unzip.c
25.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
#include "ultra64.h"
#include "gzip.h"
static u32 bb_outbytes_limit;
struct huft {
u8 e; /* number of extra bits or operation */
u8 b; /* number of bits in this code or subcode */
union {
u16 n; /* literal, length base, or distance base */
struct huft *t; /* pointer to next level of table */
} v;
};
int huft_build(unsigned int *, unsigned int, unsigned int, u16 *, u16 *, struct huft **, int *);
int huft_free(struct huft *);
int inflate_codes(struct huft *, struct huft *, int, int);
int inflate_stored(void);
int inflate_fixed(void);
int inflate_dynamic(void);
int inflate_block(int *);
int inflate(void);
#define wp outcnt
#define flush_output(w) (wp=(w),flush_window())
// Order of the bit length code lengths
static unsigned int border[] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
// Copy lengths for literal codes 257..285
static u16 cplens[] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
// Extra bits for literal codes 257..285
static u16 cplext[] = {
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; // 99==invalid
// Copy offsets for distance codes 0..29
static u16 cpdist[] = {
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
8193, 12289, 16385, 24577};
// Extra bits for distance codes
static u16 cpdext[] = {
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
12, 12, 13, 13};
u32 bb; // bit buffer
unsigned int bk; // bits in bit buffer
u16 mask_bits[] = {
0x0000,
0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};
#define NEXTBYTE() (u8)get_byte()
#define NEEDBITS(n) {while(k<(n)){b|=((u32)NEXTBYTE())<<k;k+=8;}}
#define DUMPBITS(n) {b>>=(n);k-=(n);}
int lbits = 9; /* bits in base literal/length lookup table */
int dbits = 6; /* bits in base distance lookup table */
/* If BMAX needs to be larger than 16, then h and x[] should be u32. */
#define BMAX 16 /* maximum bit length of any code (16 for explode) */
#define N_MAX 288 /* maximum number of codes in any set */
unsigned int hufts; /* track memory usage */
// Buffer
#define GZIP_MEM_BUFFSIZ 16384
static char gzip_mem_buff[GZIP_MEM_BUFFSIZ];
static char *gzip_malloc_addr = gzip_mem_buff;
static long gzip_malloc_tmp = 0;
//===========================================================================
//
//
char *gzip_malloc(long size)
{
char *ret;
gzip_malloc_tmp += size;
if ( gzip_malloc_tmp > GZIP_MEM_BUFFSIZ ) {
// Debug
// printf("memory overflow\n");
return(NULL);
}
ret = gzip_malloc_addr;
gzip_malloc_addr += size;
return(ret);
}
//===========================================================================
//
//
void gzip_free(char *ptr)
{
// Debug
//if ( gzip_malloc_tmp != 0 ) printf("%ld byte free\n", gzip_malloc_tmp);
gzip_malloc_tmp = 0;
gzip_malloc_addr = gzip_mem_buff;
}
//===========================================================================
//
//
int huft_build(unsigned int *b, unsigned int n, unsigned int s, u16 *d, u16 *e, struct huft **t, int *m)
{
unsigned int a; /* counter for codes of length k */
unsigned int c[BMAX+1]; /* bit length count table */
unsigned int f; /* i repeats in table every f entries */
int g; /* maximum code length */
int h; /* table level */
register unsigned int i; /* counter, current code */
register unsigned int j; /* counter */
