busuma.c
55.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
/*
* Copyright (C) 1996-1998 by the Board of Trustees
* of Leland Stanford Junior University.
*
* This file is part of the SimOS distribution.
* See LICENSE file for terms of the license.
*
*/
/*****************************************************************
* File: BusUma.c
*
* UMA model with bus contention, snoopy caches, writeback buffers,
* out-of-order split transaction bus.
*
* Author: $Author: blythe $
* Date: $Date: 2003/02/23 06:19:58 $
*****************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include "syslimits.h"
#include "scache.h"
#include "memsys.h"
#include "sim_error.h"
#include "simutil.h"
#include "eventcallback.h"
#include "list.h"
#include "cpu_interface.h"
#include "registry.h"
#include "hw_events.h"
#ifdef SOLO
#include "solo_page.h"
#define DATA_ADDR(_m, _pa) SoloGetMemoryAddr(SoloDecompressAddr(0,_pa))
#else
#define DATA_ADDR(_m, _pa) PHYS_TO_MEMADDR(_m, _pa)
#endif
static int debugMem = 0;
/*#define DEBUG_MEM*/
/*
* Memory layout
*
* we require that the memory per mem node and the number of nodes be
* power-of-2 size
*/
#ifdef __alpha
#define LLD_SPACE "%ld "
#else
#define LLD_SPACE "%lld "
#endif
#define WB_BUFFER_SIZE 4
#define REQUEST_TABLE_SIZE 8
#define BUSUMA_MAX_MEMORIES 64
static int arbitrationCycles, transferCycles, memoryCycles;
static int dirtyPenalty, readOverhead, upgradeOverhead;
static int maxOverflow;
#define MEMORY_LATENCY 80 /* 80 ns */
/*
* Interleave on a cache line basis.
*/
#ifdef SOLO
#define BusumaAddrToMemnum(_m,_addr) SOLO_PA_NODE(SoloDecompressAddr(0,_addr))
#define BusumaAddrToMemline(_m,_addr) (SOLO_PA_OFFSET(SoloDecompressAddr(0,_addr))/SCACHE_LINE_SIZE)
#else
#define BusumaAddrToMemnum(_m,_addr) (FIRST_MEMORY(_m)+(((_addr) >>log2SCACHE_LINE_SIZE) % NUM_MEMORIES(_m)))
#define BusumaAddrToMemline(_m,_addr) ((_addr) / (SCACHE_LINE_SIZE*NUM_MEMORIES(_m)))
#endif
#define BusumaIsLocal(_cpu,_mem) (1)
enum MemReqState { REQ_FREE, WB_OVERFLOW, RT_OVERFLOW,
CPU_TO_BUS_OVERHEAD, BUS_ARB_WAIT, BUS_TRANSFER_WAIT,
MEM_CONFLICT_WAIT, MEM_MERGE_WAIT,
CACHE_TRANSFER_WAIT, MEM_BUSY_WAIT, MEM_ACTIVE_WAIT,
REPLY_BUS_ARB_WAIT, REPLY_BUS_TRANSFER_WAIT};
#define MAX_MREQ (SIM_MAXCPUS*MEMSYS_MAX_OUTSTANDING)
typedef struct MemRequest {
EventCallbackHdr hdr; /* Must be first!! */
List_Links link; /* Must be second (after EventCallbackhdr */
#define MREQ_TO_LIST(_m) (&((_m)->link))
#define LIST_TO_MREQ(_l) ((MemRequest *) (((char *)(_l)) - sizeof(EventCallbackHdr)))
int cmd;
int transId;
PA reqAddr;
PA addr; /* Address scache aligned */
unsigned int mode;
int status;
int result;
enum MemReqState state;
int rtIndex;
int memnum;
int machnum;
int cpunum;
uint starttime;
uint memQEnter;
byte* data; /* data handling - dma, writeback buffer */
int len;
} MemRequest;
static MemRequest MemRequestStorage[MAX_MREQ];
/* List of available mreq structures */
static List_Links freeMemReqList;
typedef struct _RequestTable {
int used;
PA addr;
MemRequest *initiator;
List_Links merge;
List_Links delay;
} RequestTable;
static RequestTable requestTable[MAX_MACHINES][REQUEST_TABLE_SIZE];
static List_Links requestTableFullQ[MAX_MACHINES];
typedef struct _WB_Buffer {
List_Links free;
int numUsed;
MemRequest entries[WB_BUFFER_SIZE];
int numOverflowUsed;
List_Links overflow;
} WB_Buffer;
static WB_Buffer wbBuffers[SIM_MAXCPUS];
static int busBusy[MAX_MACHINES];
static int busIdleStart[MAX_MACHINES];
static EventCallbackHdr arbitrate[MAX_MACHINES];
static List_Links lowPri[MAX_MACHINES], highPri[MAX_MACHINES];
#define WB_QUEUE(_m) (&(lowPri[_m]))
static Result BusUmaCmd(int cpuNum, int cmd, PA paddr, int transId, PA
replacedPaddr, int writeback, byte *data);
static void BusUmaDumpStats (void);
static void BusUmaDone (void);
static void BusUmaStatus (void);
static void MemoryDone(int cpuNum, EventCallbackHdr *hdr, void *arg);
static void MemoryArrive(int memnum);
static void CPUArrive(MemRequest *mreq);
static MemRequest * IsInWBBuffer(int cpuNum, PA addr);
static void CacheSnoop(MemRequest *mreq);
static void BusFree(int cpuNum, EventCallbackHdr *hdr, void *arg);
static void ArbitrateCallback(int cpuNum, EventCallbackHdr *hdr, void *arg);
static void Arbitrate(int machine);
static Result BusUmaUncachedRead(int cpuNum, PA addr, byte *data, int len);
static Result BusUmaUncachedWrite(int cpuNum, PA addr, byte *data, int len);
static void BusUmaDrain(void);
#ifndef SOLO
static PA BusUmaGetNodeAddress(int cpunum);
static void BusUmaSetRemap(int cpunum, PA mask);
static void BusUmaControlRemap(int cpunum, int isEnabled);
#endif
/*
* Stats collected per memory system.
*/
#define STAT_HIST_BUCKETS 100
typedef struct StatsHist {
unsigned int scaledivisor;
SimCounter sum;
SimCounter count;
SimCounter counts[STAT_HIST_BUCKETS];
} StatsHist;
enum BusUmaCounterTypes {
/* number of requests that are satisfied by a merge */
BUC_MERGES,
/* number of requests delayed due to conflicts */
BUC_CONFLICTS,
/* number of writebacks that didn't use the bus */
BUC_KILLEDWBS,
/* number of GETs satisfied by writeback buffer */
BUC_GET_WBBUF,
/* number of upgrades satisfied by writeback buffer */
BUC_UPG_WBBUF,
/* number of cycles bus is busy doing a get request*/
BUC_BUS_GETRQST,
/* number of cycles bus is busy doing a get reply*/
BUC_BUS_GETREPLY,
/* number of cycles bus is busy doing an upgrade*/
BUC_BUS_UPG,
/* number of cycles bus is busy doing a wb*/
BUC_BUS_WB,
/* number of cycles bus is busy doing an get which is nak'd b/c no space in request table*/
BUC_BUS_NAK,
/* number of cycles bus is busy */
BUC_BUS_BUSY,
/* number of cycles bus is idle */
BUC_BUS_IDLE,
/* time in memory queue */
BUC_MEMQUEUE,
BUC_TOTAL};
typedef struct BusUmaMemStats {
SimCounter counts[COUNT_TOTAL];
SimCounter buCounts[BUC_TOTAL];
StatsHist reqtime; /* latency */
} BusUmaStats;
/*
* State associated with a memory in the system.
*/
typedef struct MemState {
List_Links memoryQueue; /* Queue to memory */
BusUmaStats stats;
int busy;
MemRequest wbHdr; /* hack needed because we free writebackbuffer at memoryarrive,
and we need something to use for eventcallback */
} MemState;
static MemState *memState[BUSUMA_MAX_MEMORIES];
#ifndef SOLO
/*****************************************************************
* remap region support
*****************************************************************/
static PA backmapMask[MAX_MACHINES];
static PA nodeaddrMask[MAX_MACHINES];
static void
BusUmaUpdateBackmapMask(void)
{
/* the backmapMask is an optimization that summarizes all the enabled
* remap masks; it has ones in any bit position which, if set, means
* this physical address could not be the target of a remap on any
* CPU.
