grant;
reg [16:0] ctrl;		// bits
reg [23:0] origin;		// bytes
reg [11:0] width;		// pixels
reg [9:0] v_int;		// half lines
reg [7:0] hsync_width;		// pixels
reg [7:0] burst_width;		// pixels
reg [3:0] vsync_width;		// pixels
reg [9:0] burst_start;		// pixels
reg [9:0] v_sync_period;	// half lines
reg [11:0] h_sync_period;	// clocks
reg [4:0] leap_pattern;		// fields
reg [11:0] hsync_leap_b;	// clocks
reg [11:0] hsync_leap_a;	// clocks
reg [9:0] h_video_end;		// pixels
reg [9:0] h_video_start;	// pixels
reg [9:0] v_video_end;		// half lines
reg [9:0] v_video_start;	// half lines
reg [9:0] v_burst_end;		// half lines
reg [9:0] v_burst_start;	// half lines
reg [11:0] x_scale;		// 2.10
reg [11:0] y_scale;		// 2.10
reg [11:0] x_offset;		// 2.10
reg [11:0] y_offset;		// 2.10
reg vi_int;
reg refresh_strobe;

wire block_start_1d;	// instanciated synchronizer delay
wire block_start_2d;
wire block_start_3d;
wire pre_int_1d;
wire pre_int_2d;
wire pre_int_3d;
wire horizontal_flag_1d;
wire horizontal_flag_2d;
wire horizontal_flag_3d;

reg refresh_strobe_0d;
reg refresh_strobe_1d;
reg refresh_strobe_2d;
reg refresh_strobe_3d;
reg refresh_strobe_4d;
reg refresh_strobe_5d;
reg block_start_4d;	// for edge detectors
reg block_start_4e;
reg pre_int_4d;
reg horizontal_flag_4d;
reg dma_grant_1d;	// to widen strobe for other clock domain
reg dma_start_1d;	// delay line
reg dma_start_2d;
reg dma_start_3d;
reg dma_start_4d;
reg dma_last_1d;
reg dma_last_2d;
reg dma_last_3d;
reg dma_last_4d;
reg dma_last_5d;
reg [3:0] block_word_1d;
reg [3:0] block_word_2d;
reg [3:0] block_length_1d;
reg [3:0] block_length_2d;
reg [3:0] span_addr;    	// address for spanbuf read
reg [1:0] span_count;		// number of remaining consecutive spans
reg [1:0] dma_count;		// number of remaining consecutive dma's
reg [9:0] v_current_safe;	// synchronized sample of current line
reg [6:0] test_addr;		// spanbuf diagnostic address override
reg [EBUS_DATA_SIZE+DBUS_DATA_SIZE-1:0] staged_data; // diagnostic write data
reg pre_wen_a;
reg pre_wen_b;
reg [3:0] span_length;
reg split_last;
reg granted;

wire split;
wire [DRAM_ADDRESS_SIZE-1:0] block_end;
wire [DRAM_ADDRESS_SIZE-1:0] split_addr;
wire [3:0] paddr_a;
wire [3:0] paddr_b;
wire [CBUS_DATA_SIZE-1:0] test_data;
wire partial;