register int k; /* number of bits in current code */
int l; /* bits per table (returned in m) */
register unsigned int *p; /* pointer into c[], b[], or v[] */
register struct huft *q; /* points to current table */
struct huft r; /* table entry for structure assignment */
struct huft *u[BMAX]; /* table stack */
static unsigned int v[N_MAX]; /* values in order of bit length */
register int w; /* bits before this table == (l * h) */
unsigned int x[BMAX+1]; /* bit offsets, then code stack */
unsigned int *xp; /* pointer into x */
int y; /* number of dummy codes added */
unsigned int z; /* number of entries in current table */
/* Generate counts for each bit length */
for ( j = 0; j < (BMAX+1); j++ ) c[j] = 0;
p = b; i = n;
do {
c[*p]++; /* assume all entries <= BMAX */
p++; /* Can't combine with above line (Solaris bug) */
} while (--i);
if (c[0] == n) { /* null input--all zero length codes */
*t = (struct huft *)NULL;
*m = 0;
return 0;
}
/* Find minimum and maximum length, bound *m by those */
l = *m;
for (j = 1; j <= BMAX; j++)
if (c[j]) break;
k = j; /* minimum code length */
if ((unsigned int)l < j) l = j;
for (i = BMAX; i; i--) if (c[i]) break;
g = i; /* maximum code length */
if ((unsigned int)l > i) l = i;
*m = l;
/* Adjust last length count to fill out codes, if needed */
for (y = 1 << j; j < i; j++, y <<= 1) {
if ((y -= c[j]) < 0) return 2; /* bad input: more codes than bits */
}
if ((y -= c[i]) < 0) return 2;
c[i] += y;
/* Generate starting offsets into the value table for each length */
x[1] = j = 0;
p = c + 1; xp = x + 2;
while (--i) { /* note that i == g from above */
*xp++ = (j += *p++);
}
/* Make a table of values in order of bit lengths */
p = b; i = 0;
do {
if ((j = *p++) != 0) v[x[j]++] = i;
} while (++i < n);
/* Generate the Huffman codes and for each, make the table entries */
x[0] = i = 0; /* first Huffman code is zero */
p = v; /* grab values in bit order */
h = -1; /* no tables yet--level -1 */
w = -l; /* bits decoded == (l * h) */
u[0] = (struct huft *)NULL; /* just to keep compilers happy */
q = (struct huft *)NULL; /* ditto */
z = 0; /* ditto */
/* go through the bit lengths (k already is bits in shortest code) */
for (; k <= g; k++) {
a = c[k];
while (a--) {
/* here i is the Huffman code of length k bits for value *p */
/* make tables up to required level */
while (k > w + l) {
h++;
w += l; /* previous table always l bits */
/* compute minimum size table less than or equal to l bits */
z = (z = g - w) > (unsigned int)l ? l : z; /* upper limit on table size */
if ((f = 1 << (j = k - w)) > a + 1) { /* try a k-w bit table */
/* too few codes for k-w bit table */
f -= a + 1; /* deduct codes from patterns left */
xp = c + k;
while (++j < z) /* try smaller tables up to z bits */
{
if ((f <<= 1) <= *++xp) break; /* enough codes to use up j bits */
f -= *xp; /* else deduct codes from patterns */
}
}
z = 1 << j; /* table entries for j-bit table */
/* allocate and link in new table */
if ( ( q = (struct huft *)gzip_malloc( (z + 1)*sizeof(struct huft) ) ) == (struct huft *)NULL ) {
if (h) huft_free(u[0]);
return 3; /* not enough memory */
}
hufts += z + 1; /* track memory usage */
*t = q + 1; /* link to list for huft_free() */
*(t = &(q->v.t)) = (struct huft *)NULL;
u[h] = ++q; /* table starts after link */
/* connect to last table, if there is one */