*
* nodeaddrMask masks out the node id bits.
*/
int i, m;
for (m=0; m < NUM_MACHINES; m++) {
backmapMask[m] = nodeaddrMask[m];
for (i=FIRST_CPU(m); i<=LAST_CPU(m); i++) {
if (remapVec->RemapEnable[i]) {
backmapMask[m] &= remapVec->RemapMask[i];
}
}
}
}
static void
BusUmaInitRemap(void)
{
int i, machine;
/* We initialize backmapMask to all ones except for the
* bits that might be set in the node id field
*/
for (machine=0; machine<NUM_MACHINES; machine++) {
nodeaddrMask[machine] = ~0;
for (i=0; i<NUM_CPUS(machine); i++) {
if (!remapVec->NodeAddrInitialized) {
#ifdef TORNADO
int m = machine;
remapVec->NodeAddr[FIRST_CPU(machine)+i] =
(i*NUM_MEMORIES(m)/NUM_CPUS(m)) *
(MEM_SIZE(m) / NUM_CPUS(m));
CPUWarning("busuma: nodeaddr for %d/%d is %lx\n",
i, FIRST_CPU(machine)+i,
(unsigned long)(remapVec->NodeAddr[FIRST_CPU(machine)+i]));
#elif defined(SIM_ORIGIN)
remapVec->NodeAddr[FIRST_CPU(machine)+i] =
MEMADDR_TO_PHYS(machine, SIM_MEM_ADDR(machine) +
(i/2) * 2 * (MEM_SIZE(machine) / NUM_CPUS(machine)));
#else
remapVec->NodeAddr[FIRST_CPU(machine)+i] =
MEMADDR_TO_PHYS(machine, SIM_MEM_ADDR(machine) +
i * (MEM_SIZE(machine) / NUM_CPUS(machine)));
#endif
}
nodeaddrMask[machine] &= ~remapVec->NodeAddr[FIRST_CPU(machine)+i];
}
}
remapVec->NodeAddrInitialized = 1;
/* now zero out the low bits of the backmapmask */
BusUmaUpdateBackmapMask();
}
static void
BusUmaSetRemap(int cpunum, PA mask)
{
remapVec->RemapMask[cpunum] = mask;
BusUmaUpdateBackmapMask();
}
static void
BusUmaControlRemap(int cpunum, int isEnabled)
{
remapVec->RemapEnable[cpunum] = isEnabled;
BusUmaUpdateBackmapMask();
}
static PA
BusUmaGetNodeAddress(int cpunum)
{
return remapVec->NodeAddr[cpunum];
}
static PA
ReverseRemap(PA paddr, int cpunum)
{
if ((paddr & remapVec->RemapMask[cpunum]) == remapVec->NodeAddr[cpunum]) {
return paddr - remapVec->NodeAddr[cpunum];
} else if ((paddr & remapVec->RemapMask[cpunum]) == 0) {
return paddr + remapVec->NodeAddr[cpunum];
} else {
return paddr;
}
}
#define BACKMAP_PADDR(paddr,cpunum) \
(((paddr & backmapMask[M_FROM_CPU(cpunum)]) \
|| !remapVec->RemapEnable[cpunum]) \
? paddr : ReverseRemap(paddr, cpunum))
#endif
#ifdef SOLO
#define BACKMAP_PADDR(paddr,cpunum) (paddr)
#endif
/*****************************************************************
* BusUmaInit
*****************************************************************/
void
BusUmaInit(void)
{
int i, j, m;
int halfTransXTime;
memsysVec.type = BUSUMA;
memsysVec.NoMemoryDelay = 0;
memsysVec.MemsysCmd = BusUmaCmd;
memsysVec.MemsysDumpStats = BusUmaDumpStats;
memsysVec.MemsysDone = BusUmaDone;
memsysVec.MemsysStatus = BusUmaStatus;
memsysVec.MemsysDrain = BusUmaDrain;
#ifndef SOLO
memsysVec.MemsysSetRemap = BusUmaSetRemap;
memsysVec.MemsysControlRemap = BusUmaControlRemap;
memsysVec.MemsysGetNodeAddress = BusUmaGetNodeAddress;
#endif
halfTransXTime = NanoSecsToCycles(SCACHE_LINE_SIZE*1000/BUS_BW/2);
arbitrationCycles = 2*halfTransXTime/5;
transferCycles = halfTransXTime - arbitrationCycles;
ASSERT(transferCycles >= 0);
memoryCycles = NanoSecsToCycles(MEMORY_LATENCY);
dirtyPenalty = DIRTY_PENALTY;
readOverhead = MEM_CYCLE_TIME - memoryCycles - 2*halfTransXTime;
ASSERT(readOverhead >= 0);
upgradeOverhead = UPGRADE_TIME - halfTransXTime;
ASSERT(upgradeOverhead >= 0);
/* maxOverflow = 1; this doesn't work for mxs or with prefetching */
maxOverflow = 5;
CPUPrint("MEMSYS: BusUma - arbitrate: %d, transfer: %d, memory: %d\n\n",
arbitrationCycles, transferCycles, memoryCycles);
CPUPrint("MEMSYS: BusUma - readOverhead: %d, upgradeOverhead: %d, dirtyPenalty: %d\n",
readOverhead, upgradeOverhead, dirtyPenalty);
for (m = 0; m < NUM_MACHINES; m++) {
if( !NUM_MEMORIES(m) )
CPUError("BusUma: NumMemories must be >0 (machine %d)\n", m);
if( MEM_SIZE(m) % NUM_MEMORIES(m) != 0 )
CPUError("BusUma: the memory size must be a multiple of the number of memories (machine %d)\n",m);
CPUPrint("BusUma with %d memories; cache-line interleaving (machine %d)\n", NUM_MEMORIES(m), m);
busBusy[m] = 0;
busIdleStart[m] = 1;
bzero((char *)(requestTable[m]),
sizeof(RequestTable)*REQUEST_TABLE_SIZE);
for (i = 0; i < REQUEST_TABLE_SIZE; i++) {
List_Init(&requestTable[m][i].merge);
List_Init(&requestTable[m][i].delay);
}
List_Init(&requestTableFullQ[m]);
}
CPUPrint("MEMFields IGETS LLGETS DMAGETS DGETS DMAGETXS GETXS SCUPGRADES UPGRADES WRITEBACKS REPLHINTS UNCACHEDWRITES UNCACHEDACCWRITES UNCACHEDREADS INVALORDNGRADESENT NAKS REMOTEDIRTY EXCLUSIVEONSHARED MEMORYACCESS\n");
CPUPrint("MEMBUSUMAFields MERGES CONFLICTS KILLEDWBS GET_WBBUF UPG_WBBUF BUS_GETRQST BUS_GETREPLY BUS_UPG BUS_WB BUS_NAK BUS_BUSY BUS_IDLE MEMQUEUE\n");
/* initialize writeback buffer for each proc */
for (i = 0; i < SIM_MAXCPUS; i++) {
List_Init(&wbBuffers[i].free);
wbBuffers[i].numUsed = 0;
for (j = 0; j < WB_BUFFER_SIZE; j++) {
wbBuffers[i].entries[j].cmd = MEMSYS_WRITEBACK;
#ifdef DATA_HANDLING
wbBuffers[i].entries[j].data = (char *)calloc(1,SCACHE_LINE_SIZE);
#else
wbBuffers[i].entries[j].data = NULL;
#endif
wbBuffers[i].entries[j].addr = 0;
wbBuffers[i].entries[j].state = REQ_FREE;
List_Insert(MREQ_TO_LIST(&wbBuffers[i].entries[j]), LIST_ATREAR(&wbBuffers[i].free));
}
wbBuffers[i].numOverflowUsed = 0;
List_Init(&wbBuffers[i].overflow);
}
for (m = 0; m < NUM_MACHINES; m++) {
List_Init(&lowPri[m]);
List_Init(&highPri[m]);
}
List_Init(&freeMemReqList);
for (i = 0; i < MAX_MREQ; i++) {
MemRequest *mreq = MemRequestStorage + i;
bzero((char *) (mreq), sizeof(MemRequestStorage[0]));
List_InitElement(MREQ_TO_LIST(mreq));
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&freeMemReqList));
}
for (i = 0; i < TOTAL_MEMORIES; i++) {
memState[i] = (MemState *) ZMALLOC(sizeof(MemState), "memState");
ASSERT(memState[i]);
List_Init(&memState[i]->memoryQueue);
bzero((char *) &memState[i]->stats, sizeof(BusUmaStats));
memState[i]->wbHdr.cmd = MEMSYS_WRITEBACK;
memState[i]->wbHdr.memnum = i;
}
#ifndef SOLO
BusUmaInitRemap();
#endif
}
