qc.c
37 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
/*
* Copyright (C) 1996-1998 by the Board of Trustees
* of Leland Stanford Junior University.
*
* This file is part of the SimOS distribution.
* See LICENSE file for terms of the license.
*
*/
/****************************************************************
* qc.c
*
* This file handles the quickcheck and Physarray structures.
* pa/phys_mem_ref gets called in case of callout from the
* Translation Cache
*
* $Author: blythe $
* $Date: 2002/05/29 01:09:10 $
*****************************************************************/
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
/* #include <sys/immu.h> */
#include <fcntl.h>
#include <bstring.h>
#include <string.h>
#include <assert.h>
#include "simmisc.h"
#include "embra.h"
#include "cache.h"
#include "qc.h"
#include "stats.h"
#include "driver.h"
#include "clock.h"
#include "mem_control.h"
#include "main_run.h"
#include "cp0.h"
#include "annotations.h"
#include "simutil.h"
#include "machine_defs.h"
#include "firewall.h"
#include "simmagic.h"
#include "tc.h"
#include "tc_coherence.h"
#include "simtypes.h"
#ifndef EMBRA_USE_QC64
/* There are good reasons not to let backdoor references hit in the */
/* quick check */
/* 1. Some of them need to be relocated MPinUP (like CPUID) */
/* 2. They all need to be relocated when self-hosting */
/* This is not bad because the number of backdoor references should be */
/* small enough to make it non performance critical */
/* XXX -- The above argument no longer holds. */
/* The new interrupt subsystem makes many backdoor references, thus we
will try to make backdoor references succeed in the quick check
whenever we can */
/* #define DISABLE_QC */
#undef LOG_QC_UPDATE /* log every change in qc_p or PhysArray */
#define TLB_ENT2VPN(_ent) (PAGE_NUMBER(TLBHI2ADDR(_ent)))
void qc_CheckForDuplicates(CPUState *P);
/* **********************************************************
* SetMMUEntry: update the (potentially two different
* array when applicable
* note that user_mode and supervisor_mode have the same
* privileges.
* **********************************************************/
static void SetMMUEntry( CPUState *P, VA vAddr, MA value)
{
if (value &&
!EMBRA_IS_MEMADDR(M_FROM_CPU(P->myNum),MMU_PROT_READ(value))) {
CPUError("SetMMUEntry ASSERT: vAddr=%llx value=%llx not a MA\n",
(uint64)vAddr,(uint64)value);
}
P->kernelMMU[PAGE_NUMBER(vAddr)] = value;
if (embra.separateMMUs &&
(IS_KUSEG(vAddr) || IS_SUPERV_SEG(vAddr)) ) {
P->userMMU[PAGE_NUMBER(vAddr)] = value;
}
}
void qc_cache_init(int cpuNum)
{
if( embra.sequential) {
int cpu;
for( cpu = 0; cpu < TOTAL_CPUS; cpu++ ) {
/* Record MMU reloc base */
if (EMP[cpu].mmu) continue;
EMP[cpu].kernelMMU = (MA*)ZALLOC_PERM(MMU_RELOC_SIZE,"EmbraMMU");
EMP[cpu].mmu = EMP[cpu].kernelMMU;
CPUPrint("0x%x D MMU_RELOC_BASE_%d 0x%x\n",
EMP[cpu].mmu, cpu,
(uint)EMP[cpu].mmu + MMU_RELOC_SIZE );
if (embra.separateMMUs) {
EMP[cpu].userMMU =
(MA*)ZALLOC_PERM(MMU_RELOC_SIZE,"EmbraMMU");
CPUPrint("0x%x D MMU_RELOC_BASE_%d 0x%x (kernel) \n",
EMP[cpu].userMMU, cpu,
(uint)EMP[cpu].userMMU + MMU_RELOC_SIZE );
} else {
EMP[cpu].userMMU = EMP[cpu].kernelMMU;
}
}
} else {
ASSERT (0);
}
/* Page mode doesn't use quick checks */
if( embra.emode == EMBRA_PAGE )
return;
if (embra.useVQC){
if( embra.sequential) {
int cpu;
for( cpu = 0; cpu < TOTAL_CPUS; cpu++ ) {
/* Record QC_V reloc base */
if (EMP[cpu].qc_v) continue;
EMP[cpu].qc_v = (char*) ZALLOC_PERM(QC_VIRT_SIZE,"EmbraVQC");
/* memory access entry holds value for QC_REG */
EMP[cpu].cache_ax = EMP[cpu].qc_v;
/* Nm output */
CPUPrint("0x%x D QC_VBASE_%d 0x%x\n",
EMP[cpu].qc_v, cpu,
(uint)EMP[cpu].qc_v + QC_VIRT_SIZE );
/* Record QC_P reloc base */
EMP[cpu].qc_p =
(phys_info_t*)ZALLOC_PERM(QC_PHYS_SIZE(M_FROM_CPU(cpu)),
"EmbraPQC");
CPUPrint("0x%x D QC_PBASE_%d 0x%x\n",
EMP[cpu].qc_p, cpu,
(uint)EMP[cpu].qc_p + QC_PHYS_SIZE(M_FROM_CPU(cpu)));
}
} else {
ASSERT (0);
}
} else { /* !embra.useVQC */
if( embra.sequential) {
int cpu;
for( cpu = 0; cpu < TOTAL_CPUS; cpu++ ) {
/* Record QC_V reloc base */
if (EMP[cpu].pa_p) continue;
EMP[cpu].pa_p = (pa_info_t*)
ZALLOC_PERM(PA_SIZE(M_FROM_CPU(cpu)),"EmbraPA");
/* Nm output */
CPUPrint("0x%x D PA_BASE_%d 0x%x\n",
EMP[cpu].pa_p, cpu,
(uint)EMP[cpu].pa_p + PA_SIZE(M_FROM_CPU(cpu)));
/* memory access entry holds value for PA_REG */
EMP[cpu].cache_ax=(pa_info_t *)(EMP[cpu].pa_p-
(MA_TO_UINT(SIM_MEM_ADDR(M_FROM_CPU(cpu))) >>