if (h) {
x[h] = i; /* save pattern for backing up */
r.b = (u8)l; /* bits to dump before this table */
r.e = (u8)(16 + j); /* bits in this table */
r.v.t = q; /* pointer to this table */
j = i >> (w - l); /* (get around Turbo C bug) */
u[h-1][j] = r; /* connect to last table */
}
}
/* set up table entry in r */
r.b = (u8)(k - w);
if (p >= v + n) {
r.e = 99; /* out of values--invalid code */
} else if (*p < s) {
r.e = (u8)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
r.v.n = (u16)(*p); /* simple code is just the value */
p++; /* one compiler does not like *p++ */
} else {
r.e = (u8)e[*p - s]; /* non-simple--look up in lists */
r.v.n = d[*p++ - s];
}
/* fill code-like entries with r */
f = 1 << (k - w);
for (j = i >> w; j < z; j += f) q[j] = r;
/* backwards increment the k-bit code i */
for (j = 1 << (k - 1); i & j; j >>= 1) i ^= j;
i ^= j;
/* backup over finished tables */
while ((i & ((1 << w) - 1)) != x[h]) {
h--; /* don't need to update q */
w -= l;
}
}
}
/* Return true (1) if we were given an incomplete table */
return y != 0 && g != 1;
}
int huft_free(struct huft *t)
{
register struct huft *p, *q;
/* Go through linked list, freeing from the malloced (t[-1]) address. */
p = t;
while (p != (struct huft *)NULL) {
q = (--p)->v.t;
gzip_free((char*)p);
p = q;
}
return 0;
}
int inflate_codes(struct huft *tl, struct huft *td, int bl, int bd)
{
register unsigned int e; /* table entry flag/number of extra bits */
unsigned int n, d; /* length and index for copy */
unsigned int w; /* current window position */
struct huft *t; /* pointer to table entry */
unsigned int ml, md; /* masks for bl and bd bits */
register u32 b; /* bit buffer */
register unsigned int k; /* number of bits in bit buffer */
/* make local copies of globals */
b = bb; /* initialize bit buffer */
k = bk;
w = wp; /* initialize window position */
/* inflate the coded data */
ml = mask_bits[bl]; /* precompute masks for speed */
md = mask_bits[bd];
for (;;) { /* do until end of block */
NEEDBITS((unsigned int)bl)
if ((e = (t = tl + ((unsigned int)b & ml))->e) > 16) {
do {
if (e == 99) return 1;
DUMPBITS(t->b)
e -= 16;
NEEDBITS(e)
} while ((e = (t = t->v.t + ((unsigned int)b & mask_bits[e]))->e) > 16);
}
DUMPBITS(t->b)
if (e == 16) { /* then it's a literal */
window[w++] = (u8)t->v.n;
if (w == WSIZE) {
if(flush_output(w)<0)return -1;;
w = 0;
}
} else { /* it's an EOB or a length */
/* exit if end of block */
if (e == 15) break;
/* get length of block to copy */
NEEDBITS(e)
n = t->v.n + ((unsigned int)b & mask_bits[e]);
DUMPBITS(e);
/* decode distance of block to copy */
NEEDBITS((unsigned int)bd)
if ((e = (t = td + ((unsigned int)b & md))->e) > 16) {
do {
if (e == 99)
return 1;
DUMPBITS(t->b)
e -= 16;
NEEDBITS(e)
} while ((e = (t = t->v.t + ((unsigned int)b & mask_bits[e]))->e) > 16);
}
DUMPBITS(t->b)
NEEDBITS(e)
d = w - t->v.n - ((unsigned int)b & mask_bits[e]);
DUMPBITS(e)
/* do the copy */
do {
n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
/*
//#if !defined(NOMEMCPY) && !defined(DEBUG)
if (w - d >= e) { // (this test assumes unsigned comparison)
dst = (u8 *)( (u32)window + (u32)w );
src = (u8 *)( (u32)window + (u32)d );
for ( i = 0; i < e; i++ ) {
*dst = *src;
dst++;
src++;
}
w += e;
d += e;
} else // do it slow to avoid memcpy() overlap
//#endif !NOMEMCPY
