cache.c
42 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
/*
* Copyright (C) 1996-1998 by the Board of Trustees
* of Leland Stanford Junior University.
*
* This file is part of the SimOS distribution.
* See LICENSE file for terms of the license.
*
*/
/****************************************************************
* cache.c
*
* $Author: blythe $
* $Date: 2002/05/29 01:09:10 $
*****************************************************************/
#include <bstring.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <unistd.h>
#include <stdlib.h>
#include "annotations.h"
#include "embra.h"
#include "cache.h"
#include "directory.h"
#include "decoder.h"
#include "mem_control.h"
#include "driver.h"
#include "main_run.h"
#include "qc.h"
#include "translator.h"
#include "clock.h"
#include "callout.h"
#include "stats.h"
#include "hw_events.h"
#include "simutil.h"
#include "addr_layout.h"
#ifdef MEM_ANNOTATIONS
#include "annotations.h"
#include "clock.h"
#endif
#include "addr_layout.h"
#define NOT_LAST_IN_SLINE(_Addr) (((uint)(_Addr)+INST_SIZE) & (SCACHE_LINE_SIZE - 1 ))
#define SCACHE_TAG_BASE_ADDR(_cpu) ((PLN*) \
(CACHE_TAG_START + ((_cpu) * CACHE_TAG_SIZE) ) )
/* Replacement Hints are no longer implemented, but with
Directory_Elimitate they could be */
/* NOTE: these can not be used in parallel cache simulation */
/*--------------------------------------*/
/* cache & qc_p/Physarray debug support */
/* log all cache misses */
/* #define LOG_MISS_ALL */
/* log all misses on cacheline xxx, stop at PC, CC=EMP.cycleCount*/
/* #define LOG_MISS
#define STOP_PC 0x60007078
#define STOP_CC 305448
*/
/* count misses for every cacheline */
/* #define DEBUG_PA */
/* insert cache consistency checks */
/* #define DEBUG_CACHE */
/*--------------------------------------*/
static void Cache_CommitRef(int cpuNum, PA pAddr, VA vAddr, PA pcPAddr,
EmVQCMemState state, int flags);
void cache_consistency_check( int cpuNum );
/* Data Structures */
static SimTime cachePrevInstrCount[SIM_MAXCPUS];
#ifdef gone_cleanup
static int lastMissState[SIM_MAXCPUS];
static int64 lastInstrCount[SIM_MAXCPUS];
#endif
static int64 iCount;
/* Miss handing table allocated in shared memory. Only need 1 per CPU */
EmSMHT *emSMHT;
#ifdef DEBUG_PA
int *misscount;
#endif
void Cache_Init( int cpuNum )
{
int i;
if( embra.emode == EMBRA_PAGE ) {
return;
}
/* Clear the cache */
if( embra.sequential ) {
int cpu;
for( cpu = 0; cpu<TOTAL_CPUS; cpu++) {
/* To bootstrap the cache miss strategy MPinUP */
emSMHT[cpu].state = MEM_I_SHARED;
emSMHT[cpu].pAddr = INVALID_TAG;
if (EMP[cpu].cache_tag ) continue;
EMP[cpu].cache_tag = (PLN*) ZALLOC_PERM(CACHE_TAG_SIZE,"EmbraTags");
#ifdef DEBUG_PA
misscount = (int *) ZALLOC_PERM((sizeof(int)*LINES_PER_CACHE),"EmbraTags");
#endif
CPUPrint("0x%x D CACHE_TAG_BASE_%d 0x%x\n",
EMP[cpu].cache_tag, cpu,
(uint)EMP[cpu].cache_tag + CACHE_TAG_SIZE );
for( i = 0; i < LINES_PER_CACHE; i++ ) {
EMP[cpu].cache_tag[i] = INVALID_TAG;
#ifdef DEBUG_PA
misscount[i]=0;
#endif
}
}
} else {
ASSERT (0);
}
}
/* Called when another processor steals a line */
/* or called by EmbraDMAInval on a DMA transfer */
/* Pass the directory entry, so we only clobber possible conflicts */
/* Invalidate cache then pQC, then vQC because we have the directory
lock & therefore avoid race conditions */
void Cache_Clobber( int machine, int cpuNum, PA pAddr, Dir_Entry cpu_bits,
EmVQCMemState state )
{
uint type = E_L2;
int i;
if (!VQC_EXCL(state) ) {
type |= E_DOWNGRADE;
}
ASSERT (!(cpu_bits>>cpuNum & 0x1));
for(i = FIRST_CPU(machine); i <= LAST_CPU(machine); i++ ) {
/*
* No transition on invalidating CPU and on downgrades!