log2SCACHE_LINE_SIZE));
}
} else {
ASSERT (0);
}
}
}
/* Invalidate the quick check entries specified in cpu_bits */
/* Invalidate physical first to avoid race condition */
void
qc_clobber( PA pAddr, int cpuNum, EmVQCMemState state )
{
phys_info_t* phys;
pa_info_t* pa;
char* virt = 0;
#ifdef DISABLE_QC
return; /* EXP */
#endif
if (embra.useVQC){
/* Does this work? We read vline, it changes, we invalidate a vline
which was invalid and the pqc, but process uses vqc. Could ll/sc
the write of phys */
phys = &EMP[cpuNum].qc_p[ADDR2SLINE(pAddr)];
if( PQC_VLINE(*phys) ) {
virt = &EMP[cpuNum].qc_v[PQC_VLINE(*phys)];
}
/*
* remove the qc entry even if we only have a downgrade
*/
*phys = PQC_SET_INV;
if( virt )
*virt = MEM_INVALID;
} else { /* !embra.useVQC */
EMP[cpuNum].pa_p[ADDR2SLINE(pAddr)]=PA_SET_INV;
}
}
/* Transition from exclusive to read shared -- used when newly written */
/* code is executed. This allows us to detect further writes */
void qc_downgrade(int cpuNum, VA vAddr, int new_state)
{
ASSERT( VQC_SHARED(new_state) );
switch(embra.emode) {
case EMBRA_CACHE:
if (embra.useVQC){
ASSERT (EMP[cpuNum].mmu[PAGE_NUMBER(vAddr)]);
EMP[cpuNum].qc_v[ADDR2SLINE(vAddr)] = new_state;
} else {
EMP[cpuNum].mmu[PAGE_NUMBER(vAddr)] =
MMU_PROT_READ(EMP[cpuNum].mmu[PAGE_NUMBER(vAddr)] );
}
break;
case EMBRA_PAGE:
SetMMUEntry(&EMP[cpuNum],vAddr,MMU_PROT_READ(EMP[cpuNum].mmu[PAGE_NUMBER(vAddr)]));
break;
}
}
/* *************************************************************
* for all cpus, downgrade the protection. called by
* for TC coherence
* *************************************************************/
void qc_downgrade_ifpresent(VA vAddr)
{
int cpuNum;
if (embra.emode == EMBRA_CACHE && embra.useVQC) {
for (cpuNum=0;cpuNum<TOTAL_CPUS;cpuNum++) {
if (VQC_EXCL(EMP[cpuNum].qc_v[ADDR2SLINE(vAddr)])) {
EMP[cpuNum].qc_v[ADDR2SLINE(vAddr)] &=~MEM_D_EXCLUSIVE;
}
}
} else {
for (cpuNum=0;cpuNum<TOTAL_CPUS;cpuNum++) {
SetMMUEntry(&EMP[cpuNum],vAddr, MMU_PROT_READ(EMP[cpuNum].mmu[PAGE_NUMBER(vAddr)]));
}
}
}
static long clearVec=0; /* bitvector, each CPU calls qc_clear only ones */
/* Clear mmu relocation info (for the mapped areas) */
/* and clear quick cache state info (for all cached areas)*/
static void qc_clear(int cpuNum)
{
ASSERT(!(clearVec&(1<<cpuNum)));
clearVec=clearVec|(1<<cpuNum);
}
/* Page mode: note that driver.c:EmbraInstallMemAnnotation will be
* called after qc_renew runs, so we are free to put in translations
* here for all pages, even those with load/store annotations on them.
*/
void
qc_renew( int cpuNum )
{
K0A i;
MA mAddr;
int machNo = M_FROM_CPU(cpuNum);
if( !embra.MPinUP || cpuNum == 0 ) qc_cache_init(cpuNum);
/* qc_clear(cpuNum); */
/* If mmu has not been filled-in for the valid KSEG0 range,
* do it now.
*/
if( !EMP[cpuNum].kernelMMU[PAGE_NUMBER(__MAGIC_OSPC_END)] ) {
/* Store the proper page translations for all other K0 addresses */
if (!CPUVec.CheckFirewall) {
for(i = (Reg32)K0BASE ; i < (Reg32)(K0BASE + MEM_SIZE(machNo)) ; i += DEFAULT_PAGESZ ) {
/* Own text segment exclusive */
MA mAddr = PHYS_TO_MEMADDR(machNo, K0_TO_PHYS_REMAP(i, cpuNum));
if(embra.emode == EMBRA_PAGE || !embra.useVQC)
EMP[cpuNum].kernelMMU[PAGE_NUMBER(i)] = MMU_PROT_WRITE(mAddr);
else /* Cache Mode with QC */
EMP[cpuNum].kernelMMU[PAGE_NUMBER(i)] = mAddr;
}
} else {
/* k0 pages without firewall permission should not be in
* the mmu
*/
for(i = (Reg32)K0BASE ; i < (Reg32)(K0BASE + MEM_SIZE(machNo)); i += DEFAULT_PAGESZ ) {
/* Own text segment exclusive */
PA pAddr = K0_TO_PHYS_REMAP(i, cpuNum);
MA mAddr = PHYS_TO_MEMADDR(machNo, pAddr);
if (SimMagic_IsIncoherent(pAddr)) {
EMP[cpuNum].mmu[PAGE_NUMBER(i)] = 0;
} else if (embra.emode == EMBRA_CACHE && embra.useVQC) {
EMP[cpuNum].mmu[PAGE_NUMBER(i)] = mAddr;
} else if (!CPUVec.CheckFirewall(cpuNum, pAddr)) {
EMP[cpuNum].kernelMMU[PAGE_NUMBER(i)] = MMU_PROT_READ(mAddr);
} else {
EMP[cpuNum].kernelMMU[PAGE_NUMBER(i)] = MMU_PROT_WRITE(mAddr);
}
}
}
if (annWatchpoints) {
uint64 addr;
AnnPtr rec;
for (addr = AnnFirst("load", &rec); rec; addr = AnnNext(&rec)) {
VA vAddr = (VA) addr;
if (IS_KSEG0(vAddr)) {
PA pAddr = K0_TO_PHYS(vAddr);
EMP[cpuNum].kernelMMU[PAGE_NUMBER(pAddr)] = 0;
}
}
for (addr = AnnFirst("store", &rec); rec; addr = AnnNext(&rec)) {
VA vAddr = (VA) addr;
if (IS_KSEG0(vAddr)) {
PA pAddr = K0_TO_PHYS(vAddr);
EMP[cpuNum].kernelMMU[PAGE_NUMBER(pAddr)] = 0;
}
}
}
}
/* remap region requires special handling. Currently, we can only
* remap one page.
