hash.c
12.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/*
* Copyright (C) 1998 by the Board of Trustees
* of Leland Stanford Junior University.
* Copyright (C) 1998 Digital Equipment Corporation
*
* This file is part of the SimOS distribution.
* See LICENSE file for terms of the license.
*
*/
/*
* Routines to implement a hash table. Given a 32-bit
* address, it returns the corresponding user-defined structure.
*
* Copyright (C) 1993 by Jack E. Veenstra (veenstra@cs.rochester.edu)
*
* This file is part of MINT, a MIPS code interpreter and event generator
* for parallel programs.
*
* MINT is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 1, or (at your option)
* any later version.
*
* MINT is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MINT; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* Change log:
* Mar 16, 1993 Jack Veenstra veenstra@cs.rochester.edu
* Created.
*
* Apr 24, 1993 Jack Veenstra veenstra@cs.rochester.edu
* Added hash_init().
*
* Mar 12, 1994 Jack Veenstra veenstra@cs.rochester.edu
* Replaced calls to "fatal()" with "fprintf()".
*/
#include <stdio.h>
#include <stdlib.h>
#include "hash.h"
#include "export.h"
/* These routines implement a hash table. Each routine takes a pointer to
* a hash table object as the first argument. The routines hash_lookup()
* and hash_insert() take a 32-bit address as the second argument and
* return a pointer to a user-defined structure if found. If not
* found, hash_lookup() returns NULL, while hash_insert() allocates
* space for a new entry and returns a pointer to it. hash_remove()
* removes an entry.
*
* The program using the hash table routines should define a structure
* for containing information about each entry. The structure must
* include as its first field an unsigned long field to store the address.
* The second field must be a pointer so that this structure can be linked
* on a list. Other fields are optional. The size of the structure
* must be passed as the second argument to hash_init().
*
* Example:
*
* struct h_entry {
* unsigned long addr;
* void *next;
* unsigned long accessed;
* unsigned long written;
* };
* #define ENTRY_SIZE (sizeof(struct h_entry))
*
* The program should declare a variable of type "hash_tab_ptr" to
* point to the hash table object and call hash_init() with the number of
* entries as the first argument. The number of entries will be rounded up
* to a power of two. The size of each user-defined entry is passed in as
* the second argument.
* Example:
*
* hash_tab_ptr Addrs;
* Addrs = hash_init(64 * 1024, ENTRY_SIZE);
*
* Then the call to lookup an address and insert it if not found
* would look like:
*
* hashp = (struct h_entry *) hash_insert(Addrs, addr);
*
* To lookup an address without inserting it if it's not found:
*
* hashp = (struct h_entry *) hash_lookup(Addrs, addr);
*/
#define HASH_FUNCTION(addr, mask) ((((addr) >> 14) ^ (((addr) >> 2) & 0xffff)) & mask)
/* hash_init() allocates space for a hash table containing "nentries"
* number of pointers. The second argument is the size of each user-defined
* entry. This is used in hash_insert().
*
* The number of requested entries is rounded up to a power of two
* so that the hash index can be computed efficiently.
*
* The return value is a pointer to a hash table, which is passed as
* an argument to the lookup and insert routines.
*/
hash_tab_ptr
hash_init (int nentries, int size)
{
int exp, tab_size;
hash_tab_ptr htab;
/* find power of two that is greater than or equal to "nentries" */
for (exp = 1; exp < nentries; exp <<= 1);
/* There is already one pointer allocated in "table[1]" so subtract 1
* from exp.
*/
tab_size = sizeof (struct hash_tab_t) + (exp - 1) * sizeof (hash_entry_ptr);
htab = (hash_tab_ptr) calloc (1, tab_size);
if (htab == NULL) {
#ifdef HASH_REPORT
fprintf (stderr, "hash_init: out of memory, allocating %u pointers\n",
exp);
#endif
return NULL;
}
htab->hash_tab_size = exp;
htab->hash_mask = exp - 1;
htab->size = size;
return htab;
}
/* hash_lookup() takes as arguments a hash table (an array of pointers to
* hash table entries), and an address, and returns a pointer to the
* entry for that address. If the entry is not found, NULL is returned.