*/
if (i!=cpuNum && !(type&E_DOWNGRADE)) {
if (CACHE_PLINE( EMP[i].cache_tag[SCACHE_INDEXOF(pAddr)] ) ==
ADDR2SLINE( pAddr )) { /* pAddr is in cache */
ASSERT ((cpu_bits>>i) & 0x1);
if (CACHE_SHARED(EMP[i].cache_tag[SCACHE_INDEXOF(pAddr)])) {
L2_LINE_TRANS_EVENT(i, pAddr,type | E_EXTERNAL | E_FLUSH_CLEAN,0,
0,IS_KUSEG(EMP[i].PC));
} else {
L2_LINE_TRANS_EVENT(i, pAddr,type | E_EXTERNAL | E_WRITEBACK,0,
0,IS_KUSEG(EMP[i].PC));
}
} else {
#if should_work_does_not
ASSERT (!((cpu_bits>>i)&0x1));
#endif
L2_LINE_TRANS_EVENT(i, pAddr,type | E_FAKE_EXTERNAL,0,0,
IS_KUSEG(EMP[i].PC));
}
}
if( (cpu_bits>>i) & 0x1 ) {
if ( CACHE_PLINE( EMP[i].cache_tag[SCACHE_INDEXOF(pAddr)] ) ==
ADDR2SLINE( pAddr ) ){ /* pAddr is in cache */
if( VQC_EXCL(state) ) {
EMP[i].cache_tag[SCACHE_INDEXOF(pAddr)] = INVALID_TAG;
/* If the intervener is getting exclusive control, then
fail the subsequent sc */
if( ADDR2SLINE(EMP[i].LLAddr) ==
ADDR2SLINE(PHYS_TO_MEMADDR(M_FROM_CPU(i), pAddr)) )
EMP[i].LLAddr = 0;
{
PA pPCAddr;
uint pc = EMP[i].PC;
pc = IN_BD(pc)?CLEAR_BD(pc)+INST_SIZE:pc;
pPCAddr = K0_TO_PHYS( non_excepting_tv(i,pc) );
if( ADDR2SLINE(pPCAddr) == ADDR2SLINE(pAddr) ) {
/* Ballsy */
EMP[i].jumpPC = (uint) continue_run_without_chaining;
}
}
} else {
/* Downgrade doesn't invalidate chance of SC suceeding */
/* RG: external line transition to shared. Is downgrade
ok if its state is already shared? I'll double check
just to make sure */
EMP[i].cache_tag[SCACHE_INDEXOF(pAddr)] =
CACHE_SET_SHARED(CACHE_PLINE(EMP[i].cache_tag[SCACHE_INDEXOF(pAddr)]));
}
qc_clobber( pAddr, i, state );
}
}
}
}
/* This is called on a QC miss. It drives all cache state transitions */
void UPCache_Ref( int cpuNum,
PA pAddr,
VA vAddr,
EmVQCMemState state )
{
uint line_no = SCACHE_INDEXOF( pAddr );
uint pline = ADDR2SLINE(pAddr);
K0A pcK0Addr = non_excepting_tv(cpuNum, CLEAR_BD(EMP[cpuNum].PC));
PA pcPAddr;
int pcConflict = 0;
int miss_handling_time = 0;
uint type = E_L2;
if (VQC_SHARED(state)) {
type |= E_READ;
} else {
type |= E_WRITE;
}
ASSERT( NUM_CPUS(M_FROM_CPU(cpuNum)) == 1 );
/* Otherwise our PC is not mapped! */
ASSUME( pcK0Addr );
if( pcK0Addr ) {
/* We have to take action on a conflict if our PC is mapped data
reference and our PC map to the same line */
pcPAddr = K0_TO_PHYS_REMAP( pcK0Addr, cpuNum );
pcConflict = ( !VQC_INST(state) ) &&
(line_no == SCACHE_INDEXOF( pcPAddr ) );
}
#ifdef DEBUG_CACHE
static int miss_count;
miss_count++;
if( miss_count > 100000 && (miss_count % 10000) == 0 ) {
cache_consistency_check( cpuNum );
}
#endif
/*******************/
#ifdef COMMENTOUT
CPUPrint("Cache Entry PC 0x%x st 0x%x vAddr 0x%x pAddr 0x%x pline 0x%x ln %d ctag 0x%x\n",
EMP[cpuNum].PC,
state,
vAddr,
pAddr,
pline,
line_no
EMP[cpuNum].cache_tag[line_no] );
#endif
if( pline == CACHE_PLINE( EMP[cpuNum].cache_tag[line_no] ) &&
CACHE_VALID( EMP[cpuNum].cache_tag[line_no] ) ) {
/* If permissions match, then its a cache hit, and vQC miss */
/* By above test cache_tag is valid, so only need to check excl */
VASSERT( !VQC_SHARED( state ) ||
CACHE_VALID( EMP[cpuNum].cache_tag[line_no] ),
("State 0x%x, line_no %d pline 0x%x\n",
state, line_no, pline) );
if( VQC_SHARED( state ) ||
( VQC_EXCL( state) &&
CACHE_EXCL( EMP[cpuNum].cache_tag[line_no] ) ) ) {
/* real cache hit, vQC miss */
set_qc_state( cpuNum, ADDR2SLINE(vAddr), pline, state );
return;
} else {
/* Upgrade--Free on a uniprocessor */
/* RG upgrading from shared to exclusive. For a UP,
this is simply a transition.... */
CACHE_SINC( cpuNum, CURRENT_MODE(EMP), upgrades );
miss_handling_time += 0;
#ifdef LOG_MISS
if (line_no == LOG_MISS){
CPUPrint("Cache MISS-upgrade on %d , PC = %x, cycleCount = %lld\n",LOG_MISS,EMP[cpuNum].PC,EMP[cpuNum].cycleCount);
}
#endif
goto accountingDone;
}
}
miss_handling_time += MEM_CYCLE_TIME;
ASSERT (MEM_CYCLE_TIME);
CACHE_INC( cpuNum, CURRENT_MODE(&EMP[cpuNum]), i_miss, d_miss, state );
#ifdef LOG_MISS
if (line_no == LOG_MISS)
CPUPrint("Cache MISS on %d , PC = %x, cycleCount = %lld\n",LOG_MISS,EMP[cpuNum].PC,EMP[cpuNum].cycleCount);
if ((EMP[cpuNum].PC==STOP_PC)&&(EmbraCpuCycleCount(cpuNum)==STOP_CC))
ASSERT(0);
#endif
{