*/
do {
window[w++] = window[d++];
} while (--e);
if (w == WSIZE) {
if(flush_output(w)<0)return -1;
w = 0;
}
} while (n);
}
}
/* restore the globals from the locals */
wp = w; /* restore global window pointer */
bb = b; /* restore global bit buffer */
bk = k;
/* done */
return 0;
}
int inflate_stored(void)
/* "decompress" an inflated type 0 (stored) block. */
{
unsigned int n; /* number of bytes in block */
unsigned int w; /* current window position */
register u32 b; /* bit buffer */
register unsigned int k; /* number of bits in bit buffer */
/* make local copies of globals */
b = bb; /* initialize bit buffer */
k = bk;
w = wp; /* initialize window position */
/* go to byte boundary */
n = k & 7;
DUMPBITS(n);
/* get the length and its complement */
NEEDBITS(16)
n = ((unsigned int)b & 0xffff);
DUMPBITS(16)
NEEDBITS(16)
if (n != (unsigned int)((~b) & 0xffff)) return 1; /* error in compressed data */
DUMPBITS(16)
/* read and output the compressed data */
while (n--) {
NEEDBITS(8)
window[w++] = (u8)b;
if (w == WSIZE) {
if(flush_output(w)<0)return -1;
w = 0;
}
DUMPBITS(8)
}
/* restore the globals from the locals */
wp = w; /* restore global window pointer */
bb = b; /* restore global bit buffer */
bk = k;
return 0;
}
int inflate_fixed(void)
/* decompress an inflated type 1 (fixed Huffman codes) block. We should
either replace this with a custom decoder, or at least precompute the
Huffman tables. */
{
int i; /* temporary variable */
struct huft *tl; /* literal/length code table */
struct huft *td; /* distance code table */
int bl; /* lookup bits for tl */
int bd; /* lookup bits for td */
static unsigned int l[288]; /* length list for huft_build */
/* set up literal table */
for (i = 0; i < 144; i++)
l[i] = 8;
for (; i < 256; i++)
l[i] = 9;
for (; i < 280; i++)
l[i] = 7;
for (; i < 288; i++) /* make a complete, but wrong code set */
l[i] = 8;
bl = 7;
if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) return i;
/* set up distance table */
for (i = 0; i < 30; i++) l[i] = 5; /* make an incomplete code set */
bd = 5;
if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1) {
huft_free(tl);
return i;
}
/* decompress until an end-of-block code */
if (inflate_codes(tl, td, bl, bd)) return 1;
/* free the decoding tables, return */
huft_free(td);
huft_free(tl);
return 0;
}
int inflate_dynamic(void)
/* decompress an inflated type 2 (dynamic Huffman codes) block. */
{
int i; /* temporary variables */
unsigned int j;
unsigned int l; /* last length */
unsigned int m; /* mask for bit lengths table */
unsigned int n; /* number of lengths to get */
struct huft *tl; /* literal/length code table */
struct huft *td; /* distance code table */
int bl; /* lookup bits for tl */
int bd; /* lookup bits for td */
unsigned int nb; /* number of bit length codes */
unsigned int nl; /* number of literal/length codes */
unsigned int nd; /* number of distance codes */
static unsigned int ll[288+32]; /* literal/length and distance code lengths */
register u32 b; /* bit buffer */
register unsigned int k; /* number of bits in bit buffer */
/* make local bit buffer */
b = bb;
k = bk;
/* read in table lengths */
NEEDBITS(5)
nl = 257 + ((unsigned int)b & 0x1f); /* number of literal/length codes */
DUMPBITS(5)
NEEDBITS(5)
nd = 1 + ((unsigned int)b & 0x1f); /* number of distance codes */