*/
mAddr = PHYS_TO_MEMADDR(machNo, K0_TO_PHYS_REMAP(K0BASE, cpuNum));
if(embra.emode == EMBRA_PAGE || !embra.useVQC)
EMP[cpuNum].kernelMMU[PAGE_NUMBER(K0BASE)] = MMU_PROT_WRITE(mAddr);
else
EMP[cpuNum].kernelMMU[PAGE_NUMBER(K0BASE)] = mAddr;
/* the OSPC range is mapped to the second page of KSEG0 in the
* 32 bit address space version, since we need this to be in cached
* address space (for Flite). We cannot place a translation for it in
* the mmu, since all the references have to be fielded by
* simmagic.c.
*
* Note that the OSPC range is only enabled if the remap range is.
*/
ASSERT( __MAGIC_OSPC_BASE + DEFAULT_PAGESZ == __MAGIC_OSPC_END );
if ( remapVec->RemapEnable[cpuNum] )
EMP[cpuNum].kernelMMU[PAGE_NUMBER(__MAGIC_OSPC_BASE)] = 0;
/* Ensure no code is hanging around in TC that depended on previous
* state of these pages
*/
Clear_Translation_State( TCFLUSH_ALL);
}
void qc_tlb_inval_page( int cpuNum, int idx)
{
EntryHi hi = EMP[cpuNum].tlbEntry[idx].Hi & (~TLBHI_G);
EntryLo lo0 = EMP[cpuNum].tlbEntry[idx].Lo0;
EntryLo lo1 = EMP[cpuNum].tlbEntry[idx].Lo1;
/*
* check that there is no mapping from qc_v
*/
if (embra.emode ==EMBRA_CACHE && embra.useVQC && !IS_KSEG0(hi)) {
int i;
int base = ADDR2SLINE(TLBHI2ADDR(hi));
int max = 2 * LINES_PER_PAGE;
ASSERT( !(TLB_ENT2VPN(hi)&1));
for (i=0;i<max;i++) {
if (EMP[cpuNum].qc_v[base+i]) {
CPUWarning("qc_tlb_inval_page hi=%#x lo=%#x %#x i=%d mapped \n",
hi,lo0,lo1,i);
}
}
}
if( !IS_UNMAPPED_TLBHI( hi ) ) {
SetMMUEntry(&EMP[cpuNum],TLB_ENT2VPN(hi) * DEFAULT_PAGESZ,0);
SetMMUEntry(&EMP[cpuNum],(TLB_ENT2VPN(hi)|1)*DEFAULT_PAGESZ,0);
}
}
void qc_tlb_replace_page( int cpuNum, int idx)
{
qc_tlb_inval_page( cpuNum, idx);
}
void qc_cache_inval_page( int cpuNum, int idx)
/* invalidates vQC entry and destroys backmap from pQC */
/* it does not change cache information in pQC */
{
PLN pline;
EntryHi hi = EMP[cpuNum].tlbEntry[idx].Hi & (~TLBHI_G);
EntryLo lo0 = EMP[cpuNum].tlbEntry[idx].Lo0;
EntryLo lo1 = EMP[cpuNum].tlbEntry[idx].Lo1;
if (!embra.useVQC) return; /* physarray does not contain a backmap */
#ifdef DISABLE_QC
return; /* EXP */
#endif
ASSERT( embra.emode == EMBRA_CACHE );
if( ! IS_KSEG0( hi ) ) {
bzero( &EMP[cpuNum].qc_v[TLBENT2SLINE(hi)], LINES_PER_PAGE );
/* If we want, we can destroy the backmap from physical to */
/* virtual address in phys_info. This should aid performance, */
/* because now some needless virtual QC clobberings won't */
/* happen, but it should not impact correctness */
if( IS_VALID(lo0) ) {
for( pline = TLBENT2SLINE(lo0);
pline < (TLBENT2SLINE(lo0) + LINES_PER_PAGE);
pline++) {
/* Note that some of the backpoints from this physical page */
/* may still be valid because they may point to K0 addresses */
/* There is no need to zero these*/
/* They can also point to other mapped pages (this kind of */
/* aliasing is especially common with K2) */
/* Therefore only destroy the backpointers to the virtual */
/* page which was just unmapped. Leave the cache info */
if( TLBHI2ADDR(PQC_VLINEADDR(EMP[cpuNum].qc_p[pline])) ==
TLBHI2ADDR(hi) ) {
ASSERT(EMP[cpuNum].qc_v[PQC_VLINE(EMP[cpuNum].qc_p[pline])] ==
MEM_INVALID);
/* This zeroes the vline, but leaves the cache information */
EMP[cpuNum].qc_p[pline] = PQC_STATUS(EMP[cpuNum].qc_p[pline]);
}
}
}
bzero( &EMP[cpuNum].qc_v[TLBENT2SLINE(hi)+LINES_PER_PAGE], LINES_PER_PAGE );
/* If we want, we can destroy the backmap from physical to */
/* virtual address in phys_info. This should aid performance, */