#ifdef DEBUG_PA
misscount[line_no]++;
#endif
#ifdef LOG_MISS_ALL
CPUPrint("Cache MISS on %x , PC = %x, cycleCount = %lld\n",line_no,EMP[cpuNum].PC,EmbraCpuCycleCount(cpuNum));
if ((EMP[cpuNum].PC==STOP_PC)&&(EmbraCpuCycleCount(cpuNum)==STOP_CC))
ASSERT(0);
#endif
/* RG Record the miss after the transition */
if( CACHE_VALID( EMP[cpuNum].cache_tag[line_no] ) ) {
/* RG: The current entry is booted, regardless of if it's
correct or not. */
uint type = E_L2;
uint oldAddr;
if (CACHE_EXCL( EMP[cpuNum].cache_tag[line_no])) {
type |= E_WRITEBACK;
} else {
type |= E_FLUSH_CLEAN;
}
/* Kick out previous line. Need to do a transition here */
oldAddr = SLINE2ADDR(CACHE_PLINE(EMP[cpuNum].cache_tag[line_no]));
L2_LINE_TRANS_EVENT(cpuNum,oldAddr,type, vAddr, 0,
IS_KUSEG(EMP[cpuNum].PC));
}
if (VQC_INST(state)) {
L2_IMISS_EVENT( EmbraCpuCycleCount(cpuNum),
cpuNum, vAddr, pAddr, miss_handling_time,
type | E_I);
} else {
VA pc = CLEAR_BD(EMP[cpuNum].PC);
L2_DMISS_EVENT( EmbraCpuCycleCount(cpuNum),
cpuNum, pc, vAddr, pAddr, miss_handling_time,
type | E_D, 0);
}
}
accountingDone:
/* If there is a previous entry in this line, kick it out */
if( CACHE_VALID( EMP[cpuNum].cache_tag[line_no] ) ) {
/* This could be an upgrade which means we are kicking out the
shared entry, but that is just redundant work, not incorrect */
if (embra.useVQC){
set_qc_state(
cpuNum,
PQC_VLINE(
EMP[cpuNum].qc_p[
CACHE_PLINE(
EMP[cpuNum].cache_tag[line_no])]),
CACHE_PLINE( EMP[cpuNum].cache_tag[line_no] ),
MEM_INVALID );
} else { /* !embra.useVQC */
set_qc_state(
cpuNum,0,
CACHE_PLINE( EMP[cpuNum].cache_tag[line_no] ),
MEM_INVALID );
}
}
/* Set the qc entry and the cache tags. */
/* If we had a conflict then set the qc and tags to the I entry */
/* XXX - This means that UP MUST return the */
/* address so the QC does not rewind (that will infinite loop) */
if( pcConflict &&
!IN_BD( EMP[cpuNum].PC ) &&
NOT_LAST_IN_SLINE( EMP[cpuNum].PC ) ) {
/* We have detected a conflict. Between the PC and the miss address. */
/* What should happen here is
1. PC line is present in cache
2. l/s is executed, cache miss and PC line evicted
3. l/s completes even though PC line is not in cache
4. If l/s in delay slot then l/s owns line, else
Imiss, and PC owns line
However, we don't emit an icache check after every l/s for
performance. Therefore, just count the I miss, and assign the
qc to the proper party
*/
/* Data miss was charged earlier, charge I miss */
/* Going with what emmett says--charge I miss now.
Use original miss_handling time--don't charge twice. */
/* Transition to evict vaddr (data),
IMiss needs to bring in next pc +4.. */
if ( VQC_EXCL(state)) {
type = E_L2 | E_WRITEBACK;
} else {
type = E_L2 | E_FLUSH_CLEAN;
}
L2_LINE_TRANS_EVENT(cpuNum, pAddr, type, EMP[cpuNum].PC, 0,
IS_KUSEG(EMP[cpuNum].PC));
L2_IMISS_EVENT( EmbraCpuCycleCount(cpuNum) + miss_handling_time,
cpuNum, EMP[cpuNum].PC, pcPAddr, miss_handling_time,
type | E_I);
miss_handling_time += MEM_CYCLE_TIME;
CACHE_INC( cpuNum, CURRENT_MODE(&EMP[cpuNum]), i_miss, d_miss, MEM_I_SHARED );
/* Set the data QC to inaccessible */
set_qc_state( cpuNum, ADDR2SLINE(vAddr), pline, MEM_INVALID );
/* No need to CLEAR_BD */
/* Set the instr QC to accessible */
set_qc_state( cpuNum, ADDR2SLINE(CLEAR_BD(EMP[cpuNum].PC)),
ADDR2SLINE(pcPAddr),
MEM_I_SHARED );
EMP[cpuNum].cache_tag[line_no] = CACHE_SET_SHARED( ADDR2SLINE(pcPAddr) );
} else {
/* Set the new line's quick check to the proper, accesible state */
/* Note that this invalidates phys_info[pline].virt_line */
/* Since the new entry could be the same as the old ( like on an */
/* upgrade the invalidate happens first */
set_qc_state( cpuNum, ADDR2SLINE(vAddr), pline, state );
/* Update Mshade tags */
if( VQC_SHARED( state ) ) {
EMP[cpuNum].cache_tag[line_no] = CACHE_SET_SHARED( pline );
/* RG here are the transitions... */
} else {
ASSERT( VQC_EXCL( state ) );
EMP[cpuNum].cache_tag[line_no] = CACHE_SET_EXCL( pline );
/* RG here are the transitions... */
}
}
EMP[cpuNum].cycleCountdown -= miss_handling_time;
CACHE_INC_BY(cpuNum, CURRENT_MODE(&EMP[cpuNum]),
i_stall_cyc, d_stall_cyc, state,
miss_handling_time );