*/
hash_entry_ptr
hash_lookup (hash_tab_ptr htab, unsigned long addr)
{
int index;
hash_entry_ptr hptr;
index = HASH_FUNCTION (addr, htab->hash_mask);
for (hptr = htab->table[index]; hptr; hptr = hptr->next)
if (hptr->addr == addr)
break;
return hptr;
}
/* hash_insert() is like hash_lookup() except that an entry is inserted if
* not found. If the entry is found in the hash table, a pointer to it is
* returned. If not found, "size" bytes are allocated, and the entry is
* inserted into the hash table. The "size" was specified in the call to
* hash_init().
*/
hash_entry_ptr
hash_insert (hash_tab_ptr htab, unsigned long addr)
{
int index;
hash_entry_ptr hptr;
index = HASH_FUNCTION (addr, htab->hash_mask);
for (hptr = htab->table[index]; hptr; hptr = hptr->next)
if (hptr->addr == addr)
break;
if (hptr == NULL) {
NEW_ZITEM (htab->hash_free, htab->size, hptr, "hash_insert");
hptr->addr = addr;
hptr->next = htab->table[index];
htab->table[index] = hptr;
}
return hptr;
}
/* hash_insert_size() is like hash_insert() except that the size field is
* specified instead of using the default size specified at initialization
* time. If the entry is found in the hash table, a pointer to it is
* returned. If not found, "size" bytes are allocated (with calloc), and
* the entry is inserted into the hash table.
*/
hash_entry_ptr
hash_insert_size (hash_tab_ptr htab, unsigned long addr, unsigned long size)
{
int index;
hash_entry_ptr hptr;
index = HASH_FUNCTION (addr, htab->hash_mask);
for (hptr = htab->table[index]; hptr; hptr = hptr->next)
if (hptr->addr == addr)
break;
if (hptr == NULL) {
/* Cannot use NEW_ZITEM() here if the size is non-standard. */
if (size == htab->size) {
NEW_ZITEM (htab->hash_free, size, hptr, "hash_insert_size");
}
else {
hptr = (hash_entry_ptr) calloc (1, size);
if (hptr == NULL) {
#ifdef HASH_REPORT
fprintf (stderr, "hash_insert_size: out of memory.\n");
#endif
return NULL;
}
}
hptr->addr = addr;
hptr->next = htab->table[index];
htab->table[index] = hptr;
}
return hptr;
}
/* hash_insert_buf() is like hash_insert() except that the buffer space to
* use for the new entry is specified by the "buf" pointer. If the entry
* is found in the hash table, a pointer to it is returned. If not found,
* the space pointed to by "buf" is assumed to be large enough to hold the
* new entry and the entry is inserted in the hash table and the buf
* pointer is returned.
*/
hash_entry_ptr
hash_insert_buf (hash_tab_ptr htab, unsigned long addr, void *buf)
{
int index;
hash_entry_ptr hptr;
index = HASH_FUNCTION (addr, htab->hash_mask);
for (hptr = htab->table[index]; hptr; hptr = hptr->next)
if (hptr->addr == addr)
break;
if (hptr == NULL) {
hptr = (hash_entry_ptr) buf;
if (hptr == NULL) {
#ifdef HASH_REPORT
fprintf (stderr, "hash_insert_buf: buf pointer is NULL.\n");
#endif
return NULL;
}
hptr->addr = addr;
hptr->next = htab->table[index];
htab->table[index] = hptr;
}
return hptr;
}
/* hash_remove() removes an element from the hash table. It does NOT
* put the element on the free list. It returns a pointer to the entry.
* This function should be used to remove elements of non-standard
* size before freeing the hash table object.
*/
hash_entry_ptr
hash_remove (hash_tab_ptr htab, unsigned long addr)
{
int index;
hash_entry_ptr hptr, prev;
index = HASH_FUNCTION (addr, htab->hash_mask);
prev = NULL;
for (hptr = htab->table[index]; hptr; prev = hptr, hptr = hptr->next)
if (hptr->addr == addr)
break;
if (hptr == NULL) {
#ifdef HASH_REPORT
fprintf (stderr, "hash_remove: entry for 0x%x not found.\n", addr);
#endif
return NULL;
}
if (prev == NULL)
htab->table[index] = hptr->next;
else
prev->next = hptr->next;
return hptr;
}
/* hash_free_entry() removes an element from the hash table and puts
* the element on the free list for subsequent use. This function should
* be called only for elements whose size is the same as the size passed in
* the hash_init() call. This routine returns a pointer to the freed
* entry. The first field (the address) is used to link the entry on
* a free list so that field should not be accessed but the other fields
* are still valid even though the entry is on the free list. This supports
* an optimization where the entry can be looked up and removed in one
* call.