/* because now some needless virtual QC clobberings won't */
/* happen, but it should not impact correctness */
if( IS_VALID(lo1) ) {
for( pline = TLBENT2SLINE(lo1);
pline < (TLBENT2SLINE(lo1) + LINES_PER_PAGE);
pline++) {
/* Note that some of the backpoints from this physical page */
/* may still be valid because they may point to K0 addresses */
/* There is no need to zero these*/
/* They can also point to other mapped pages (this kind of */
/* aliasing is especially common with K2) */
/* Therefore only destroy the backpointers to the virtual */
/* page which was just unmapped. Leave the cache info */
if( TLBHI2ADDR(PQC_VLINEADDR(EMP[cpuNum].qc_p[pline])) ==
TLBHI2ADDR(hi) ) {
ASSERT(EMP[cpuNum].qc_v[PQC_VLINE(EMP[cpuNum].qc_p[pline])] ==
MEM_INVALID);
/* This zeroes the vline, but leaves the cache information */
EMP[cpuNum].qc_p[pline] = PQC_STATUS(EMP[cpuNum].qc_p[pline]);
}
}
}
}
}
/* Always invalidate the previous virtual line. That way, physical */
/* entries are aliased only once */
void set_qc_state( int cpuNum, VLN vline, PLN pline, int new_state )
{
PA pAddr = SLINE2ADDR(pline);
#ifdef LOG_QC_UPDATE
CPUPrint("LOG: %lld qc_p/pa update pAddr = %x newstate %x\n",EMP[cpuNum].cycleCount,pline,new_state);
#endif
ASSERT(!CPUVec.CheckFirewall); /* this function doesn't support the firewall yet*/
/* WATCHPOINTS */
if (annWatchpoints == TRUE) {
if (AnnFMRangeCheck(vline << log2SCACHE_LINE_SIZE,
ANNFM_LD_TYPE | ANNFM_ST_TYPE)) {
new_state = MEM_INVALID;
#if 0
LogEntry("DEBUG", cpuNum, "Leaving cache line 0x%x empty\n",vline);
#endif
}
}
if (new_state==MEM_D_EXCLUSIVE &&
TCcoherence_is_code(PHYS_TO_MEMADDR(M_FROM_CPU(cpuNum), pAddr))) {
new_state = MEM_D_SHARED;
}
if (embra.useVQC) {
VLN old_vline = PQC_VLINE(EMP[cpuNum].qc_p[pline]);
if( old_vline ) {
EMP[cpuNum].qc_v[old_vline] = MEM_INVALID;
}
EMP[cpuNum].qc_v[vline] = new_state;
switch( new_state ) {
case MEM_INVALID:
EMP[cpuNum].qc_p[pline] = 0;
break;
case MEM_D_EXCLUSIVE:
EMP[cpuNum].qc_p[pline] = PQC_SET_DIRTY( vline );
break;
case MEM_I_EXCLUSIVE:
ASSERT (0);
break;
case MEM_I_SHARED:
case MEM_D_SHARED:
EMP[cpuNum].qc_p[pline] = PQC_SET_SHARED( vline );
break;
}
if (new_state != MEM_INVALID) {
MA mmuEntry = EMP[cpuNum].mmu[PAGE_NUMBER(SLINE2ADDR(vline))];
ASSERT (mmuEntry);
if (ADDR2SLINE(MEMADDR_TO_PHYS(M_FROM_CPU(cpuNum),
MMU_PROT_READ(mmuEntry)))!=
(pline&~(LINES_PER_PAGE-1))) {
CPUError("EMBRA: set_qc_state error vLine=%x pLine=%x mmuEntry=%x \n",
vline,pline,mmuEntry);
}
}
} else { /*!embra.useVQC */
switch( new_state ) {
case MEM_INVALID:
EMP[cpuNum].pa_p[pline] = PA_SET_INV;
break;
case MEM_D_EXCLUSIVE:
case MEM_I_EXCLUSIVE:
EMP[cpuNum].pa_p[pline] = PA_SET_DIRTY;
break;
case MEM_I_SHARED:
case MEM_D_SHARED:
EMP[cpuNum].pa_p[pline] = PA_SET_SHARED;
break;
}
}
}
/* XXX - Caller check ASID and/or global bit */
void qc_cache_reload_page( int cpuNum, VA vLine, EntryLo lo0, EntryLo lo1)
{
PA pLine;
if( IS_VALID(lo0) ) {
for( pLine = ADDR2SLINE(TLBLO2ADDR(lo0));
pLine < ADDR2SLINE(TLBLO2ADDR(lo0)) + LINES_PER_PAGE;
pLine++, vLine++ ) {
uint tag = EMP[cpuNum].cache_tag[SCACHE_INDEXOF(SLINE2ADDR(pLine))];
if( CACHE_VALID( tag ) && CACHE_PLINE( tag ) == pLine ) {
if( CACHE_EXCL( tag ) && IS_DIRTY(lo0) ) {
set_qc_state(cpuNum, vLine, pLine, MEM_D_EXCLUSIVE);
} else {
/* Don't know I/D */
set_qc_state(cpuNum, vLine, pLine, MEM_D_SHARED);
}
}
}
} else {
vLine += LINES_PER_PAGE;
}
if( IS_VALID(lo1) ) {
for( pLine = ADDR2SLINE(TLBLO2ADDR(lo1));