}
void MPinUPCache_Ref( int cpuNum,
PA pAddr,
VA vAddr,
EmVQCMemState state )
{
uint pline = ADDR2SLINE(pAddr);
uint line_no = SCACHE_INDEXOF(pAddr);
int smht_flags = 0;
int miss_handling_time = 0;
MA maPCAddr = 0;
if (interest(pAddr)) {
LogEntry("ref",cpuNum,"pAddr=%08x state=%x msstate=%d \n",pAddr,state,
MSCacheState(cpuNum,pAddr));
}
/* no sc in delay slot */
if( !IN_BD( EMP[cpuNum].PC ) ){
maPCAddr =
K0_TO_MEMADDR(M_FROM_CPU(cpuNum),
non_excepting_tv(cpuNum,EMP[cpuNum].PC));
ASSERT(maPCAddr);
if( MAJOR_OPCODE(*(uint*)maPCAddr) == sc_op ) {
smht_flags |= SMHT_SC;
}
} else {
smht_flags |= SMHT_BD;
}
if( pline == CACHE_PLINE( EMP[cpuNum].cache_tag[line_no] ) &&
CACHE_VALID( EMP[cpuNum].cache_tag[line_no] ) ) {
/* If permissions match, then this is a real cache hit, and a qc */
/* miss */
/* By above test cache_tag is valid, so only need to check excl */
/* VASSERT( !VQC_SHARED( state ) ||
CACHE_VALID( EMP[cpuNum].cache_tag[line_no] ),
("State %d, line_no %d\n", state, line_no) ); */
if( VQC_SHARED( state ) ||
( VQC_EXCL( state) &&
CACHE_EXCL( EMP[cpuNum].cache_tag[line_no] ) ) ) {
/* Cache hit */
/* Update qc to present access status. I could do this based
on the cache tag value, but why bother? */
set_qc_state( cpuNum, ADDR2SLINE(vAddr), pline, state );
if (interest(pAddr)) {
LogEntry("ref_qc",cpuNum,"pAddr=%08x state=%x msstate=%d\n",pAddr,state,
MSCacheState(cpuNum,pAddr));
}
return;
} else {
/* Upgrade */
smht_flags |= SMHT_UPGRADE;
if (interest(pAddr)) {
LogEntry("ref_upg",cpuNum,"pAddr=%08x state=%x msstate=%d\n",pAddr,state,
MSCacheState(cpuNum,pAddr));
}
/* Remove xfer time */
miss_handling_time += UPGRADE_TIME;
goto accountingDone;
}
}
miss_handling_time += MEM_CYCLE_TIME;
accountingDone:
#ifdef notdef
CPUPrint("R %d %-4lld 0x%-8x VA 0x%-8x PA 0x%-8x 0x%-2x\n",
cpuNum,
EmbraCpuInstrCount(cpuNum),
EMP[cpuNum].PC,
vAddr,pAddr, state);
#endif
iCount = EmbraCpuInstrCount(cpuNum);
ASSERT( iCount >= cachePrevInstrCount[cpuNum]);
cachePrevInstrCount[cpuNum] = iCount;
/*
* XXX Emmett has this commented out, but told me to execute it. (ed)
*/
/* do we need this ? */
#ifdef notdef
if( !iCount ) {
/* Update vQC and cache tags */
Cache_CommitRef( cpuNum, pAddr, vAddr, 0, state, smht_flags);
if( interest(pAddr)) {
LogEntry("cc_ref_0",cpuNum,"pAddr=%08x state=%x msstate=%d\n",pAddr,state,
MSCacheState(cpuNum,pAddr));
}
}
#endif
if( emSMHT[cpuNum].iCount == iCount ) {
/* Commit the previous reference */
#ifdef notdef
CPUPut("EMBRA SMHT %d %-4lld 0x%-8x VA 0x%-8x PA 0x%-8x 0x%-2x 0x%-8x PA 0x%-8x 0x%-2x\n",
cpuNum,
emSMHT[cpuNum].iCount,
EMP[cpuNum].PC,
emSMHT[cpuNum].vAddr,
emSMHT[cpuNum].pAddr,
emSMHT[cpuNum].state,
vAddr,
pAddr,
state);
#endif
if( !( VQC_INST( emSMHT[cpuNum].state ) &&
VQC_DATA(state)) ) {
/* ASSERT(!iCount || state == emSMHT[cpuNum].state);*/
if (emSMHT[cpuNum].pAddr != INVALID_TAG) {
Cache_CommitRef(cpuNum,
emSMHT[cpuNum].pAddr,
emSMHT[cpuNum].vAddr,
emSMHT[cpuNum].pcPAddr,
(EmVQCMemState)emSMHT[cpuNum].state,
emSMHT[cpuNum].smht_flags);
/*
* We used the MHT, now get rid of it (ed)
*/
if (interest(emSMHT[cpuNum].pAddr)) {
LogEntry("cc_ref_1",cpuNum,"pAddr=%08x state=%x msstate=%d\n",pAddr,state,
MSCacheState(cpuNum,emSMHT[cpuNum].pAddr));
}
emSMHT[cpuNum].pAddr = INVALID_TAG;
}
if( VQC_DATA(state) ) {
if( !(smht_flags & SMHT_BD) ){
if( NOT_LAST_IN_SLINE(EMP[cpuNum].PC) ){
/* not in bd and NLISL means not last on page */
PA pPCAddr = MEMADDR_TO_PHYS(M_FROM_CPU(cpuNum),
maPCAddr) + INST_SIZE;
uint tag = EMP[cpuNum].cache_tag[SCACHE_INDEXOF(pPCAddr)];
/* if( line_no == SCACHE_INDEXOF(MEMADDR_TO_PHYS(maPCAddr)) ){ */
if( !CACHE_VALID(tag) ||
CACHE_PLINE(tag) != ADDR2SLINE(pPCAddr) ) {
EMP[cpuNum].cycleCountdown -= MEM_CYCLE_TIME;
smht_flags = 0;
if( MAJOR_OPCODE(*(uint*)(maPCAddr + INST_SIZE)) == sc_op )
smht_flags = SMHT_SC;
Cache_CommitRef( cpuNum,
pPCAddr,
/* dref completed and we are not in bd */
EMP[cpuNum].PC + INST_SIZE,
0,
MEM_I_SHARED,
smht_flags);
emSMHT[cpuNum].iCount++;
emSMHT[cpuNum].state = MEM_I_SHARED;
if (interest(EMP[cpuNum].PC + INST_SIZE)) {
LogEntry("cc_ref_2",cpuNum,"pAddr=%08x state=%x msstate=%d\n",