*/
hash_entry_ptr
hash_free_entry (hash_tab_ptr htab, unsigned long addr)
{
int index;
hash_entry_ptr hptr, prev;
index = HASH_FUNCTION (addr, htab->hash_mask);
prev = NULL;
for (hptr = htab->table[index]; hptr; prev = hptr, hptr = hptr->next)
if (hptr->addr == addr)
break;
if (hptr == NULL) {
#ifdef HASH_REPORT
fprintf (stderr, "hash_free_entry: entry for 0x%x not found.\n", addr);
#endif
return NULL;
}
if (prev == NULL)
htab->table[index] = hptr->next;
else
prev->next = hptr->next;
FREE_ITEM (htab->hash_free, hptr);
return hptr;
}
/*
* hash_apply() calls func(), a user-supplied function, for every entry
* in the hash table. A pointer to a hash table entry is passed to the
* function. The user function should return TRUE (1) in order
* to continue processing entries. To "break out of the loop" and
* discontinue processing entries, the user function should return
* FALSE (0).
* The entries are passed to the user function in the order in which
* they occur in the hash table. It might be useful to be able to pass
* the entries in increasing address order, but this is not supported yet.
*/
void
hash_apply (hash_tab_ptr htab, PFI func)
{
int index;
hash_entry_ptr hptr;
for (index = 0; index < htab->hash_tab_size; index++)
for (hptr = htab->table[index]; hptr; hptr = hptr->next)
if ((*func) (hptr) == 0)
return;
}
/* 1 extra argument is passed to the user-provided "func" function */
void
hash_apply1 (hash_tab_ptr htab, PFI func, void *vp1)
{
int index;
hash_entry_ptr hptr;
for (index = 0; index < htab->hash_tab_size; index++)
for (hptr = htab->table[index]; hptr; hptr = hptr->next)
if ((*func) (hptr, vp1) == 0)
return;
}
/* 2 extra arguments are passed to the user-provided "func" function */
void
hash_apply2 (hash_tab_ptr htab, PFI func, void *vp1, void *vp2)
{
int index;
hash_entry_ptr hptr;
for (index = 0; index < htab->hash_tab_size; index++)
for (hptr = htab->table[index]; hptr; hptr = hptr->next)
if ((*func) (hptr, vp1, vp2) == 0)
return;
}
/*
* hash_free() frees the space used by the hash table entries and returns
* the amount of space used.
*/
int
hash_free (hash_tab_ptr htab)
{
int index, space;
hash_entry_ptr hptr, next;
space = htab->hash_tab_size * sizeof (hash_entry_ptr);
for (index = 0; index < htab->hash_tab_size; index++)
for (hptr = htab->table[index]; hptr; hptr = next) {
next = hptr->next;
FREE_ITEM (htab->hash_free, hptr);
space += htab->size;
}
return space;
}
/*
* hash_space() returns the amount of space used in the hash table.
*/
int
hash_space (hash_tab_ptr htab)
{
int index, space;
hash_entry_ptr hptr, next;
space = htab->hash_tab_size * sizeof (hash_entry_ptr);
for (index = 0; index < htab->hash_tab_size; index++)
for (hptr = htab->table[index]; hptr; hptr = next) {
next = hptr->next;
space += htab->size;
}
return space;
}
/* for debugging */
void
hash_print_table (hash_tab_ptr htab)
{
int index;
hash_entry_ptr hptr;
for (index = 0; index < htab->hash_tab_size; index++) {
printf ("[%d]:", index);
for (hptr = htab->table[index]; hptr; hptr = hptr->next)
printf (" 0x%lx", hptr->addr);
printf ("\n");
}
}