pLine < ADDR2SLINE(TLBLO2ADDR(lo1)) + LINES_PER_PAGE;
pLine++, vLine++ ) {
uint tag = EMP[cpuNum].cache_tag[SCACHE_INDEXOF(SLINE2ADDR(pLine))];
if( CACHE_VALID( tag ) && CACHE_PLINE( tag ) == pLine ) {
if( CACHE_EXCL( tag ) && IS_DIRTY(lo1) ) {
set_qc_state(cpuNum, vLine, pLine, MEM_D_EXCLUSIVE);
} else {
/* Don't know I/D */
set_qc_state(cpuNum, vLine, pLine, MEM_D_SHARED);
}
}
}
}
}
static void qcMapOnePage(int cpuNum,VA vAddr, EntryLo lo)
{
if (!EMBRA_IS_PADDR(M_FROM_CPU(cpuNum), TLBLO2ADDR(lo))) {
/* BAD mapping -- setting mmu entry to 0 so mem_ref will be called and it will bus error */
SetMMUEntry(&EMP[cpuNum],vAddr,0);
CPUWarning("bad physical address (0x%x) being mapped into tlb\n", TLBLO2ADDR(lo));
} else if (IS_VALID(lo)) {
PA pAddr = REMAP_PHYS(TLBLO2ADDR(lo),cpuNum);
MA mAddr = PHYS_TO_MEMADDR(M_FROM_CPU(cpuNum), pAddr);
ASSERT ( EMBRA_IS_MEMADDR(M_FROM_CPU(cpuNum), mAddr));
if ( embra.emode == EMBRA_PAGE
&& CPUVec.CheckFirewall && SimMagic_IsIncoherent(pAddr)) {
SetMMUEntry(&EMP[cpuNum],vAddr,0);
} else if (embra.emode==EMBRA_PAGE && annWatchpoints &&
AnnFMRangeCheck(vAddr,ANNFM_LD_TYPE|ANNFM_ST_TYPE)) {
SetMMUEntry(&EMP[cpuNum],vAddr,0);
} else if ( embra.emode == EMBRA_PAGE
&& IS_DIRTY(lo)
&& !TCcoherence_is_code(PHYS_TO_MEMADDR(M_FROM_CPU(cpuNum), pAddr))
&& !(CPUVec.CheckFirewall && !CPUVec.CheckFirewall(cpuNum, pAddr)) ) {
/* OK to write this page directly in TC without calling out
* to mem_ref
*/
SetMMUEntry(&EMP[cpuNum],vAddr, MMU_PROT_WRITE(mAddr));
} else {
SetMMUEntry(&EMP[cpuNum],vAddr, MMU_PROT_READ(mAddr));
}
}
}
void qc_map_page( int cpuNum, int idx)
{
EntryHi hi = EMP[cpuNum].tlbEntry[idx].Hi;
EntryLo lo0 = EMP[cpuNum].tlbEntry[idx].Lo0;
EntryLo lo1 = EMP[cpuNum].tlbEntry[idx].Lo1;
VA vAddr0 = TLB_ENT2VPN(hi)*DEFAULT_PAGESZ;
VA vAddr1 = (TLB_ENT2VPN(hi)|1)*DEFAULT_PAGESZ;
ASSERT( vAddr0 != vAddr1);
if( !IS_KSEG0( hi ) && (IS_VALID(lo0) || IS_VALID(lo1))) {
if( EMP[cpuNum].kernelMMU[TLB_ENT2VPN(hi)] != 0 ) {
qc_erase_etlb( cpuNum, hi );
}
}
qcMapOnePage(cpuNum,vAddr0,lo0);
qcMapOnePage(cpuNum,vAddr1,lo1);
if (embra.emode == EMBRA_CACHE) {
qc_cache_reload_page( cpuNum, ADDR2SLINE(TLBHI2ADDR(hi)), lo0 ,lo1);
}
}
void qc_flush_etlb(int cpuNum)
{
}
void qc_erase_etlb(int cpuNum, EntryHi hi)
{
}
K0A non_excepting_tv( int cpuNum, VA vAddr)
{
MA mAddr;
if (IS_BACKDOOR(vAddr)) {
return vAddr;
}
ASSERT(cpuNum >= 0 && cpuNum < TOTAL_CPUS);
if (!EMP[cpuNum].mmu) {
CPUWarning("\n\nEMBRA: non_excepting_tc called before init\n\n");
return 0;
}
mAddr = EMP[cpuNum].kernelMMU[PAGE_NUMBER(vAddr)];
if( mAddr ) {
mAddr += PAGE_OFFSET( vAddr );
/* Only needed for page mode, but instead of checking its */
/* cheaper to just do it */
return MEMADDR_TO_K0(M_FROM_CPU(cpuNum), MMU2ADDR(mAddr));
}
return 0;
}
/* This function acesses true TLB state */
void qc_mmu_switch( int cpuNum, unsigned old_asid, unsigned new_asid,
uint forceSelfSwitch)
{
static int saved_asid[SIM_MAXCPUS];
int numTlbEntries;
int i;
/* Don't cxt switch to 0. We leave the old asid in the */
/* quick_ASID variable, fooling the rest of the code into */
/* thinking that the previous ASID is running. This is not */
/* hardware consistent, but it should be sematically correct */
if (forceSelfSwitch) {
/* normally switching to self is a nop. However we may need
* to force it to bring the qc into consistency with a state
* change in the outside world (firewall, incoherent line,
* change in the amount of physical memory, etc).