static void
FreeWBentry(MemRequest *mreq)
{
if (mreq->state == WB_OVERFLOW) {
mreq->reqAddr = MEMSYS_NOADDR;
mreq->len = 0;
mreq->data = NULL;
return;
} else if (mreq->state == CPU_TO_BUS_OVERHEAD) {
EventCallbackRemove((EventCallbackHdr*)mreq);
memState[mreq->memnum]->stats.buCounts[BUC_KILLEDWBS]++;
} else if (mreq->state == BUS_ARB_WAIT) {
List_Remove(MREQ_TO_LIST(mreq));
memState[mreq->memnum]->stats.buCounts[BUC_KILLEDWBS]++;
} else if (mreq->state == BUS_TRANSFER_WAIT) {
/* this can get called from BusUmaDrain */
EventCallbackRemove((EventCallbackHdr*)mreq);
memState[mreq->memnum]->stats.buCounts[BUC_KILLEDWBS]++;
} else {
ASSERT(mreq->state == MEM_BUSY_WAIT);
}
mreq->state = REQ_FREE;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&wbBuffers[mreq->cpunum].free));
wbBuffers[mreq->cpunum].numUsed--;
ASSERT(wbBuffers[mreq->cpunum].numUsed >=0);
if (!List_IsEmpty(&wbBuffers[mreq->cpunum].overflow)) {
/* cpu was stalled waiting for space in writeback buffer, so reissue the request */
Result result;
List_Links *itemPtr = List_First(&wbBuffers[mreq->cpunum].overflow);
MemRequest *ovfReq = LIST_TO_MREQ(itemPtr);
List_Remove(itemPtr);
wbBuffers[mreq->cpunum].numOverflowUsed--;
result = BusUmaCmd(mreq->cpunum, ovfReq->cmd,
ovfReq->addr, ovfReq->transId,
ovfReq->reqAddr, ovfReq->len,
ovfReq->data);
ovfReq->state = REQ_FREE;
List_Insert(MREQ_TO_LIST(ovfReq), LIST_ATREAR(&freeMemReqList));
if (result == SUCCESS) {
ASSERT(CPUVec.Unstall);
CPUVec.Unstall(mreq->cpunum);
}
}
}
/* Check the writeback buffer to see if an entry with the given address is already there
* If so, and read=1 place the data from in the buffer into argument data
* and read=0 place the data from the argument into the buffer (collapse two writebacks into one)
*/
static MemRequest *
IsInWBBuffer(int cpuNum, PA addr)
{
List_Links *itemPtr, *nextPtr;
int i;
if (wbBuffers[cpuNum].numUsed != 0) {
for (i = 0; i < WB_BUFFER_SIZE; i++) {
if ((wbBuffers[cpuNum].entries[i].addr == addr) &&
((wbBuffers[cpuNum].entries[i].state == CPU_TO_BUS_OVERHEAD) ||
(wbBuffers[cpuNum].entries[i].state == BUS_ARB_WAIT))) {
return &wbBuffers[cpuNum].entries[i];
}
}
}
for (itemPtr = List_First(&wbBuffers[cpuNum].overflow), nextPtr = NULL;
!List_IsAtEnd(&wbBuffers[cpuNum].overflow, itemPtr);
itemPtr = nextPtr) {
nextPtr = List_Next(itemPtr);
if (LIST_TO_MREQ(itemPtr)->reqAddr == addr)
return LIST_TO_MREQ(itemPtr);
}
return NULL;
}
static void
NakRequest(MemRequest *mreq)
{
CacheCmdDone(mreq->cpunum, mreq->transId, mreq->mode, MEMSYS_STATUS_NAK,
mreq->result, mreq->data);
mreq->state = REQ_FREE;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&freeMemReqList));
memState[mreq->memnum]->stats.counts[COUNT_NAKS]++;
}
static void
ErrorRequest(MemRequest *mreq)
{
CacheCmdDone(mreq->cpunum, mreq->transId, mreq->mode, MEMSYS_STATUS_ERROR,
mreq->result, mreq->data);
mreq->state = REQ_FREE;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&freeMemReqList));
memState[mreq->memnum]->stats.counts[COUNT_NAKS]++;
}
static void
RTMerge(MemRequest *mreq, int index)
{
mreq->state = MEM_MERGE_WAIT;
mreq->rtIndex = index;
List_Insert(MREQ_TO_LIST(mreq),
LIST_ATREAR(&requestTable[mreq->machnum][index].merge));
if (debugMem)
CPUPrint("DBGBSU %lld %d merge addr (0x%x)\n",
CPUVec.CycleCount(0), mreq->cpunum, mreq->addr);
}
static void
RTDelay(MemRequest *mreq, int index)
{
mreq->state = MEM_CONFLICT_WAIT;
mreq->rtIndex = index;
List_Insert(MREQ_TO_LIST(mreq),
LIST_ATREAR(&requestTable[mreq->machnum][index].delay));
if (debugMem)
CPUPrint("DBGBSU %lld %d delay addr (0x%x)\n",
CPUVec.CycleCount(0), mreq->cpunum, mreq->addr);
}
static void
CheckForMergeDelay(List_Links *list, MemRequest *mreq, int numFree)
{
List_Links *itemPtr, *nextPtr;
for (itemPtr = List_First(list), nextPtr = NULL;
!List_IsAtEnd(list, itemPtr);
itemPtr = nextPtr) {
MemRequest *req2 = LIST_TO_MREQ(itemPtr);
nextPtr = List_Next(itemPtr);
if (req2->addr == mreq->addr) {
switch (req2->cmd & MEMSYS_CMDMASK) {
case MEMSYS_GET:
/* if mode shared, merge, otherwise fall through to GETX/UPGRADE */
if (mreq->mode == MEMSYS_SHARED) {
List_Remove(itemPtr);
RTMerge(req2, mreq->rtIndex);
break;
}
case MEMSYS_GETX:
case MEMSYS_UPGRADE:
List_Remove(itemPtr);
RTDelay(req2, mreq->rtIndex);
break;
case MEMSYS_WRITEBACK:
/* this is OK because the writeback will be killed in cachesnoop */
break;
default:
CPUError("Unknown memsys command (0x%x) in BusUma::RTInsert\n", req2->cmd);
}
} else {
/* if we took the last entry and a get/getx is arbitrating then add it to RTfull queue */
if ((numFree == 1) && (req2->rtIndex == -1) && (req2->state != RT_OVERFLOW) &&
(((req2->cmd & MEMSYS_CMDMASK) == MEMSYS_GET) ||
((req2->cmd & MEMSYS_CMDMASK) == MEMSYS_GETX))) {
req2->state = RT_OVERFLOW;
List_Remove(itemPtr);
List_Insert(itemPtr,
LIST_ATREAR(&requestTableFullQ[mreq->machnum]));
}
}
}
}
static void
RTInsert(MemRequest *mreq)
{
int index, numFree = 0;
for (index = 0; index < REQUEST_TABLE_SIZE; index++) {
if (!requestTable[mreq->machnum][index].used) {
if (numFree == 0) {
requestTable[mreq->machnum][index].used = 1;
requestTable[mreq->machnum][index].addr = mreq->addr;
requestTable[mreq->machnum][index].initiator = mreq;
mreq->rtIndex = index;
if (debugMem)
CPUPrint("DBGBSU %lld %d addr (0x%x) assigned RTindex %d\n",
CPUVec.CycleCount(0), mreq->cpunum, mreq->addr, index);
}
numFree++;
}
}
ASSERT(numFree != 0);
/* add all pending requests to same addr merge/delay queues
also add all get/getx to request delay queue if this request took the last spot */
CheckForMergeDelay(&highPri[mreq->machnum], mreq, numFree);
CheckForMergeDelay(&requestTableFullQ[mreq->machnum], mreq, numFree);
}
static void
MemoryDone(int cpuNum, EventCallbackHdr *hdr, void *arg)
{
MemRequest *mreq = (MemRequest *)hdr;
ASSERT(mreq->state == MEM_ACTIVE_WAIT);
ASSERT(M_FROM_CPU(cpuNum) == mreq->machnum);
switch (mreq->cmd & MEMSYS_CMDMASK) {
case MEMSYS_GET:
case MEMSYS_GETX:
mreq->state = REPLY_BUS_ARB_WAIT;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&highPri[mreq->machnum]));
Arbitrate(mreq->machnum);
break;
case MEMSYS_WRITEBACK:
break;
case MEMSYS_SHARING_WRITEBACK:
/* free the mreq */
mreq->state = REQ_FREE;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&freeMemReqList));
break;
default:
CPUError("Bad mreq->cmd (0x%x)\n", mreq->cmd);
}
/* now check for more requests */
if (!List_IsEmpty(&memState[mreq->memnum]->memoryQueue))
MemoryArrive(mreq->memnum);
else
memState[mreq->memnum]->busy = 0;
}
/* a request just arrived at this memormy
* copy data from memory and stall
*/
static void
MemoryArrive(int memnum)
{
MemRequest *mreq;
ASSERT(!List_IsEmpty(&memState[memnum]->memoryQueue));
mreq = LIST_TO_MREQ(List_First(&memState[memnum]->memoryQueue));
List_Remove(MREQ_TO_LIST(mreq));
ASSERT(mreq->state == MEM_BUSY_WAIT);
memState[memnum]->busy = 1;
memState[mreq->memnum]->stats.counts[COUNT_MEMORYACCESS]++;
memState[memnum]->stats.buCounts[BUC_MEMQUEUE] += CPUVec.CycleCount(mreq->cpunum) - mreq->memQEnter;
switch (mreq->cmd & MEMSYS_CMDMASK) {
case MEMSYS_GET:
if (mreq->cmd & MEMSYS_DMAFLAVOR) {
bcopy(DATA_ADDR(mreq->machnum, mreq->reqAddr), mreq->data, mreq->len);
} else {
mreq->data = (byte*)DATA_ADDR(mreq->machnum, mreq->addr);
}
if (debugMem)
CPUPrint("DBGBSU %lld get arrived at memory (0x%x)\n", CPUVec.CycleCount(0), mreq->addr);
break;
case MEMSYS_GETX:
if (mreq->cmd & MEMSYS_DMAFLAVOR) {
bcopy(mreq->data, DATA_ADDR(mreq->machnum, mreq->reqAddr), mreq->len);
} else {
mreq->data = (byte*)DATA_ADDR(mreq->machnum, mreq->addr);
}
if (debugMem)
CPUPrint("DBGBSU %lld getx arrived at memory (0x%x)\n", CPUVec.CycleCount(0), mreq->addr);
break;
case MEMSYS_WRITEBACK:
if (debugMem)
CPUPrint("DBGBSU %lld wb arrived at memory (0x%x)\n", CPUVec.CycleCount(0), mreq->addr);
#ifdef DATA_HANDLING
bcopy(mreq->data, DATA_ADDR(mreq->machnum, mreq->addr), SCACHE_LINE_SIZE);
#endif
FreeWBentry(mreq);
mreq = &memState[memnum]->wbHdr;
break;
case MEMSYS_SHARING_WRITEBACK:
if (debugMem)
CPUPrint("DBGBSU %lld sharingWB arrived at memory (0x%x)\n", CPUVec.CycleCount(0), mreq->addr);
/* don't really need to do anything except make memory busy */
break;
default:
CPUError("Bad mreq->cmd (0x%x)\n", mreq->cmd);
}
mreq->state = MEM_ACTIVE_WAIT;
EventDoCallback(FIRST_CPU(mreq->machnum), MemoryDone, (EventCallbackHdr *)mreq, NULL, memoryCycles);
}
/* request came back from memory
* free the request table entry if the memory request used it
*/
static void
CPUArrive(MemRequest *mreq)
{
List_Links *itemPtr, *nextPtr, *mergeHdr, *delayHdr;
int rtIndex = mreq->rtIndex;
ASSERT((mreq->state == REPLY_BUS_TRANSFER_WAIT) ||
((mreq->state == BUS_TRANSFER_WAIT) &&
((mreq->cmd & MEMSYS_CMDMASK) == MEMSYS_UPGRADE)));
CacheCmdDone(mreq->cpunum, mreq->transId, mreq->mode, mreq->status,
mreq->result, mreq->data);
if (rtIndex != -1) {
ASSERT(requestTable[mreq->machnum][rtIndex].initiator == mreq);
mergeHdr = &requestTable[mreq->machnum][rtIndex].merge;
delayHdr = &requestTable[mreq->machnum][rtIndex].delay;
/* if initiator is a GET, handle all the merges */
if ((mreq->cmd & MEMSYS_CMDMASK) == MEMSYS_GET) {
for (itemPtr = List_First(mergeHdr), nextPtr = NULL;
!List_IsAtEnd(mergeHdr, itemPtr);
itemPtr = nextPtr) {
MemRequest *mergeReq = LIST_TO_MREQ(itemPtr);
nextPtr = List_Next(itemPtr);
memState[mreq->memnum]->stats.buCounts[BUC_MERGES]++;
CacheCmdDone(mergeReq->cpunum, mergeReq->transId, mergeReq->mode, mreq->status,
mreq->result, mreq->data);
if (debugMem)
CPUPrint("DBGBSU %lld %d merged addr (0x%x)\n",
CPUVec.CycleCount(0), mergeReq->cpunum, mergeReq->addr);
/* free the mreq */
List_Remove(itemPtr);
List_Insert(itemPtr, LIST_ATREAR(&freeMemReqList));
LIST_TO_MREQ(itemPtr)->state = REQ_FREE;
}
}
/* if something on delay queue, make the first entry be the new initiator */
if (!List_IsEmpty(delayHdr)) {
MemRequest *delayReq = LIST_TO_MREQ(List_First(delayHdr));
List_Remove(MREQ_TO_LIST(delayReq));
requestTable[mreq->machnum][rtIndex].initiator = delayReq;
/* if the new initiator is a GET, then move all the other GETs in the delay queue
to the merge queue */
if ((delayReq->cmd & MEMSYS_CMDMASK) == MEMSYS_GET) {
for (itemPtr = List_First(delayHdr), nextPtr = NULL;
!List_IsAtEnd(delayHdr, itemPtr);
itemPtr = nextPtr) {
nextPtr = List_Next(itemPtr);
if ((LIST_TO_MREQ(itemPtr)->cmd & MEMSYS_CMDMASK) == MEMSYS_GET) {
List_Remove(itemPtr);
List_Insert(itemPtr, LIST_ATREAR(mergeHdr));
LIST_TO_MREQ(itemPtr)->state = MEM_MERGE_WAIT;
}
}
}
memState[mreq->memnum]->stats.buCounts[BUC_CONFLICTS]++;
if (debugMem)
CPUPrint("DBGBSU %lld %d issue delayed addr (0x%x)\n",
CPUVec.CycleCount(0), delayReq->cpunum, delayReq->addr);
/* Now let the new initiator arbitrate the bus */
delayReq->state = BUS_ARB_WAIT;
List_Insert(MREQ_TO_LIST(delayReq), LIST_ATREAR(&highPri[mreq->machnum]));
Arbitrate(mreq->machnum);
} else {
/* free the request table entry, and release the first request in RTfullQ */
requestTable[mreq->machnum][rtIndex].used = 0;
if (debugMem)
CPUPrint("DBGBSU %lld %d freeing RT index %d addr(0x%x)\n",
CPUVec.CycleCount(mreq->cpunum), mreq->cpunum, rtIndex, mreq->addr);
if (!List_IsEmpty(&requestTableFullQ[mreq->machnum])) {
itemPtr = List_First(&requestTableFullQ[mreq->machnum]);
List_Remove(itemPtr);
ASSERT(LIST_TO_MREQ(itemPtr)->state == RT_OVERFLOW);
LIST_TO_MREQ(itemPtr)->state = BUS_ARB_WAIT;
List_Insert(itemPtr, LIST_ATREAR(&highPri[mreq->machnum]));
if (debugMem)
CPUPrint("DBGBSU %lld %d issuing RTfullQ addr(0x%x)\n",
CPUVec.CycleCount(mreq->cpunum), LIST_TO_MREQ(itemPtr)->cpunum,
LIST_TO_MREQ(itemPtr)->addr);
}
}
}
/* sharing writeback also go to memory */
if (mreq->result & MEMSYS_RESULT_CACHE) {
mreq->state = MEM_BUSY_WAIT;
mreq->cmd = MEMSYS_SHARING_WRITEBACK;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&memState[mreq->memnum]->memoryQueue));
mreq->memQEnter = CPUVec.CycleCount(mreq->cpunum);