EMP[cpuNum].PC + INST_SIZE ,state,
MSCacheState(cpuNum,EMP[cpuNum].PC + INST_SIZE));
}
}
}
}
}
if (interest(pAddr)) {
LogEntry("refret",cpuNum,"pAddr=%08x state=%x msstate=%d\n",pAddr,state,
MSCacheState(cpuNum,pAddr));
}
return;
}
}
EMP[cpuNum].cycleCountdown -= miss_handling_time;
if( (EMP[cpuNum].blockCycleCountdown - miss_handling_time) <= 0 ) {
if( !(smht_flags & SMHT_BD) ) {
emSMHT[cpuNum].pAddr = pAddr;
emSMHT[cpuNum].vAddr = vAddr;
emSMHT[cpuNum].pcPAddr = 0;
emSMHT[cpuNum].state = state;
emSMHT[cpuNum].smht_flags = smht_flags;
emSMHT[cpuNum].iCount = iCount;
EMP[cpuNum].jumpPC = (uint)continue_run_without_chaining;
if (interest(pAddr)) {
LogEntry("ref_tc",cpuNum,"pAddr=%08x state=%x msstate=%d\n",pAddr,state,
MSCacheState(cpuNum,pAddr));
}
ReenterTC_CX(&EMP[cpuNum]);
/* NOT REACHED */
}
}
/* Update vQC and cache tags */
Cache_CommitRef( cpuNum, pAddr, vAddr, 0, state, smht_flags);
emSMHT[cpuNum].iCount = iCount;
if (interest(pAddr)) {
LogEntry("refend",cpuNum,"pAddr=%08x state=%x msstate=%d \n",pAddr,state,
MSCacheState(cpuNum,pAddr));
}
}
#ifdef OLD_VERSION_EB
void MPinUPCache_Ref_old( int cpuNum,
PA pAddr,
VA vAddr,
EmVQCMemState state )
{
uint line_no = SCACHE_INDEXOF( pAddr );
uint pline = ADDR2SLINE(pAddr);
VA vpc = CLEAR_BD(EMP[cpuNum].PC);
K0A pcK0Addr = non_excepting_tv(cpuNum, CLEAR_BD(EMP[cpuNum].PC));
PA pcPAddr;
int smht_flags = 0;
int miss_handling_time = 0;
int cx_me = 0;
/* Otherwise our PC is not mapped! */
ASSUME( pcK0Addr );
if( pcK0Addr ) {
if( MAJOR_OPCODE( *(uint*)K0_TO_MEMADDR( M_FROM_CPU(cpuNum),
pcK0Addr ) ) == sc_op ) {
smht_flags |= SMHT_SC;
}
pcPAddr = K0_TO_PHYS_REMAP( pcK0Addr, cpuNum );
if( ( !VQC_INST(state) ) &&
(line_no == SCACHE_INDEXOF( pcPAddr ) ) ) {
/* PC and data ref map to same cache line */
smht_flags |= SMHT_PCCONFLICT;
}
}
if( pline == CACHE_PLINE( EMP[cpuNum].cache_tag[line_no] ) &&
CACHE_VALID( EMP[cpuNum].cache_tag[line_no] ) ) {
/* If permissions match, then this is a real cache hit, and a qc */
/* miss */
/* By above test cache_tag is valid, so only need to check excl */
/* VASSERT( !VQC_SHARED( state ) ||
CACHE_VALID( EMP[cpuNum].cache_tag[line_no] ),
("State %d, line_no %d\n", state, line_no) ); */
if( VQC_SHARED( state ) ||
( VQC_EXCL( state) &&
CACHE_EXCL( EMP[cpuNum].cache_tag[line_no] ) ) ) {
/* Cache hit */
/* Update qc to present access status. I could do this based
on the cache tag value, but why bother? */
set_qc_state( cpuNum, ADDR2SLINE(vAddr), pline, state );
return;
} else {
/* Upgrade */
smht_flags |= SMHT_UPGRADE;
miss_handling_time += UPGRADE_TIME;
goto accountingDone;
}
}
miss_handling_time += MEM_CYCLE_TIME;
accountingDone:
/* XXX - Lasciate ogni speranza
If the cost of handling the miss, plus the rest of the
instructions in the block is larger than the current quantum,
then we should context switch and let more time pass. There are
a couple of exceptions
1. Translator/pc_tc lookup can't deal with delay slot instructions
2. Give priority to sc that can succeed, otherwise livelock
3. Livelock can still occur. Livelock is detected by multiple
misses without the instruction count increasing. There are two
cases--an intra-cpu conflict or an inter-cpu conflict.
Notes:
cx - processor context switch
ret - return to emitted code, allowing reference to succeed,
independent of vQC state
I assume that processor timeQuantum < MemCycleTime
XXX - I assume direct mapped cache
a. Intra-cpu conflict--this is a pc/data conflict.
Note: pc/data conflicts in the delay slot or on the last
instruction of a cache line are not conflicts.
Reality: data miss, then the instr miss on the next instruction
(if that is in the same line as the data ref, and we are not in
a delay slot).
Simulator (format--action, cache simulator response):
data miss
cx
instr miss (guaranteed b/c of cx) part I
charge & set QC only if !BD(pc) && NOT_LAST_IN_SLINE(pc) & ret
data miss part II
no charge, don't set QC & ret
Detection: part I data then instr miss
part II instr then data miss
Problem: If a line branches back to itself, we do not register
the miss. This is solved by having lines branch back to
their icache check.