assign block_end = block_address + block_length;
assign split_addr = block_end & 24'hFFF800;
assign split = block_address[11] ^ block_end[11];
assign dma_address = (split && split_last) ? split_addr :
					     block_address;
assign dma_length  =  split ? (split_last ?
					(block_end  - split_addr) :
					(split_addr - block_address - 1)) :
			      block_length;
assign partial = (!ctrl[0] && ((di[56:54] != 3'b111) || // 16 bit 5/5/5/3
                               (di[38:36] != 3'b111) ||
                               (di[20:18] != 3'b111) ||
                               (di[2:0]   != 3'b111))) ||
                 ( ctrl[0] && ((di[45:43] != 3'b111) || // 32 bit 8/8/8/8
                               (di[9:7]   != 3'b111)));
assign wen_a   = !ctrl[7] ? pre_wen_a : ((test_addr[1:0] == 3) &&
					 !test_addr[6] &&
					 (reg_address == 15) &&
					  reg_write_enable);
assign wen_b   = !ctrl[7] ? pre_wen_b : ((test_addr[1:0] == 3) &&
					  test_addr[6] &&
					 (reg_address == 15) &&
					  reg_write_enable);
assign paddr_a = bank_sel ? read_addr : span_addr;
assign paddr_b = bank_sel ? span_addr : read_addr;
assign addr_a  = !ctrl[7] ? paddr_a   : test_addr[5:2];
assign addr_b  = !ctrl[7] ? paddr_b   : test_addr[5:2];
assign do      = !ctrl[7] ? di        : staged_data;
assign test_data =
	!test_addr[6] ?
		(!test_addr[1] ?
			(!test_addr[0] ?
				{dout_a[ 71: 56], dout_a[ 53: 38]} :
				{dout_a[ 35: 20], dout_a[ 17:  2]} ) :
			(!test_addr[0] ?
				{dout_a[ 55: 54], dout_a[ 37: 36],
				 dout_a[ 19: 18], dout_a[  1:  0]} :
				0 )) :
		(!test_addr[1] ?
			(!test_addr[0] ?
				{dout_b[ 71: 56], dout_b[ 53: 38]} :
				{dout_b[ 35: 20], dout_b[ 17:  2]} ) :
			(!test_addr[0] ?
				{dout_b[ 55: 54], dout_b[ 37: 36],
				 dout_b[ 19: 18], dout_b[  1:  0]} :
				0 )) ;

// instanciated synchronizer flops
dfntnb bbsy1 (.cp(clk), .d(block_start),    .q(block_start_1d));
dfntnb bbsy2 (.cp(clk), .d(block_start_1d), .q(block_start_2d));
dfntnb bbsy3 (.cp(clk), .d(block_start_2d), .q(block_start_3d));
dfntnb hfsy1 (.cp(clk), .d(horizontal_flag),    .q(horizontal_flag_1d));
dfntnb hfsy2 (.cp(clk), .d(horizontal_flag_1d), .q(horizontal_flag_2d));
dfntnb hfsy3 (.cp(clk), .d(horizontal_flag_2d), .q(horizontal_flag_3d));
dfntnb pisy1 (.cp(clk), .d(pre_int),    .q(pre_int_1d));
dfntnb pisy2 (.cp(clk), .d(pre_int_1d), .q(pre_int_2d));
dfntnb pisy3 (.cp(clk), .d(pre_int_2d), .q(pre_int_3d));

// state machine
reg [1:0] state;
parameter
	STATE_IDLE           = 0,	
	STATE_READ_REQ       = 1,
	STATE_READ_WAIT      = 2,
	STATE_READ           = 3;