if (!memState[mreq->memnum]->busy)
MemoryArrive(mreq->memnum);
} else {
mreq->state = REQ_FREE;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&freeMemReqList));
}
}
static void
CacheTransferDone(int cpuNum, EventCallbackHdr *hdr, void *arg)
{
MemRequest *mreq = (MemRequest *)hdr;
ASSERT(M_FROM_CPU(cpuNum) == mreq->machnum);
if (mreq->cmd & MEMSYS_DMAFLAVOR) {
if ((mreq->cmd & MEMSYS_CMDMASK) == MEMSYS_GET) {
bcopy(DATA_ADDR(mreq->machnum, mreq->reqAddr), mreq->data, mreq->len);
} else {
ASSERT((mreq->cmd & MEMSYS_CMDMASK) == MEMSYS_GETX);
bcopy(mreq->data, DATA_ADDR(mreq->machnum, mreq->reqAddr), mreq->len);
}
} else {
mreq->data = (byte*)DATA_ADDR(mreq->machnum, mreq->addr);
}
mreq->state = REPLY_BUS_ARB_WAIT;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&highPri[mreq->machnum]));
Arbitrate(mreq->machnum);
}
/* Nak all pending upgrades to the same address */
static void
NakUpgrades(MemRequest *mreq)
{
List_Links *queueHead, *itemPtr, *nextPtr;
if (mreq->rtIndex == -1) {
/* there cannot be a request table entry for this addr, so only check highPri queue */
queueHead = &highPri[mreq->machnum];
} else {
/* there cannot be upgrades in highPri queue, so only check requestTable delay queue */
queueHead = &requestTable[mreq->machnum][mreq->rtIndex].delay;
}
for (itemPtr = List_First(queueHead), nextPtr = NULL;
!List_IsAtEnd(queueHead, itemPtr);
itemPtr = nextPtr) {
MemRequest *req2 = LIST_TO_MREQ(itemPtr);
nextPtr = List_Next(itemPtr);
if ((req2->addr == mreq->addr) &&
((req2->cmd & MEMSYS_CMDMASK) == MEMSYS_UPGRADE)) {
List_Remove(itemPtr);
NakRequest(req2);
}
}
}
/* Check caches and writeback buffers for coherency
*/
static void
CacheSnoop(MemRequest *mreq)
{
MemRequest *wbReq;
int i, way=0, wasDirty, cacheToCache=0;
char *data;
int machine = M_FROM_CPU(mreq->cpunum);
ASSERT(mreq->state == BUS_TRANSFER_WAIT);
/* add gets without request table indexes to request table */
if ((mreq->rtIndex == -1) && (((mreq->cmd & MEMSYS_CMDMASK) == MEMSYS_GET) ||
((mreq->cmd & MEMSYS_CMDMASK) == MEMSYS_GETX))) {
RTInsert(mreq);
}
switch (mreq->cmd & MEMSYS_CMDMASK) {
case MEMSYS_GET:
memState[mreq->memnum]->stats.buCounts[BUC_BUS_GETRQST] += arbitrationCycles + transferCycles;
/* do the sharing writeback if necessary */
for (i = FIRST_CPU(machine); i <= LAST_CPU(machine); i++) {
if ((i == mreq->cpunum) && !(mreq->cmd & MEMSYS_DMAFLAVOR)) continue;
if (IsInSCache(i, BACKMAP_PADDR(mreq->addr,i), MEMSYS_EXCLUSIVE, &data, &way)) {
CacheWriteback(i, BACKMAP_PADDR(mreq->addr,i), SCACHE_LINE_SIZE,
(byte*)DATA_ADDR(mreq->machnum, mreq->addr));
cacheToCache=1;
mreq->result |= MEMSYS_RESULT_DOWNGRADE;
break;
}
wbReq = IsInWBBuffer(i, mreq->addr);
if (wbReq) {
#ifdef DATA_HANDLING
bcopy(wbReq->data, DATA_ADDR(mreq->machnum, mreq->addr),
SCACHE_LINE_SIZE);
#endif
/* remove entry from writeback buffer */
FreeWBentry(wbReq);
cacheToCache=1;
mreq->result |= MEMSYS_RESULT_DOWNGRADE;
break;
}
}
break;
case MEMSYS_GETX:
memState[mreq->memnum]->stats.buCounts[BUC_BUS_GETRQST] += arbitrationCycles + transferCycles;
/* do the sharing writeback and invalidate if necessary */
for (i = FIRST_CPU(machine); i <= LAST_CPU(machine); i++) {
if ((i == mreq->cpunum) && !(mreq->cmd & MEMSYS_DMAFLAVOR)) continue;
if (IsInSCache(i, BACKMAP_PADDR(mreq->addr,i), MEMSYS_EXCLUSIVE, &data, &way)) {
CacheExtract(i, BACKMAP_PADDR(mreq->addr,i), SCACHE_LINE_SIZE, &wasDirty,
(byte*)DATA_ADDR(mreq->machnum, mreq->addr));
cacheToCache=1;
mreq->result |= MEMSYS_RESULT_INVALIDATE;
break;
} else if (IsInSCache(i, BACKMAP_PADDR(mreq->addr,i), MEMSYS_SHARED, &data, &way)) {
CacheInvalidate(i, BACKMAP_PADDR(mreq->addr,i), SCACHE_LINE_SIZE, FALSE, &wasDirty);
mreq->result |= MEMSYS_RESULT_INVALIDATE;
memState[mreq->memnum]->stats.counts[COUNT_INVALORDNGRADESENT]++;
memState[mreq->memnum]->stats.counts[COUNT_EXCLUSIVEONSHARED]++;
} else {
CacheFakeInvalidate(i,BACKMAP_PADDR(mreq->addr,i),SCACHE_LINE_SIZE);
}
wbReq = IsInWBBuffer(i, mreq->addr);
if (wbReq) {
#ifdef DATA_HANDLING
bcopy(wbReq->data, DATA_ADDR(mreq->machnum, mreq->addr),
SCACHE_LINE_SIZE);
#endif
/* remove entry from writeback buffer */
FreeWBentry(wbReq);
cacheToCache=1;
mreq->result |= MEMSYS_RESULT_INVALIDATE;
break;
}
}
NakUpgrades(mreq);
break;
case MEMSYS_UPGRADE:
memState[mreq->memnum]->stats.buCounts[BUC_BUS_UPG] += arbitrationCycles + transferCycles;
/* send invalidate if necessary */
for (i = FIRST_CPU(machine); i <= LAST_CPU(machine); i++) {
if (i == mreq->cpunum) continue;
ASSERT(!IsInSCache(i, BACKMAP_PADDR(mreq->addr,i), MEMSYS_EXCLUSIVE, &data, &way));
if (IsInSCache(i, BACKMAP_PADDR(mreq->addr,i), MEMSYS_SHARED, &data, &way)) {
CacheInvalidate(i, BACKMAP_PADDR(mreq->addr,i), SCACHE_LINE_SIZE, FALSE, &wasDirty);
mreq->result |= MEMSYS_RESULT_INVALIDATE;
memState[mreq->memnum]->stats.counts[COUNT_INVALORDNGRADESENT]++;
memState[mreq->memnum]->stats.counts[COUNT_EXCLUSIVEONSHARED]++;
} else {
CacheFakeInvalidate(i,BACKMAP_PADDR(mreq->addr,i),SCACHE_LINE_SIZE);
}
ASSERT(!IsInWBBuffer(i, mreq->addr));
}
NakUpgrades(mreq);
break;
case MEMSYS_WRITEBACK:
memState[mreq->memnum]->stats.buCounts[BUC_BUS_WB] += arbitrationCycles + transferCycles;
/* just some sanity checks */
for (i = FIRST_CPU(machine); i < LAST_CPU(machine); i++) {
if (i == mreq->cpunum) continue;
ASSERT(!IsInSCache(i, BACKMAP_PADDR(mreq->addr,i), MEMSYS_EXCLUSIVE, &data, &way));
ASSERT(!IsInSCache(i, BACKMAP_PADDR(mreq->addr,i), MEMSYS_SHARED, &data, &way));
ASSERT(!IsInWBBuffer(i, mreq->addr));
}
break;
default:
CPUError("Bad mreq->cmd (0x%x)\n", mreq->cmd);
}
if (cacheToCache) {
if (debugMem)
CPUPrint("DBGBSU %lld %d cacheToCache addr(0x%x)\n",
CPUVec.CycleCount(0), mreq->cpunum, mreq->addr);
mreq->state = CACHE_TRANSFER_WAIT;
mreq->result |= MEMSYS_RESULT_CACHE|MEMSYS_RESULT_DOWNGRADE;
memState[mreq->memnum]->stats.counts[COUNT_REMOTEDIRTY]++;
memState[mreq->memnum]->stats.counts[COUNT_INVALORDNGRADESENT]++;