b. Inter-cpu conflict--e.g. two cpus want the same line, at
least one of them exclusively
Reality: p1 data miss, p2's data miss, p1 succeeds/advances pc
Simulator:
p1 i|d shared miss
cx
p2 data excl miss
cx
p1 (i|d) shared miss
no charge, set QC, ret
Detection: last_miss_state == this_miss_state
Note, p1's first reference could be data, and its second could
be instr (indicating both an intra and inter cpu conflict), in
that case, intra-cpu processing is still correct
4. Final wrinkle--Intra-cpu conflicts that are possibly
successful sc instructions can't cx the processor
Reality: see 3a
Simulator:
data miss
charge data,
if !BD(pc) && !NOT_LAST_IN_SLINE
charge instr, set QC to instr
ret
*/
iCount = EmbraCpuInstrCount(cpuNum);
if( lastInstrCount[cpuNum] != iCount ) {
if( (EMP[cpuNum].blockCycleCountdown - miss_handling_time) < 0 &&
!IN_BD(EMP[cpuNum].PC) ) {
if( !(smht_flags & SMHT_SC) || EMP[cpuNum].LLAddr == 0){
cx_me = 1;
} else {
if( smht_flags & SMHT_PCCONFLICT ) {
/* ASSERT( !IN_BD(EMP[cpuNum].PC ); */
if( NOT_LAST_IN_SLINE(EMP[cpuNum].PC) ){
/* This is to catch case 4 */
smht_flags |= SMHT_DOUBLECOUNT;
miss_handling_time += MEM_CYCLE_TIME;
}
}
}
}
} else {
if( lastMissState[cpuNum] == state ) {
/* Inter-cpu conflict */
miss_handling_time = 0;
} else {
if( VQC_DATA(lastMissState[cpuNum]) &&
VQC_INST(state) ) {
/* Intra-cpu conflict part I (possibly inter-cpu conflict) */
uint pc = EMP[cpuNum].PC;
if( IN_BD(pc) || !NOT_LAST_IN_SLINE(pc) ){
/* Spurious callout--no ireference in reality */
lastMissState[cpuNum] = MEM_INVALID;
return;
}
} else {
if( VQC_INST(lastMissState[cpuNum]) &&
VQC_DATA(state) ) {
/* Intra-cpu conflict part II */
/* Spurious callout--no dreference in reality */
lastMissState[cpuNum] = MEM_INVALID;
return;
}
}
}
}
/* If this is a real miss, count it and charge stall time */
if( miss_handling_time ) {
uint type = E_L2;
if (VQC_SHARED(state)) {
type |= E_READ;
} else {
type |= E_WRITE;
}
EMP[cpuNum].cycleCountdown -= miss_handling_time;
if( smht_flags & SMHT_UPGRADE ) {
CACHE_SINC( cpuNum, CURRENT_MODE(&EMP[cpuNum]), upgrades );
type |= E_UPGRADE;
} else {
CACHE_INC( cpuNum, CURRENT_MODE(&EMP[cpuNum]), i_miss, d_miss, state );
}
if (VQC_INST(state)) {
ASSERT( !(type&E_UPGRADE));
L2_IMISS_EVENT( EmbraCpuCycleCount(cpuNum),
cpuNum, vAddr, pAddr, miss_handling_time,
type | E_I);
} else {
VA pc = CLEAR_BD(EMP[cpuNum].PC);
L2_DMISS_EVENT( EmbraCpuCycleCount(cpuNum),
cpuNum, pc, vAddr, pAddr, miss_handling_time,
type | E_D, 0);
}
/* Charge stall time accounting*/
CACHE_INC_BY(cpuNum, CURRENT_MODE(&EMP[cpuNum]),
i_stall_cyc, d_stall_cyc, state, miss_handling_time);
}
/* Update vQC and cache tags */
Cache_CommitRef( cpuNum, pAddr, vAddr, pcPAddr, state, smht_flags);
if( cx_me ) {
lastMissState[cpuNum] = state;
lastInstrCount[cpuNum] = iCount;
EMP[cpuNum].jumpPC = (uint)continue_run_without_chaining;
ReenterTC_CX(&EMP[cpuNum]);
}
lastMissState[cpuNum] = MEM_INVALID;
}
#endif /* OLD VERSION_EB */
static void Cache_CommitRef(int cpuNum, PA pAddr, VA vAddr, PA pcPAddr,
EmVQCMemState state, int flags)
{
uint line_no = SCACHE_INDEXOF( pAddr );
PLN pline = ADDR2SLINE( pAddr );
/* int mode = CURRENT_MODE(&EMP[cpuNum]);
Dir_Entry new_dir_entry; */ /* not used XXX */
int miss_handling_time = (flags&SMHT_UPGRADE ?
UPGRADE_TIME : MEM_CYCLE_TIME );
uint type = E_L2;
if( flags & SMHT_UPGRADE ) {
CACHE_SINC( cpuNum, CURRENT_MODE(&EMP[cpuNum]), upgrades );
type |= E_UPGRADE;
} else {
CACHE_INC( cpuNum, CURRENT_MODE(&EMP[cpuNum]), i_miss, d_miss, state );
}
if (VQC_SHARED(state)) {
type |= E_READ;
} else {
type |= E_WRITE;
}
/* Like Mipsy, before I consult the caches, if this sc will fail,
then just let it fail & don't let it grab any line or directory
entry */
if( (flags & SMHT_SC) && EMP[cpuNum].LLAddr == 0 ) {
if (interest(pAddr)) {
LogEntry("sc_failed",cpuNum,"pAddr=%08x flags=%x \n",pAddr,flags);
}
return;
}
/* make sure that if this is an upgrade, the line is in the cache
* If not warning + make it a miss (ed)
*/
if (flags &SMHT_UPGRADE) {
PA line1 = CACHE_PLINE(EMP[cpuNum].cache_tag[line_no]);
PA line2 = ADDR2SLINE(pAddr);
if (line1!=line2 || !CACHE_VALID( EMP[cpuNum].cache_tag[line_no])) {
LogEntry("EMBRA",cpuNum,"WARNING Upgrade not in cache pAddr=0x%08x\n",
pAddr,SLINE2ADDR(line1));
flags &= ~SMHT_UPGRADE;
type &= ~E_UPGRADE;
}
}
/* If there is a previous entry in this line, which is not this
line, kick it out */
if( CACHE_VALID( EMP[cpuNum].cache_tag[line_no] ) ) {
/* Kick out previous line */
/* If this is an upgrade this could be redundant work */