DUMPBITS(5)
NEEDBITS(4)
nb = 4 + ((unsigned int)b & 0xf); /* number of bit length codes */
DUMPBITS(4)
if (nl > 288 || nd > 32) return 1; /* bad lengths */
/* read in bit-length-code lengths */
for (j = 0; j < nb; j++) {
NEEDBITS(3)
ll[border[j]] = (unsigned int)b & 7;
DUMPBITS(3)
}
for (; j < 19; j++) ll[border[j]] = 0;
/* build decoding table for trees--single level, 7 bit lookup */
bl = 7;
if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) {
if (i == 1) huft_free(tl);
return i; /* incomplete code set */
}
/* read in literal and distance code lengths */
n = nl + nd;
m = mask_bits[bl];
i = l = 0;
while ((unsigned int)i < n) {
NEEDBITS((unsigned int)bl)
j = (td = tl + ((unsigned int)b & m))->b;
DUMPBITS(j)
j = td->v.n;
if (j < 16) { /* length of code in bits (0..15) */
ll[i++] = l = j; /* save last length in l */
} else if (j == 16) { /* repeat last length 3 to 6 times */
NEEDBITS(2)
j = 3 + ((unsigned int)b & 3);
DUMPBITS(2)
if ((unsigned int)i + j > n) return 1;
while (j--) ll[i++] = l;
} else if (j == 17) { /* 3 to 10 zero length codes */
NEEDBITS(3)
j = 3 + ((unsigned int)b & 7);
DUMPBITS(3)
if ((unsigned int)i + j > n) return 1;
while (j--) ll[i++] = 0;
l = 0;
} else { /* j == 18: 11 to 138 zero length codes */
NEEDBITS(7)
j = 11 + ((unsigned int)b & 0x7f);
DUMPBITS(7)
if ((unsigned int)i + j > n) return 1;
while (j--) ll[i++] = 0;
l = 0;
}
}
/* free decoding table for trees */
huft_free(tl);
/* restore the global bit buffer */
bb = b;
bk = k;
/* build the decoding tables for literal/length and distance codes */
bl = lbits;
if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) {
if (i == 1) {
huft_free(tl);
}
return i; /* incomplete code set */
}
bd = dbits;
if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) {
if (i == 1) i = 0;
}
/* decompress until an end-of-block code */
if (inflate_codes(tl, td, bl, bd)) return 1;
/* free the decoding tables, return */
huft_free(td);
huft_free(tl);
return 0;
}
/* decompress an inflated block */
int inflate_block(int *e)
{
unsigned int t; /* block type */
register u32 b; /* bit buffer */
register unsigned int k; /* number of bits in bit buffer */
/* make local bit buffer */
b = bb;
k = bk;
/* read in last block bit */
NEEDBITS(1)
*e = (int)b & 1;
DUMPBITS(1)
/* read in block type */
NEEDBITS(2)
t = (unsigned int)b & 3;
DUMPBITS(2)
/* restore the global bit buffer */
bb = b;
bk = k;
/* inflate that block type */
if (t == 2) return inflate_dynamic();
if (t == 0) return inflate_stored();
if (t == 1) return inflate_fixed();
/* bad block type */
return 2;
}
//===========================================================================
// decompress an inflated entry
//===========================================================================
int inflate(void)
{
int e; // last block flag
int r; // result code
unsigned int h; // maximum struct huft's malloc'ed
// initialize window, bit buffer
wp = 0;
bk = 0;
bb = 0;
// initialize malloc buffer
gzip_malloc_tmp = 0;
gzip_malloc_addr = gzip_mem_buff;
// decompress until the last block
h = 0;
do {
hufts = 0;
if ( ( r = inflate_block(&e) ) != 0 ) return r;
if ( hufts > h ) h = hufts;
} while (!e);
// Undo too much lookahead. The next read will be byte aligned so we
// can discard unused bits in the last meaningful byte.