EventDoCallback(FIRST_CPU(mreq->machnum), CacheTransferDone, (EventCallbackHdr *) mreq, NULL, memoryCycles + dirtyPenalty);
} else if ((mreq->cmd & MEMSYS_CMDMASK) == MEMSYS_UPGRADE) {
mreq->result |= MEMSYS_RESULT_MEMORY; /* doesn't really make sense to set this for upgrades,
but scache wants it set */
CPUArrive(mreq);
} else {
mreq->state = MEM_BUSY_WAIT;
mreq->result |= MEMSYS_RESULT_MEMORY;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&memState[mreq->memnum]->memoryQueue));
mreq->memQEnter = CPUVec.CycleCount(mreq->cpunum);
if (!memState[mreq->memnum]->busy)
MemoryArrive(mreq->memnum);
}
}
/* Bus transfer has finished, so send request to proper place (CPU or memory),
* and setup the next arbitration if there's something in the queues
*/
static void
BusFree(int cpuNum, EventCallbackHdr *hdr, void *arg)
{
MemRequest *mreq = (MemRequest *)hdr;
ASSERT(M_FROM_CPU(cpuNum) == mreq->machnum);
/* Send request to proper place */
if (mreq->state == BUS_TRANSFER_WAIT) {
CacheSnoop(mreq);
} else {
ASSERT(mreq->state == REPLY_BUS_TRANSFER_WAIT);
CPUArrive(mreq);
}
if (busIdleStart[mreq->machnum]) {
memState[FIRST_MEMORY(mreq->machnum)]->stats.buCounts[BUC_BUS_IDLE] +=
CPUVec.CycleCount(0) - busIdleStart[mreq->machnum] -
(arbitrationCycles + transferCycles);
busIdleStart[mreq->machnum] = 0;
}
/* Setup next arbitration */
if (!List_IsEmpty(&highPri[mreq->machnum]) ||
!List_IsEmpty(&lowPri[mreq->machnum])) {
EventDoCallback(FIRST_CPU(mreq->machnum), ArbitrateCallback, (EventCallbackHdr *) &arbitrate[mreq->machnum], NULL, arbitrationCycles);
} else {
busBusy[mreq->machnum] = 0;
busIdleStart[mreq->machnum] = CPUVec.CycleCount(0);
}
}
/* Arbitration cycles are finished, now decide the winner by first checking
* the high priority queue, and then the low priority queue.
*/
static void
ArbitrateCallback(int cpuNum, EventCallbackHdr *hdr, void *arg)
{
List_Links *itemPtr;
MemRequest *mreq;
int machine = M_FROM_CPU(cpuNum);
if (!List_IsEmpty(&highPri[machine])) {
itemPtr = List_First(&highPri[machine]);
} else if (!List_IsEmpty(&lowPri[machine])) {
itemPtr = List_First(&lowPri[machine]);
} else {
/* this could happen if a CPU miss is satisfied from it's
own writeback buffer */
/* Kinshuk, DT: BUT, this happens very often if you do a flush
* followed by a prefetch exclusive (as in the SIPS code).
* So this gets commented out for now.
*/
/*
CPUWarning("ArbitrateCallback called with nothing to do (time: %lld)\n",
CPUVec.CycleCount(cpuNum));
*/
busBusy[machine] = 0;
return;
}
List_Remove(itemPtr);
/* now occupy the bus for the correct number of cycles */
mreq = LIST_TO_MREQ(itemPtr);
if (mreq->state == BUS_ARB_WAIT) {
mreq->state = BUS_TRANSFER_WAIT;
} else {
ASSERT(mreq->state == REPLY_BUS_ARB_WAIT);
mreq->state = REPLY_BUS_TRANSFER_WAIT;
memState[mreq->memnum]->stats.buCounts[BUC_BUS_GETREPLY] += arbitrationCycles + transferCycles;
}
memState[mreq->memnum]->stats.buCounts[BUC_BUS_BUSY] += arbitrationCycles + transferCycles;
EventDoCallback(FIRST_CPU(mreq->machnum), BusFree, (EventCallbackHdr *)mreq, NULL, transferCycles);
}
static void
Arbitrate(int machine)
{
/* if arbitration callback is already set or will be once bus is free, just return */
if (busBusy[machine])
return;
busBusy[machine] = 1;
EventDoCallback(FIRST_CPU(machine), ArbitrateCallback, (EventCallbackHdr *) &arbitrate[machine], NULL, arbitrationCycles);
}
/* Request just arrived from CPU to Bus interface (time to go through caches, etc) */
static void
BusArrive(int cpuNum, EventCallbackHdr *hdr, void *arg)
{
MemRequest *mreq = (MemRequest *)hdr;
MemRequest *wbReq;
char *data;
int i, way=0, requestTableFull;
ASSERT(M_FROM_CPU(cpuNum) == mreq->machnum);
ASSERT(mreq->state == CPU_TO_BUS_OVERHEAD);
/* if this request is for a bogus address, bus error it immediately */
if (!IS_VALID_PA(M_FROM_CPU(cpuNum), mreq->addr)) {
ErrorRequest(mreq);
return;
}
#ifndef SOLO
/* if firewall is on and cpu is trying to write, check the firewall */
if (CPUVec.CheckFirewall) {
int c = mreq->cmd & MEMSYS_CMDMASK;
if ((c == MEMSYS_GETX) || (c == MEMSYS_UPGRADE)) {
if (!CPUVec.CheckFirewall(cpuNum, mreq->addr)) {
ErrorRequest(mreq);
return;
}
}
}
#endif
/* check the writeback buffer first */
switch (mreq->cmd & MEMSYS_CMDMASK) {
case MEMSYS_GET:
wbReq = IsInWBBuffer(cpuNum, mreq->addr);
if (wbReq) {
memState[mreq->memnum]->stats.buCounts[BUC_GET_WBBUF]++;
/*
CPUPrint("DBGBSU %lld GET hit in wbBuffer (0x%x)\n", CPUVec.CycleCount(0), mreq->addr);
*/
#ifdef DATA_HANDLING
bcopy(wbReq->data, DATA_ADDR(mreq->machnum, mreq->addr),
SCACHE_LINE_SIZE);
#endif
CacheCmdDone(cpuNum, mreq->transId, mreq->mode, mreq->status,
MEMSYS_RESULT_MEMORY|MEMSYS_RESULT_NOTRANSITION,
(byte*)DATA_ADDR(mreq->machnum, mreq->addr));
/* free req */
mreq->state = REQ_FREE;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&freeMemReqList));
return;
}
break;
case MEMSYS_GETX:
wbReq = IsInWBBuffer(cpuNum, mreq->addr);
if (wbReq) {
memState[mreq->memnum]->stats.buCounts[BUC_GET_WBBUF]++;
/*
CPUPrint("DBGBSU %lld GETX hit in wbBuffer (0x%x)\n", CPUVec.CycleCount(0), mreq->addr);
*/
#ifdef DATA_HANDLING
bcopy(wbReq->data, DATA_ADDR(mreq->machnum, mreq->addr),
SCACHE_LINE_SIZE);
#endif
/* remove writeback entry because cache now has the most-recent data */
FreeWBentry(wbReq);
CacheCmdDone(cpuNum, mreq->transId, mreq->mode, mreq->status,
MEMSYS_RESULT_MEMORY|MEMSYS_RESULT_NOTRANSITION,
(byte*)DATA_ADDR(mreq->machnum, mreq->addr));
/* free req */
mreq->state = REQ_FREE;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&freeMemReqList));
return;
}
break;
case MEMSYS_UPGRADE:
wbReq = IsInWBBuffer(cpuNum, mreq->addr);
if (wbReq) {
memState[mreq->memnum]->stats.buCounts[BUC_UPG_WBBUF]++;
CPUPrint("DBGBSU %lld UPGRADE hit in wbBuffer (0x%x)\n", CPUVec.CycleCount(0), mreq->addr);
/* remove writeback entry because cache now has the most-recent data */
FreeWBentry(wbReq);