if (!(flags & SMHT_UPGRADE)) {
uint type = E_L2;
PA oldAddr = SLINE2ADDR(CACHE_PLINE(EMP[cpuNum].cache_tag[line_no]));
if (CACHE_EXCL( EMP[0].cache_tag[line_no])) {
type |= E_WRITEBACK;
} else {
type |= E_FLUSH_CLEAN;
}
if (IS_KSEG0(pAddr) || IS_KSEG1(pAddr) || IS_KSEG2(pAddr)) {
type |= E_KERN_REPLACED;
} else {
type |= E_USER_REPLACED;
}
if (!oldAddr) {
LogEntry("Ed's cautious",cpuNum,"Transition on line 0\n");
}
L2_LINE_TRANS_EVENT(cpuNum,oldAddr,type, vAddr, 0,
IS_KUSEG(EMP[cpuNum].PC));
}
if (embra.useVQC){
set_qc_state(cpuNum, PQC_VLINE(EMP[cpuNum].qc_p[CACHE_PLINE(EMP[cpuNum].cache_tag[line_no])]),
CACHE_PLINE( EMP[cpuNum].cache_tag[line_no] ),
MEM_INVALID );
} else { /* !embra.useVQC */
set_qc_state(
cpuNum,0,
CACHE_PLINE( EMP[cpuNum].cache_tag[line_no] ),
MEM_INVALID );
}
/* If we are evicting something (who is not us) with an ll
outstanding, smash the LL regsiter. */
if( CACHE_PLINE( EMP[cpuNum].cache_tag[line_no] ) ==
ADDR2SLINE(EMP[cpuNum].LLAddr) &&
pline != CACHE_PLINE( EMP[cpuNum].cache_tag[line_no] )) {
EMP[cpuNum].LLAddr = 0;
}
}
/*
* transitions for the insertion fot he line in the cache
*/
if (VQC_INST(state)) {
ASSERT( !(type&E_UPGRADE));
L2_IMISS_EVENT( EmbraCpuCycleCount(cpuNum),
cpuNum, vAddr, pAddr, miss_handling_time,
type | E_I);
} else {
VA pc = CLEAR_BD(EMP[cpuNum].PC);
L2_DMISS_EVENT( EmbraCpuCycleCount(cpuNum),
cpuNum, pc, vAddr, pAddr, miss_handling_time,
type | E_D, 0);
}
/* Set the qc entry and the cache tags. */
/* If we have an intra-cpu conflict then
1. PC line is present in cache
2. l/s is executed, cache miss and PC line evicted
3. l/s completes even though PC line is not in cache
4. If l/s in delay slot then l/s owns line, else
Imiss, and PC owns line
However, we don't emit an icache check after every l/s for
performance. Therefore, just count the I miss, and assign the
qc to the proper party
*/
/* XXX - This means that UP MUST return the */
/* address so the QC does not rewind (that will infinite loop) */
if( flags & SMHT_DOUBLECOUNT ){
/* Data miss registered earlier, this is the imiss after the
current data reference instruction */
CACHE_INC( cpuNum, mode, i_miss, d_miss, MEM_I_SHARED );
/* Register our data access with the directory */
Directory_NoLock_Modify(cpuNum, pAddr,vAddr, state);
/* Now do the conflict that will occur after the instruction is
executed */
/* Set the data QC to inaccessible */
set_qc_state( cpuNum, ADDR2SLINE(vAddr), pline, MEM_INVALID );
/* Register our instruction access with the directory */
Directory_NoLock_Modify(cpuNum, pcPAddr,CLEAR_BD(EMP[cpuNum].PC),
MEM_I_SHARED);
/* Set the instr QC to accessible */
set_qc_state( cpuNum, ADDR2SLINE(CLEAR_BD(EMP[cpuNum].PC)),
ADDR2SLINE(pcPAddr),
MEM_I_SHARED );
EMP[cpuNum].cache_tag[line_no] =
CACHE_SET_SHARED( ADDR2SLINE(pcPAddr) );
} else {
/* Register our access with the directory */
Directory_NoLock_Modify(cpuNum, pAddr,vAddr, state);
/* Set the new line's quick check to the proper, accesible state */
set_qc_state( cpuNum, ADDR2SLINE(vAddr), pline, state );
/* Update Embra tags */
if( VQC_SHARED( state ) ) {
EMP[cpuNum].cache_tag[line_no] = CACHE_SET_SHARED( pline );
} else {
ASSERT( VQC_EXCL( state ) );
EMP[cpuNum].cache_tag[line_no] = CACHE_SET_EXCL( pline );
}
}
}
/* Called via backdoor to insure that cache state is consistent */
void cache_consistency_check( int cpuNum )
{
int i, j;
/* User, k0, k2 */
int virt_qc_lines[3];
int virt_qc_lines_backmapped[3];
int virt_qc_lines_in_cache[3];
int phys_qc_lines = 0;
int phys_qc_lines_in_cache = 0;
int num_repeated_plines = 0;
int invalid_cache_tags=0;
extern void qc_consistency_check(void);
#define LINE_TO_INDEX(_line) ( ((_line)<(ADDR2SLINE(K0BASE)))?0:((_line)>=ADDR2SLINE(K2BASE))?2:1)
qc_consistency_check();
for( i = 0; i < 3; i++ ) {
virt_qc_lines[i] = 0;
virt_qc_lines_backmapped[i] = 0;
virt_qc_lines_in_cache[i] = 0;
}
for( i = 0; i < ADDR2SLINE(0xffffffff); i++ ) {
if( EMP[cpuNum].qc_v[i] != MEM_INVALID ) {
PLN pline;
K0A k0a = non_excepting_tv(cpuNum, SLINE2ADDR(i) );
if( !k0a ) {
/* A line can be in the cache and not be mapped, but if its */
/* in the virt QC, it has to be both mapped and in the cache */
CPUPut("Line 0x%x not mapped\n", i);
continue;
}
pline = ADDR2SLINE(K0_TO_PHYS_REMAP(k0a, cpuNum));
virt_qc_lines[LINE_TO_INDEX(i)]++;
if( PQC_VLINE(EMP[cpuNum].qc_p[pline]) == i ) {
virt_qc_lines_backmapped[LINE_TO_INDEX(i)]++;
}
for( j = 0; j < LINES_PER_CACHE; j++ ) {
if ( CACHE_PLINE( EMP[cpuNum].cache_tag[j] ) == pline ) {