always @(posedge clk or negedge reset_l)
   begin
   if (!reset_l)
      begin
      // resetable registers
      dma_request <= 0;
      block_partial <= 0;
      split_last <= 0;
      granted <= 0;
      pre_wen_a <= 0;
      pre_wen_b <= 0;
      pre_int_4d <= 0;
      block_start_4d <= 0;
      block_start_4e <= 0;
      ctrl <= 0;			// blank video (incl syncs)
      hsync_width   <=  8'd1;		// for refresh
      h_sync_period <= 12'd2047;	// for refresh
      v_int <= 'h3FF;
      vi_int <= 0;
      refresh_strobe_0d <= 0;
      refresh_strobe_1d <= 0;
      refresh_strobe_2d <= 0;
      refresh_strobe_3d <= 0;
      refresh_strobe_4d <= 0;
      refresh_strobe_5d <= 0;
      refresh_strobe <= 0;
      state <= STATE_IDLE;
      block_grant <= 0;
      origin <= 0;
      width <= 0;
      burst_width <= 0;
      vsync_width <= 0;
      burst_start <= 0;
      v_sync_period <= 0;
      leap_pattern <= 0;
      hsync_leap_b <= 0;
      hsync_leap_a <= 0;
      h_video_end <= 0;
      h_video_start <= 0;
      v_video_end <= 0;
      v_video_start <= 0;
      v_burst_end <= 0;
      v_burst_start <= 0;
      x_scale <= 0;
      y_scale <= 0;
      x_offset <= 0;
      y_offset <= 0;
      horizontal_flag_4d <= 0;
      dma_grant_1d <= 0;
      dma_start_1d <= 0;
      dma_start_2d <= 0;
      dma_start_3d <= 0;
      dma_start_4d <= 0;
      dma_last_1d <= 0;
      dma_last_2d <= 0;
      dma_last_3d <= 0;
      dma_last_4d <= 0;
      dma_last_5d <= 0;
      block_word_1d <= 0;
      block_word_2d <= 0;
      block_length_1d <= 0;
      block_length_2d <= 0;
      span_addr <= 0;
      span_count <= 0;
      dma_count <= 0;
      v_current_safe <= 0;
      test_addr <= 0;
      staged_data <= 0;
      span_length <= 0;
      end
   else
      begin
      horizontal_flag_4d <= horizontal_flag_3d;
      refresh_strobe_0d <= horizontal_flag_3d && !horizontal_flag_4d;
      refresh_strobe_1d <= refresh_strobe_0d;
      refresh_strobe_2d <= refresh_strobe_1d;
      refresh_strobe_3d <= refresh_strobe_2d;
      refresh_strobe_4d <= refresh_strobe_3d;
      refresh_strobe_5d <= refresh_strobe_4d;
      refresh_strobe    <= refresh_strobe_5d;
      dma_grant_1d <= dma_grant;
      block_grant <= (dma_grant || dma_grant_1d) && (!split || split_last);
      if (dma_grant)
         begin
         granted <= 1;
         end
      else
         begin
         if (dma_start)
            begin
            granted <= 0;
            end
         end
      dma_start_1d <= dma_start && granted;
      dma_start_2d <= dma_start_1d;
      dma_start_3d <= dma_start_2d;
      dma_start_4d <= dma_start_3d;
      dma_last_1d <= dma_last;
      dma_last_2d <= dma_last_1d;
      dma_last_3d <= dma_last_2d;
      dma_last_4d <= dma_last_3d;
      dma_last_5d <= dma_last_4d;
      case (state)
         STATE_IDLE :
            begin
            if (block_start_3d && !block_start_4e)
               begin
               block_start_4e <= 1;
               block_partial <= 0;
               span_count <= block_count;
               state <= STATE_READ_REQ;
               end
            else
               begin
               block_start_4e <= block_start_4e && block_start_3d;
               end
            end
         STATE_READ_REQ :
            begin
            block_start_4e <= block_start_4e && block_start_3d;
            if (dma_grant || granted)
               begin
               state <= STATE_READ_WAIT;
               end
            end
         STATE_READ_WAIT :
            begin
            block_start_4e <= block_start_4e && block_start_3d;
            if (dma_start_4d)
               begin
               if (!bank_sel)
                  begin
                  pre_wen_a <= !ctrl[11];
                  end
               else
                  begin
                  pre_wen_b <= !ctrl[11];
                  end
               span_addr <= block_word_2d;
               span_length <= block_length_2d;
               state <= STATE_READ;
               end
            end
         STATE_READ :
            begin
            block_start_4e <= block_start_4e && block_start_3d;
            span_addr <= span_addr + 1;
            span_length <= span_length - 1;
            if (partial)
               begin
               block_partial <= 1;
               end
            if (dma_last_5d)
               begin
               pre_wen_a <= 0;
               pre_wen_b <= 0;
               if (span_length != 0)
                  begin
                  state <= STATE_READ_WAIT;
                  end
               else
                  begin
                  if (span_count != 0)
                     begin
                     span_count <= span_count - 1;
                     state <= STATE_READ_WAIT;
                     end
                  else
                     begin
                     state <= STATE_IDLE;
                     end
                  end
               end
            end
      endcase
      if (dma_grant)
         begin
         block_word_1d <= block_word + dma_address[6:3] - block_address[6:3];
         block_length_1d <= split_last ? (block_end[6:3]  - split_addr[6:3]) :
					 block_length[6:3];
         block_start_4d <= block_start_4d && block_start_3d;
         if (!split || split_last)
            begin
            if (dma_count != 0)
               begin
               dma_count <= dma_count - 1;
               end
            else
               begin
               dma_request <= 0;
               end
            end
         end
      else
         begin
         if (block_start_3d && !block_start_4d)
            begin
            block_start_4d <= 1;
            dma_request <= 1;
            dma_count <= block_count;
            end
         else
            begin
            block_start_4d <= block_start_4d && block_start_3d;
            end
         end
      if (dma_grant_1d)
         begin
         if (split)
            begin
            split_last <= !split_last;
            end
         else
            begin
            split_last <= 0;
            end
         end
      if (dma_start)
         begin
         block_word_2d <= block_word_1d;
         block_length_2d <= block_length_1d;
         end
      if (refresh_strobe)
         begin
         v_current_safe <= v_current;
         end
      if (reg_write_enable && (reg_address == 4))
         begin
	 vi_int <= 0;
         end
      else
         begin
         pre_int_4d <= pre_int_3d;
         if (pre_int_3d && !pre_int_4d)
            begin
            vi_int <= 1;
            end
         end
      if (reg_write_enable)
         begin
         case (reg_address)
            0 : begin
		ctrl[16:0] <= reg_write_data[16:0];
                end
            1 : begin
		origin[23:0] <= reg_write_data[23:0];
              	end
            2 : begin
		width[11:0] <= reg_write_data[11:0];
               	end
            3 : begin
		v_int[9:0] <= reg_write_data[9:0];
               	end
            4 : begin
		end
	    5 : begin
		burst_start[9:0] <= reg_write_data[29:20];
		vsync_width[3:0] <= reg_write_data[19:16];
		burst_width[7:0] <= reg_write_data[15:8];
		hsync_width[7:0] <= reg_write_data[7:0];
		end
	    6 : begin
		v_sync_period[9:0] <= reg_write_data[9:0];
		end
	    7 : begin
		h_sync_period[11:0] <= reg_write_data[11:0];
		leap_pattern[4:0] <= reg_write_data[20:16];
		end
	    8 : begin
		hsync_leap_b[11:0] <= reg_write_data[11:0];
		hsync_leap_a[11:0] <= reg_write_data[27:16];
		end
	    9 : begin
		h_video_end[9:0] <= reg_write_data[9:0];
		h_video_start[9:0] <= reg_write_data[25:16];
		end
	   10 : begin
		v_video_end[9:0] <= reg_write_data[9:0];
		v_video_start[9:0] <= reg_write_data[25:16];
		end
	   11 : begin
		v_burst_end[9:0] <= reg_write_data[9:0];
		v_burst_start[9:0] <= reg_write_data[25:16];
		end
	   12 : begin
		x_scale[11:0] <= reg_write_data[11:0];
		x_offset[11:0] <= reg_write_data[27:16];
		end
	   13 : begin
		y_scale[11:0] <= reg_write_data[11:0];
		y_offset[11:0] <= reg_write_data[27:16];
		end
	   14:	begin
		test_addr <= reg_write_data[6:0];
		end
	   15 : begin
		case (test_addr[1:0])
		0:	begin
			{staged_data[ 71: 56],
			 staged_data[ 53: 38]} <=
				reg_write_data;
			end
		1:	begin
			{staged_data[ 35: 20],
			 staged_data[ 17:  2]} <=
				reg_write_data;
			end
		2:	begin
			{staged_data[ 55: 54],
			 staged_data[ 37: 36],
			 staged_data[ 19: 18],
			 staged_data[  1:  0]} <=
				reg_write_data[7:0];
			end
		endcase
		end
         endcase
         end
      end
   end