CacheCmdDone(cpuNum, mreq->transId, mreq->mode, mreq->status,
MEMSYS_RESULT_MEMORY|MEMSYS_RESULT_NOTRANSITION,
(byte*)DATA_ADDR(mreq->machnum, mreq->addr));
/* free req */
mreq->state = REQ_FREE;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&freeMemReqList));
return;
}
/* Upgrades need to check wether that cache line is still in cache,
It could've been invalidated by now */
if (!IsInSCache(mreq->cpunum, BACKMAP_PADDR(mreq->addr, mreq->cpunum), MEMSYS_SHARED, &data, &way)) {
NakRequest(mreq);
return;
}
break;
case MEMSYS_WRITEBACK:
/* for writebacks, add to low priority queue */
mreq->state = BUS_ARB_WAIT;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(WB_QUEUE(mreq->machnum)));
Arbitrate(mreq->machnum);
return;
default:
CPUError("Unknown memsys command (0x%x) in BusUma::BusArrive\n", mreq->cmd);
}
/* look for matching requests from other CPUS and merge if both CPUs issued a SHARED mode request,
otherwise add this one to delay queue */
requestTableFull = 1;
for (i = 0; i < REQUEST_TABLE_SIZE; i++) {
if (requestTable[mreq->machnum][i].used) {
if (requestTable[mreq->machnum][i].addr == mreq->addr) {
if ((requestTable[mreq->machnum][i].initiator->mode == MEMSYS_SHARED) &&
(mreq->mode == MEMSYS_SHARED)) {
RTMerge(mreq, i);
} else if (((mreq->cmd & MEMSYS_CMDMASK) == MEMSYS_UPGRADE) &&
(requestTable[mreq->machnum][i].initiator->mode == MEMSYS_EXCLUSIVE)) {
/* by the time this upgrade gets to bus, cache will have been invalidated,
so NAK this request */
NakRequest(mreq);
} else {
RTDelay(mreq, i);
}
return;
}
} else {
requestTableFull = 0;
}
}
/* if request table is full and this is a get or getx, this request will end up getting
nak'ed when it tries to insert itself in request table, so put it on queue */
if (requestTableFull && (((mreq->cmd & MEMSYS_CMDMASK) == MEMSYS_GET) ||
((mreq->cmd & MEMSYS_CMDMASK) == MEMSYS_GETX))) {
mreq->state = RT_OVERFLOW;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&requestTableFullQ[mreq->machnum]));
return;
}
mreq->state = BUS_ARB_WAIT;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&highPri[mreq->machnum]));
Arbitrate(mreq->machnum);
return;
}
/*****************************************************************
* MemsysCmd
*
* Main interface from secondary cache into here
* For DMA opeartions, the writeback parameter holds the
* length of the DMA transfer and is NOT a boolean.
*****************************************************************/
/* xxxxx things to do:
make uncached operations contend for bus
sync??
*/
Result
BusUmaCmd(int cpuNum, int cmd, PA addr, int transId,
PA replacedPaddr, int writeback, byte *data)
{
MemRequest *mreq;
List_Links *itemPtr;
int memnum, overhead;
int machine = M_FROM_CPU(cpuNum);
#ifndef SOLO
addr = REMAP_PADDR(addr, cpuNum);
replacedPaddr = REMAP_PADDR(replacedPaddr, cpuNum);
#endif
if (debugMem)
CPUPrint("DBGBSU %lld CPU %d 0x%x addr 0x%x 0x%x repl 0x%x %d PC 0x%x\n",
CPUVec.CycleCount(0), cpuNum, cmd, addr, transId, replacedPaddr, writeback,
CPUVec.CurrentPC(cpuNum));
if (cmd == MEMSYS_SYNC) {
return SUCCESS;
}
memnum = BusumaAddrToMemnum(machine, addr);
/* for a writeback, add it to writebuffer for this CPU.
If all the writebuffers are full, stall CPU until all the writes are flushed
This CPU will be removed from sharer list after the writeback has been issued
*/
if (writeback && (replacedPaddr != MEMSYS_NOADDR)) {
int rmemnum = BusumaAddrToMemnum(machine, replacedPaddr);
ASSERT(!(cmd & MEMSYS_DMAFLAVOR));
if (IsInWBBuffer(cpuNum, replacedPaddr)) {
CPUError("DBGBSU %lld WB hit in wbBuffer (0x%x)\nThe GetX or upgrade in between should've removed the first wb.\n",
CPUVec.CycleCount(0), replacedPaddr);
} else if (wbBuffers[cpuNum].numUsed == WB_BUFFER_SIZE) {
/* we just got a writeback and all writeback buffers are full,
so store the necessary parameters in overflow buffer,
and move one of the writebacks to high priority queue,
and stall until an entry is free */
List_Links *itemPtr, *nextPtr;
MemRequest *ovfReq;
ASSERT(List_IsEmpty(&wbBuffers[cpuNum].free));
ASSERT(wbBuffers[cpuNum].numOverflowUsed != maxOverflow);
itemPtr = List_First(&freeMemReqList);
ASSERT(itemPtr);
List_Remove(itemPtr);
ovfReq = LIST_TO_MREQ(itemPtr);
ovfReq->state = WB_OVERFLOW;
ovfReq->cmd = cmd;
ovfReq->addr = addr;
ovfReq->transId = transId;
/* i really shoulnd't put replacedPaddr in reqAddr, and writeback in len,
but MemRequest is already big enough, and those two fields are wasted in overflow MemRequest */
ovfReq->reqAddr = replacedPaddr;
ovfReq->len = writeback;
ovfReq->data = data;
List_Insert(itemPtr, LIST_ATREAR(&wbBuffers[cpuNum].overflow));
wbBuffers[cpuNum].numOverflowUsed++;
if (debugMem)
CPUPrint("DBGBSU %lld Writeback buffer full on CPU %d.\n",
CPUVec.CycleCount(cpuNum), cpuNum);
/* stall => move the first entry from lowPri to highPri */
for (itemPtr = List_First(WB_QUEUE(machine)), nextPtr = NULL;
!List_IsAtEnd(WB_QUEUE(machine), itemPtr);
itemPtr = nextPtr) {
MemRequest *mreq = LIST_TO_MREQ(itemPtr);
nextPtr = List_Next(itemPtr);
if (mreq->cpunum == cpuNum) {
List_Remove(itemPtr);
List_Insert(itemPtr, LIST_ATREAR(&highPri[machine]));
break;
}
}
return STALL;
} else {
MemRequest *wbEntry;
List_Links *itemPtr;
ASSERT(!List_IsEmpty(&wbBuffers[cpuNum].free));
itemPtr = List_First(&wbBuffers[cpuNum].free);
List_Remove(itemPtr);
wbBuffers[cpuNum].numUsed++;
memState[rmemnum]->stats.counts[COUNT_WRITEBACKS]++;
wbEntry = LIST_TO_MREQ(itemPtr);
wbEntry->state = CPU_TO_BUS_OVERHEAD;
wbEntry->memnum = rmemnum;
wbEntry->machnum = machine;
wbEntry->cpunum = cpuNum;
wbEntry->starttime = CPUVec.CycleCount(cpuNum);
#ifdef DATA_HANDLING
bcopy(data, wbEntry->data, SCACHE_LINE_SIZE);
#endif
wbEntry->addr = replacedPaddr;
EventDoCallback(cpuNum, BusArrive, (EventCallbackHdr *)wbEntry, NULL, readOverhead);
}
}
/* Handle special case: a GET with transId -1 indicates
* a writeback or repl hint without the associated GET (due