virt_qc_lines_in_cache[LINE_TO_INDEX(i)]++;
break;
}
}
}
}
CPUPut("VIRT (lines/bkmap/cache) KU/%d/%d/%d K0/%d/%d/%d K2/%d/%d/%d\n",
virt_qc_lines[0],
virt_qc_lines_backmapped[0],
virt_qc_lines_in_cache[0],
virt_qc_lines[1],
virt_qc_lines_backmapped[1],
virt_qc_lines_in_cache[1],
virt_qc_lines[2],
virt_qc_lines_backmapped[2],
virt_qc_lines_in_cache[2] );
for( i = 0; i < ADDR2SLINE(MEM_SIZE(M_FROM_CPU(cpuNum))); i++ ) {
if( PQC_VALID(EMP[cpuNum].qc_p[i]) ){
phys_qc_lines++;
for( j = 0; j < LINES_PER_CACHE; j++ ) {
if ( CACHE_PLINE( EMP[cpuNum].cache_tag[j] ) == i ) {
phys_qc_lines_in_cache++;
break;
}
}
}
}
CPUPut("PHYS (lines/cache) %d/%d\n",
phys_qc_lines,
phys_qc_lines_in_cache);
for( i = 0; i < LINES_PER_CACHE; i++ ) {
if( CACHE_INVALID( EMP[cpuNum].cache_tag[i] ) )
invalid_cache_tags++;
for( j = 0; j < LINES_PER_CACHE; j++ ) {
if( CACHE_PLINE( EMP[cpuNum].cache_tag[i] ) ==
CACHE_PLINE( EMP[cpuNum].cache_tag[j] ) &&
CACHE_VALID( EMP[cpuNum].cache_tag[i] ) &&
i != j )
num_repeated_plines++;
}
}
CPUPut("%d repeated lines %d invalid tags, %d lines in cache\n",
num_repeated_plines,
invalid_cache_tags,
LINES_PER_CACHE );
}
int cache_verify_excl( int cpuNum, PLN pline )
{
int j;
if( !PQC_VLINE(EMP[cpuNum].qc_p[pline]) ) {
return PQC_DIRTY(EMP[cpuNum].qc_p[pline]);
}
for( j = 0; j < LINES_PER_CACHE; j++ ) {
if ( CACHE_PLINE( EMP[cpuNum].cache_tag[j] ) == pline ) {
return CACHE_EXCL( EMP[cpuNum].cache_tag[j] );
}
}
return 0;
}
int cache_verify_shared( int cpuNum, PLN pline )
{
int j;
if( !PQC_VLINE(EMP[cpuNum].qc_p[pline]) ) {
return PQC_SHARED(EMP[cpuNum].qc_p[pline]);
}
for( j = 0; j < LINES_PER_CACHE; j++ ) {
if ( CACHE_PLINE( EMP[cpuNum].cache_tag[j] ) == pline ) {
return CACHE_SHARED( EMP[cpuNum].cache_tag[j] );
}
}
return 0;
}
/* XXXX - This is broken **/
/* This is called on a QC miss. It drives all cache state transitions */
void MPCache_Ref( int cpuNum,
PA pAddr,
VA vAddr,
EmVQCMemState state )
{
uint line_no = SCACHE_INDEXOF( pAddr );
register unsigned pline;
Dir_Entry new_dir_entry;
int miss_handling_time;
ASSERT( embra.parallel );
pline = ADDR2SLINE(pAddr);
/* We lock the directory entry, and then make ALL quick check, and */
/* cache tag modifications, including interventions (already done), */
/* and updates to our own QC */
new_dir_entry = Directory_Lock(cpuNum, pAddr, vAddr, state);
/* Set the new line's quick check to the proper, accesible state */
/* Note that this invalidates phys_info[pline].virt_line */
/* Since the new entry could be the same as the old ( like on a TLB */
/* fault) the invalidate happens first */
/* Also note since at this point we don't know if we have a TLB or a */
/* cache miss, we can't yet stall the processor. */
set_qc_state( cpuNum, ADDR2SLINE(vAddr), pline, state );
if( pline == CACHE_PLINE( EMP[cpuNum].cache_tag[line_no] ) && pline ) {
/* If permissions match, then this is a real cache hit, and a qc */
/* miss */
/* By above test cache_tag is valid, so only need to check excl */
VASSERT( !VQC_SHARED( state ) ||
CACHE_VALID( EMP[cpuNum].cache_tag[line_no] ) ||
!pline ,
("State %d, line_no %d\n", state, line_no) );
if( VQC_SHARED( state ) ||
( VQC_EXCL( state) &&
CACHE_EXCL( EMP[cpuNum].cache_tag[line_no] ) ) ) {
/* real cache hit, vQC miss */
Directory_Free(cpuNum, pAddr, new_dir_entry);
return;
} else {
/* Upgrade */
CACHE_SINC( cpuNum, CURRENT_MODE(&EMP[cpuNum]), upgrades );
/* Remove xfer time */
miss_handling_time = MEM_CYCLE_TIME - SCACHE_LINE_SIZE/8;
goto accountingDone;
}
}
CACHE_INC( cpuNum, CURRENT_MODE(&EMP[cpuNum]), i_miss, d_miss, state );
miss_handling_time = MEM_CYCLE_TIME;
accountingDone:
EMP[cpuNum].cycleCountdown -= miss_handling_time;
CACHE_INC_BY(cpuNum, CURRENT_MODE(&EMP[cpuNum]),
i_stall_cyc, d_stall_cyc, state,
miss_handling_time );
/* If there is a previous entry in this line, kick it out */
if( CACHE_VALID( EMP[cpuNum].cache_tag[line_no] ) ) {
/* Kick out previous line */
/* We know that pline_tag[line_no] != pline */
if (embra.useVQC)
set_qc_state(
cpuNum,
PQC_VLINE(
EMP[cpuNum].qc_p[
CACHE_PLINE(
EMP[cpuNum].cache_tag[line_no])]),
CACHE_PLINE( EMP[cpuNum].cache_tag[line_no] ),
MEM_INVALID );
} else { /* !embra.useVQC */
set_qc_state(
cpuNum,0,
CACHE_PLINE( EMP[cpuNum].cache_tag[line_no] ),
MEM_INVALID );
}
/* Update Embra tags */
if( VQC_SHARED( state ) ) {
EMP[cpuNum].cache_tag[line_no] = CACHE_SET_SHARED( pline );
} else {
ASSERT( VQC_EXCL( state ) );
EMP[cpuNum].cache_tag[line_no] = CACHE_SET_EXCL( pline );
}
/* Free up the directory entry */
Directory_Free(cpuNum, pAddr, new_dir_entry);
}