while ( bk >= 8 ) {
bk -= 8;
inptr--;
}
// flush out window
if(flush_output(wp)<0)return -1;
// return success
return 0;
}
// 展開バッファ
unsigned char inbuf[INBUFSIZ];
unsigned char outbuf[OUTBUFSIZ];
unsigned char window[WSIZE];
// ワーク
FILE_HND ifd; /* input file descriptor */
FILE_HND ofd; /* output file descriptor */
long bytes_in; /* number of input bytes */
long bytes_out; /* number of output bytes */
unsigned int insize; /* valid bytes in inbuf */
unsigned int inptr; /* index of next byte to be processed in inbuf */
unsigned int outcnt; /* bytes in output buffer */
void clear_bufs(void);
u32 updcrc(u8 *s, unsigned int n);
//========================================================================
// Table of CRC-32's of all single-byte values
//========================================================================
static u32 crc_32_tab[] = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};
u32 data_read(FILE_HND *infile, u8 *dst_addr, u32 size)
{
u32 i;
if ( infile->rest_size < size ) size = infile->rest_size;
i = ( size + 7 ) & 0xfffffff8;
if ( i != 0 ) {
bcopy(infile->next_addr, dst_addr, i);
}
infile->rest_size -= i;
infile->next_addr += i;
if ( infile->rest_size & 0x80000000 ) infile->rest_size = 0;
return(size);
}
//===========================================================================
// メモリ書き出し
//
u32 data_write(FILE_HND *outfile, u8 *src_addr, unsigned int size)
{
u32 i;
u8 *dst_addr = (u8 *)outfile->next_addr;
for ( i = 0; i < size; i++ ) {
*dst_addr = src_addr[i];
dst_addr++;
}
outfile->rest_size += size;
outfile->next_addr = dst_addr;
return(size);
}
//===========================================================================
// 展開
//
int unzip(void)
{
int res;
int n;
u8 buf[32]; // extended local header
updcrc(NULL, 0); // initialize crc
// Decompress
res = inflate();
if ( res == 3 ) {
return(-1);
} else if ( res != 0 ) {
return(-1);
}
// Get the crc and original length
for ( n = 0; n < 8; n++ ) buf[n] = (u8)get_byte();
#if 0
// def DEBUG
if ( orig_len == bytes_out ) {
PRINTF("=== ExpOK ===\n");
} else {
PRINTF("**** ExpError **** orglen : %d , outlen : %d\n", orig_len, bytes_out);
}
#endif
return(0);
}
//===========================================================================
// Run a set of bytes through the crc shift register. If s is a NULL
// pointer, then initialize the crc shift register contents instead.
// Return the current crc in either case.
//
u32 updcrc(u8 *s, unsigned int n)
{
register u32 c; /* temporary variable */
static u32 crc = 0xffffffff; /* shift register contents */
if ( s == NULL ) {
c = 0xffffffff;
} else {
c = crc;
if (n) do {
c = crc_32_tab[((int)c ^ (*s++)) & 0xff] ^ (c >> 8);
} while (--n);
}
crc = c;
return c ^ 0xffffffff; /* (instead of ~c for 64-bit machines) */
}
//===========================================================================
// Clear input and output buffers
void clear_bufs(void)
{
outcnt = 0;
insize = inptr = 0;
bytes_in = bytes_out = 0;
}
//===========================================================================
// Fill the input buffer. This is called only when the buffer is empty.
int fill_inbuf(int eof_ok)
{
int len;
insize = 0;
do {
len = data_read(&ifd, (char*)inbuf+insize, INBUFSIZ-insize);
if ( len == 0 || len == -1 ) break;
insize += len;
} while (insize < INBUFSIZ);
if ( insize == 0 ) {
if (eof_ok) return -1;
}
bytes_in += (u32)insize;
inptr = 1;
return inbuf[0];
}
//===========================================================================
// Does the same as write(), but also handles partial pipe writes and checks
// for error return.
void write_buf(FILE_HND *fd, char *buf, unsigned int cnt)
{
u32 n;
while ( ( n = data_write(fd, buf, cnt) ) != cnt ) {
cnt -= n;
buf += n;
}
}
//===========================================================================
// Write the output window window[0..outcnt-1] and update crc and bytes_out.
// (Used for the decompressed data only.)
int flush_window(void)
{
if (outcnt == 0) return 0;
updcrc(window, outcnt);
if((bytes_out+outcnt)>bb_outbytes_limit)
return -1;
write_buf(&ofd, (char *)window, outcnt);
bytes_out += (u32)outcnt;
outcnt = 0;
return 0;
}
u32 expand_gzip(u8 *src_addr, u8 *dst_addr, u32 size, u32 outbytes_limit)
{
ifd.next_addr = src_addr;
ifd.rest_size = size;
ofd.next_addr = dst_addr;
ofd.rest_size = 0;
bb_outbytes_limit = outbytes_limit;
clear_bufs();
unzip();
return ofd.rest_size;
}