*/
ASSERT(old_asid == new_asid);
ASSERT(old_asid == CURRENT_ASID(cpuNum));
goto force_self;
}
/* Optimizations - Dont cxt switch to self (that is solid) */
if( old_asid == new_asid )
return;
#ifndef TORNADO
/*
* Unlike IRIX, Tornado uses ASID 0 for non-global entries
*/
/* Switches to 0 are nops. We leave the old asid in the quick_ASID */
/* variable, fooling the rest of the code into thinking that the */
/* previous ASID is running. This is not hardware consistent, but */
/* it should be semantically correct */
/* Ex. 6,0,6 stays at 6 */
/* Ex. 6,0,6,0,5 looks like 6,5 */
if( new_asid == 0 )
{
/* Switch to 0 is nop */
ASSERT( CURRENT_ASID(cpuNum) != 0 );
saved_asid[cpuNum] = CURRENT_ASID(cpuNum);/*old_asid;*/
return;
}
else
{
/* Switch out of 0 */
if( old_asid == 0 )
/* Switched back to ourselves, do nothing */
if( new_asid == saved_asid[cpuNum] )
return;
else
/* We've gone (for example) 5,0,8 */
old_asid = saved_asid[cpuNum];
/* and fallthrough */
}
ASSERT( new_asid != old_asid );
ASSERT( new_asid != 0 );
#endif /* TORNADO */
quick_ASID[cpuNum] = new_asid;
force_self:
qc_flush_etlb(cpuNum);
numTlbEntries = EMP[cpuNum].numTlbEntries;
for(i = 0; i < numTlbEntries; i++ ) {
/* If the entry is (1)valid, (2)has the previous asid, and (3)does */
/* not have the global bit set, then invalidate that page in the */
/* quick check array */
int global = IS_GLOBAL_HI( EMP[cpuNum].tlbEntry[i].Hi);
if( GET_ASID( EMP[cpuNum].tlbEntry[i].Hi ) == old_asid && !global) {
int hi = EMP[cpuNum].tlbEntry[i].Hi;
ASSERT (TLBENT2SLINE(hi) == TLBENT2SLINE(hi&~TLBHI_G));
if( embra.emode == EMBRA_CACHE ) {
qc_cache_inval_page( cpuNum,i);
}
qc_tlb_inval_page( cpuNum, i);
}
}
for(i = 0; i < numTlbEntries; i++ ) {
/* Now restore old mappings. Global mappings are never erased */
if( GET_ASID( EMP[cpuNum].tlbEntry[i].Hi ) == CURRENT_ASID(cpuNum) ) {
qc_map_page( cpuNum,i);
}
}
}
void qc_CheckForDuplicate(CPUState *P, int index)
{
int j;
Reg hi = P->tlbEntry[index].Hi & ~TLBHI_G;
if (IS_UNMAPPED_TLBHI(hi)) return;
for(j=0;j<P->numTlbEntries;j++) {
Reg other = P->tlbEntry[j].Hi & ~TLBHI_G;
if (j==index) continue;
if (IS_UNMAPPED_TLBHI(other) || (other == 0)) continue;
if (other==(hi&~TLBHI_G)) {
CPUWarning("Duplicate tlb entry: new=0x%llx old=0x%llx indx=%d\n",
(Reg64)hi, (Reg64)other, j);
}
}
}
void qc_CheckForDuplicates(CPUState *P)
{
Reg hiEntries[MAX_NTLBENTRIES];
int i,j;
for(i = 0; i < P->numTlbEntries; i++ ) {
Reg hi = P->tlbEntry[i].Hi;
hiEntries[i] = hi & ~TLBHI_G;
if (IS_UNMAPPED_TLBHI(hi)) continue;
for(j=0;j<i;j++) {
ASSERT( hiEntries[j] != hi);
}
}
}
void EmFirewallChange(PA pAddr, uint grant, uint64 cpumask)
{
MA mAddr;
VA vAddr = PHYS_TO_K0(pAddr);
uint cpu;
ASSERT(embra.emode == EMBRA_PAGE); /* this function doesn't support
* cache mode yet
*/
if (grant) {
/* easy case: only need to update kseg0 that might be denied.
* kseg2 and kuseg will get added on next qc miss
*/
for (cpu = 0; cpu < TOTAL_CPUS; cpu++) {
if ( ! (cpumask & (1 << cpu)))
continue;
mAddr = PHYS_TO_MEMADDR(M_FROM_CPU(cpu), pAddr);
if (!TCcoherence_is_code(PHYS_TO_MEMADDR(M_FROM_CPU(cpu), pAddr))) {
SetMMUEntry(&EMP[cpu],vAddr,MMU_PROT_WRITE(mAddr));
}
}
} else {
for (cpu = 0; cpu < TOTAL_CPUS; cpu++) {
if ( ! (cpumask & (1 << cpu)))
continue;
mAddr = PHYS_TO_MEMADDR(M_FROM_CPU(cpu), pAddr);
/* Denying access that used to be granted. Take it out of kseg0...