// register read mux
assign reg_read_data =
	reg_address[3] ?
		(reg_address[2] ?
			(reg_address[1] ?
				(reg_address[0] ?
					test_data :
					test_addr) :
				(reg_address[0] ?
					{y_offset[11:0],4'b0,
					 y_scale} :
					{x_offset[11:0],4'b0,
					 x_scale[11:0]})) :
			(reg_address[1] ?
				(reg_address[0] ?
					{v_burst_start[9:0],6'b0,
					 v_burst_end[9:0]} :
					{v_video_start[9:0],6'b0,
					 v_video_end[9:0]}) :
				(reg_address[0] ?
					{h_video_start[9:0],6'b0,
					 h_video_end[9:0]} :
					{hsync_leap_a[11:0],4'b0,
					 hsync_leap_b[11:0]}))) :
		(reg_address[2] ?
			(reg_address[1] ?
				(reg_address[0] ?
					{leap_pattern[4:0],4'b0,
					h_sync_period[11:0]} :
					v_sync_period) :
				(reg_address[0] ?
					{burst_start[9:0],
					 vsync_width[3:0],
					 burst_width[7:0],
					 hsync_width[7:0]} :
					v_current_safe)) :
			(reg_address[1] ?
				(reg_address[0] ?
					v_int :
					width) :
				(reg_address[0] ?
					origin :
					ctrl)));

assign vbus_clock_enable_l = ~ctrl[5];

endmodule // vi_controller.v