*/
SetMMUEntry(&EMP[cpu],vAddr,MMU_PROT_READ(mAddr));
/* ... and out of kuseg or kseg2. for now do this inefficiently */
qc_mmu_switch(cpu, CURRENT_ASID(cpu), CURRENT_ASID(cpu), 1);
}
}
}
/****************************************************************************/
/* phys_mem_ref wrapper */
/* This implements the "fast reload" from the physically indexed quick */
/* check array pQC */
/***********************************************************************/
/* Returning 0 means rewind QC, returning a value means use that value */
MA phys_mem_ref(VA vAddr, EmVQCMemState new_state, MA mAddr, int cpuNum)
{
PLN pline;
phys_info_t pLineInfo;
PA pAddr;
EmbraState* P = &EMP[cpuNum];
MA retval;
/* ASSERT( cpuNum < TOTAL_CPUS );*/
if( VQC_INST( new_state ) ) {
K0A k0Addr;
vAddr = IN_BD( vAddr )?CLEAR_BD( vAddr ) + INST_SIZE: vAddr;
k0Addr = non_excepting_tv(cpuNum, vAddr); /* MMU lookup */
if( k0Addr ) {
pAddr = K0_TO_PHYS_REMAP(k0Addr, cpuNum);
} else {
/* TLB fault */
retval = mem_ref( vAddr, new_state, cpuNum );
ASSERT( !retval || (uint)retval >0x1000);
return retval;
}
} else {
if( (uint)mAddr < 0x1000 ) {
/* TLB fault */
retval= mem_ref( vAddr, new_state, cpuNum );
ASSERT( !retval || (uint)retval >0x1000);
return retval;
}
pAddr = MEMADDR_TO_PHYS( M_FROM_CPU(cpuNum), mAddr );
}
/* VQC missed */
/* STAT_VQC(new_state);*/
pline = ADDR2SLINE(pAddr);
pLineInfo = P->qc_p[pline];
switch( new_state ) {
case MEM_INVALID:
ASSERT(0);
break;
case MEM_I_EXCLUSIVE:
ASSERT(0);
break;
case MEM_D_EXCLUSIVE:
/* Expensive Assert */
/* ASSERT( P->qc_v[ADDR2SLINE(vAddr)] == MEM_INVALID ||
VQC_SHARED( P->qc_v[ADDR2SLINE(vAddr)] ) ); */
if( PQC_DIRTY( pLineInfo ) &&
( PQC_VLINE( pLineInfo ) == ADDR2SLINE( vAddr ) ||
!PQC_VLINE( pLineInfo ) )
/* The problem is that the kernel can write a location, then */
/* NOT set the dirty bit for the TLB entry which allows user */
/* to write to this location */
/* Returns 1 for K0 addresses */
&& Em_Is_Tlb_Writable(cpuNum, vAddr, CURRENT_ASID(cpuNum) ) ) {
/* VASSERT( cache_verify_excl(cpuNum, pline),
("%d vAddr 0x%x pAddr 0x%x state %d",
cpuNum, vAddr, pAddr, new_state) ); EXP
*/
set_qc_state(cpuNum, ADDR2SLINE(vAddr), pline, new_state );
/* Use below line to support parallel cache mode */
/* return (MPinUP || TOTAL_CPUS == 1) ?
PHYS_TO_MEMADDR( M_FROM_CPU(cpuNum), pAddr ): 0;*/
retval = PHYS_TO_MEMADDR( M_FROM_CPU(cpuNum), pAddr );
ASSERT( !retval || (uint)retval >0x1000);
return retval;
}
break;
case MEM_I_SHARED:
case MEM_D_SHARED:
if (new_state == MEM_I_SHARED) {
VASSERT( (vAddr == CLEAR_BD(P->PC) || vAddr == CLEAR_BD(P->PC)+INST_SIZE),
("vAddr 0x%x\nPC 0x%x\n",
vAddr, P->PC) );
}
/* Either the line is invalid and we are reading */
/* or the line is exclusive and we are executing. I need to */
/* see that case to detect self-modified code */
/* Expensive Assert */
/* VASSERT( ( (P->qc_v[ADDR2SLINE(vAddr)] == MEM_INVALID) ||
(VQC_INST(new_state) &&
(VQC_EXCL(P->qc_v[ADDR2SLINE(vAddr)])) ) ),
("%d vAddr 0x%x QC_V 0x%x\n",
cpuNum, vAddr, P->qc_v[ADDR2SLINE(vAddr)]) ); */
if( PQC_VALID( pLineInfo ) &&
( PQC_VLINE( pLineInfo ) == ADDR2SLINE( vAddr ) ||
!PQC_VLINE( pLineInfo ) ) &&
/* The problem is that the kernel can read/write a */
/* location, then */
/* NOT set the valid bit for the TLB entry which allows user */
/* access to this location */
/* Returns 1 for K0 addresses */
Em_Is_Tlb_Readable(cpuNum, vAddr,CURRENT_ASID(cpuNum) ) ) {
/* If we are detecting an execute after write hazard, this */
/* downgrades the line to read/exec so that future writes */
/* will be detected */
/* Otherwise this condition is detected in mem_ref */
/* VASSERT( cache_verify_shared(cpuNum, pline),
("%d vAddr 0x%x pAddr 0x%x state %d",
cpuNum, vAddr, pAddr, new_state) ); EXP */
set_qc_state(cpuNum, ADDR2SLINE(vAddr), pline, new_state );
/* Use below line to support parallel cache mode */
/* return (MPinUP || TOTAL_CPUS == 1) ?
PHYS_TO_MEMADDR( M_FROM_CPU(cpuNum), pAddr ) : 0; */
retval= PHYS_TO_MEMADDR( M_FROM_CPU(cpuNum), pAddr );
ASSERT( !retval || (uint)retval >0x1000);
return retval;
}
break;
}
/* Can't just filter backdoor addresses because some of them are relocated */
/* Returning a non-zero result causes the quick check to not rewind */
/* No need to rewind when we are MPinUP */
retval= mem_ref( vAddr, new_state, cpuNum );
ASSERT( !retval || (uint)retval >0x1000);
return retval;
}
/**********************************************************************
* PhysArray Memory Reference :
* called on a miss in the MMU or (hit in MMU and miss in PhysArray)
**********************************************************************/
unsigned pa_mem_ref(VA vAddr, EmVQCMemState new_state, MA mAddr, int cpuNum)
{
#if SIMBASEADDR != 0x78000000
/* Dispatch backdoor references quickly */
if( IS_BACKDOOR(vAddr) ) {
STAT_INC( backdoor_ref );
STAT_INC( backdoor_unaltered_ref );
return vAddr;
}
#endif
return (unsigned) mem_ref(vAddr, new_state, cpuNum);
}
/****************************************************************************/
/* Debugging functions. They verify invariants */
/****************************************************************************/
/* Insure qc maps what the TLB wants mapped */
void qc_consistency_check( int cpuNum )
{
int i;
for( i = 0; i < EMP[cpuNum].numTlbEntries; i++) {
if( IS_VALID(EMP[cpuNum].tlbEntry[i].Lo0) ) {
if( (uint)EMP[cpuNum].mmu[TLB_ENT2VPN(EMP[cpuNum].tlbEntry[i].Hi)] !=
(uint)EMP[cpuNum].tlbEntry[i].Lo0 & 0xfffff000 ) {
CPUPut("%d Help! MMUreloc inconsistent with TLB\n", cpuNum);
while( 1 )
; /* spin */
}
}
if( IS_VALID(EMP[cpuNum].tlbEntry[i].Lo1) ) {
if( (uint)EMP[cpuNum].mmu[TLB_ENT2VPN(EMP[cpuNum].tlbEntry[i].Hi)|1] !=
(uint)EMP[cpuNum].tlbEntry[i].Lo1 & 0xfffff000 ) {
CPUPut("%d Help! MMUreloc inconsistent with TLB\n", cpuNum);
while( 1 )
; /* spin */
}
}
}
}
void
qc_insure_other_qc_invalid(int cpuNum, PA pAddr)
{
phys_info_t* phys;
char* virt;
int i;
for( i = 0; i < TOTAL_CPUS; i++ )
{
if( i != EMP[cpuNum].myNum )
{
phys = &EMP[i].qc_p[ADDR2SLINE(pAddr)];
ASSERT(!PQC_VALID(*phys));
virt = &EMP[i].qc_v[PQC_VLINE(*phys)];
ASSERT( *virt == 0 );
}
}
}
void
qc_insure_other_qc_invalid_or_read(int cpuNum, PA pAddr)
{
phys_info_t* phys;
char* virt;
int i;
for( i = 0; i < TOTAL_CPUS; i++ )
{
if( i != EMP[cpuNum].myNum )
{
phys = &EMP[i].qc_p[ADDR2SLINE(pAddr)];
ASSERT(!PQC_VALID(*phys) || PQC_SHARED(*phys) );
/* Can't say anything about virtual addresses because the */
/* mapping could have changed, and the backmapped virt addr */
/* points to a new phys addr (which could be owned excl) */
/* But now we remove backmap on unmap */
virt = &EMP[i].qc_v[PQC_VLINE(*phys)];
ASSERT((*virt == MEM_INVALID) || VQC_SHARED(*virt));
}
}
}
/* checks if all MMU entries are also in the TLB with the matching asid */
/* for now just with processor 0 */
void
MMUCheck(int procNum)
{
int i;
int myASID = CURRENT_ASID(procNum);
int writing=0;
unsigned ppn;
IDX tlb_index;
for (i=0;i<(MMU_RELOC_SIZE/4);i++){
if (EMP[procNum].mmu[i]){
if ((int)EMP[procNum].mmu[i]<0) writing=1;
tlb_index = Tlb_Lookup( procNum, GET_REGION(i*DEFAULT_PAGESZ),
CONVERT_TO_VPN2(i), myASID );
if (tlb_index) {
EntryLo lo;
tlb_index--;
/* We have a matching VPN and ASID */
lo = (i & 1) ? EMP[procNum].tlbEntry[tlb_index].Lo1 :
EMP[procNum].tlbEntry[tlb_index].Lo0;
if (IS_VALID( lo )) {
/* Valid */
if( IS_DIRTY(lo) || !(writing) ) {
/* Page is dirty or we are reading - OK */
ppn = GET_PFN(lo);
if (ppn!=PAGE_NUMBER(((unsigned)EMP[procNum].mmu[i]&0x7fffffff)-MA_TO_UINT(SIM_MEM_ADDR(M_FROM_CPU(procNum)))))
CPUPrint("ERROR: MMU Entry VPN %x : %x different from TLB (%x)\n",i,EMP[procNum].mmu[i], ppn);
} else {
/* Page is not dirty and MMU is writable write */
CPUPrint("ERROR: MMU Entry VPN %x : %x writable, TLB is not!\n",i,EMP[procNum].mmu[i]);
}
} else {
/* TLB Invalid entry */
if (!IS_KSEG0(i*DEFAULT_PAGESZ))
CPUPrint("ERROR: MMU Entry VPN %x : %x not in TLB\n",i,EMP[procNum].mmu[i]);
}
if (((unsigned)EMP[procNum].mmu[i]&0x7fffffff)>(MA_TO_UINT(SIM_MEM_ADDR(M_FROM_CPU(procNum)))+MEM_SIZE(M_FROM_CPU(procNum))))
CPUPrint("ERROR: MMU Entry VPN %x : %x not in MemFile\n",i,EMP[procNum].mmu[i]);
} else {
if (!IS_KSEG0(i*DEFAULT_PAGESZ))
CPUPrint("ERROR: MMU Entry VPN %x : %x not in TLB\n",i,EMP[procNum].mmu[i]);
}
}
}
}
void
PACheck(int procNum)
{
int i,line_no;
pa_info_t x;
for (i=0;i<(PA_SIZE(M_FROM_CPU(procNum)));i++){
x=EMP[procNum].pa_p[i];
if (x!=PA_SET_INV){
line_no = i & (SCACHE_INDEX -1); /* direct mapped */
if ((PA_SHARED(x)&& !CACHE_SHARED(EMP[procNum].cache_tag[line_no]))
||
(PA_DIRTY(x) && !CACHE_EXCL(EMP[procNum].cache_tag[line_no]))){
CPUPrint("ERROR : Cache State %x PA : %x , C.Tag : %x\n",i,x,EMP[procNum].cache_tag[line_no]);
}
if (CACHE_PLINE(EMP[procNum].cache_tag[line_no])!=i) {
CPUPrint("ERROR : Wrong Tag pline %x C.Tag.line : %x\n",i,CACHE_PLINE(EMP[procNum].cache_tag[line_no]));
}
}
}
}
#endif