* to a CACHE instruction executed in the processor)
*/
if (((cmd & MEMSYS_CMDMASK) == MEMSYS_GET) && (transId == -1) &&
!(cmd & MEMSYS_DMAFLAVOR)) {
return SUCCESS;
}
/*
* Got a request. Fill allocate and fill in a memrequest and
* model the workload wait time for where it is going;
*/
itemPtr = List_First(&freeMemReqList);
ASSERT(itemPtr);
List_Remove(itemPtr);
mreq = LIST_TO_MREQ(itemPtr);
mreq->cmd = cmd;
mreq->transId = transId;
mreq->reqAddr = addr;
mreq->addr = addr & ~(SCACHE_LINE_SIZE-1);
mreq->memnum = memnum;
mreq->machnum = machine;
mreq->cpunum = cpuNum;
mreq->starttime = CPUVec.CycleCount(cpuNum);
mreq->rtIndex = -1;
if( cmd & MEMSYS_DMAFLAVOR ) {
ASSERT( transId < 0 );
ASSERT( data );
mreq->data = data;
mreq->len = writeback;
} else {
ASSERT( transId >= 0);
mreq->data = NULL;
}
switch (cmd & MEMSYS_CMDMASK) {
case MEMSYS_GET:
mreq->mode = MEMSYS_SHARED;
overhead = readOverhead;
if (cmd & MEMSYS_IFFLAVOR) {
memState[memnum]->stats.counts[COUNT_IGETS]++;
} else if (cmd & MEMSYS_LLFLAVOR) {
memState[memnum]->stats.counts[COUNT_LLGETS]++;
} else if (cmd & MEMSYS_DMAFLAVOR) {
memState[memnum]->stats.counts[COUNT_DMAGETS]++;
} else {
memState[memnum]->stats.counts[COUNT_DGETS]++;
}
break;
case MEMSYS_GETX:
mreq->mode = MEMSYS_EXCLUSIVE;
overhead = readOverhead;
if (cmd & MEMSYS_DMAFLAVOR) {
memState[memnum]->stats.counts[COUNT_DMAGETXS]++;
} else {
memState[memnum]->stats.counts[COUNT_GETXS]++;
}
break;
case MEMSYS_UPGRADE:
mreq->mode = MEMSYS_EXCLUSIVE;
overhead = upgradeOverhead;
if (cmd & MEMSYS_SCFLAVOR) {
memState[memnum]->stats.counts[COUNT_SCUPGRADES]++;
} else {
memState[memnum]->stats.counts[COUNT_UPGRADES]++;
}
break;
case MEMSYS_UNCWRITE: {
Result rval;
memState[memnum]->stats.counts[COUNT_UNCACHEDWRITES]++;
rval = BusUmaUncachedWrite(cpuNum, addr, data, writeback);
/* free mreq becuase it's not used */
mreq->state = REQ_FREE;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&freeMemReqList));
return rval;
}
case MEMSYS_UNCWRITE_ACCELERATED:
memState[memnum]->stats.counts[COUNT_UNCACHEDACCWRITES]++;
BusUmaUncachedWrite(cpuNum, addr, data, writeback);
/* free mreq becuase it's not used */
mreq->state = REQ_FREE;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&freeMemReqList));
return SUCCESS;
case MEMSYS_UNCREAD: {
Result rval;
memState[memnum]->stats.counts[COUNT_UNCACHEDREADS]++;
rval = BusUmaUncachedRead(cpuNum, addr, data, writeback);
/* free mreq becuase it's not used */
mreq->state = REQ_FREE;
List_Insert(MREQ_TO_LIST(mreq), LIST_ATREAR(&freeMemReqList));
return rval;
}
default:
CPUError("Unknown memsys command (0x%x) in BusUmaCmd\n", cmd);
overhead = 0; /* Quite compiler warning message. */
}
/*
* compute a bunch of values to make future routines happier.
*/
mreq->state = CPU_TO_BUS_OVERHEAD;
mreq->status = MEMSYS_STATUS_SUCCESS;
mreq->result = 0;
EventDoCallback(cpuNum, BusArrive, (EventCallbackHdr *)mreq, NULL, overhead);
return STALL;
}
void
BusUmaStatus(void)
{
char buf[1024];
char tmpBuf[32];
int i, memNum;
for (memNum = 0; memNum < TOTAL_MEMORIES; memNum++) {
sprintf(buf, "MEM %d ", memNum);
for (i = 0; i < COUNT_TOTAL; i++) {
sprintf(tmpBuf, LLD_SPACE, memState[memNum]->stats.counts[i]);
strcat(buf, tmpBuf);
}
CPUPrint("%s\n", buf);
sprintf(buf, "MEMBUSUMA %d ", memNum);
for (i = 0; i < BUC_TOTAL; i++) {
sprintf(tmpBuf, LLD_SPACE, memState[memNum]->stats.buCounts[i]);
strcat(buf, tmpBuf);
}
CPUPrint("%s\n", buf);
}
}
void
BusUmaDone(void)
{
CPUPrint("Exiting the BusUma memory system\n");
}
void
BusUmaDumpStats(void)
{
BusUmaStatus();
}
static Result
BusUmaUncachedWrite(int cpuNum, PA addr, byte *data, int len)
{
#ifdef HWBCOPY
/* For now, if the given address is a valid physical address,
* assume that we are doing an access to the MSG space.
* These writes are only needed in Flashlite -- punt here
*/
if (!IS_VALID_PA(M_FROM_CPU(cpuNum), addr))
#endif
{
#ifndef SOLO
/* should check firewall here because flashlite also
* checks it before calling doPio, and doPio can't
* check because cpuNum == dest node when called from
* flashlite.
*
* However things are complicated by the need to determine
* which node addr points at, perhaps firewall writes go
* through here (which means they should be allowed).
* Ignore for now.
*/
Result ret;
ASSERT(CPUVec.UncachedPIO);
ret = CPUVec.UncachedPIO(cpuNum, addr, 0, len, data);
if (ret != SUCCESS) {
CPUError("SimMagic_DoPIO failed: cpu=%d addr=%#llx pc=%#llx \n",
cpuNum,addr,CPUVec.CurrentPC(cpuNum));
return ret;
}
ASSERT(ret == SUCCESS);
#endif
#ifdef SOLO
bcopy(data, (char *)addr, len);
#endif
#ifdef DEBUG_MEM
{
int foo;
bcopy(data, &foo, 4);
CPUPrint("Uncached write (%d bytes) to 0x%x of 0x%x\n",
len, addr, foo);
}
#endif /* DEBUG_MEM */
}
return SUCCESS;
}
static Result
BusUmaUncachedRead(int cpuNum, PA addr, byte *data, int len)
{
#ifdef SOLO
bcopy(data, (char *)addr, len);
#else
Result ret;
ASSERT(CPUVec.UncachedPIO);
ret = CPUVec.UncachedPIO(cpuNum, addr, 1, len, data);
if (ret != SUCCESS) {
CPUWarning("SimMagic_DoPIO failed: cpu=%d addr=%#llx pc=%#llx \n",
cpuNum,addr,CPUVec.CurrentPC(cpuNum));
return BUSERROR;
}
ASSERT(ret == SUCCESS);
#endif
#ifdef DEBUG_MEM
{
int foo;
bcopy(data, &foo, 4);
CPUPrint("Uncached read (%d bytes) to 0x%x of 0x%x\n", len, addr, foo);
}
#endif /* DEBUG_MEM */
return SUCCESS;
}
/* if running with data handling, need to drain writebacks */
static void
BusUmaDrain(void)
{
#ifdef DATA_HANDLING
int i, cpu;
MemRequest *mreq;
for (cpu = 0; cpu < TOTAL_CPUS; cpu++) {
ASSERT(List_IsEmpty(&wbBuffers[cpu].overflow));
if (wbBuffers[cpu].numUsed != 0) {
for (i = 0; i < WB_BUFFER_SIZE; i++) {
mreq = &wbBuffers[cpu].entries[i];
switch (mreq->state) {
case REQ_FREE:
continue;
break;
case MEM_BUSY_WAIT:
List_Remove(MREQ_TO_LIST(mreq)); /* from memoryQueue */
/* fall through */
case CPU_TO_BUS_OVERHEAD:
case BUS_ARB_WAIT:
case BUS_TRANSFER_WAIT:
bcopy(mreq->data, DATA_ADDR(mreq->machnum, mreq->addr),
SCACHE_LINE_SIZE);
FreeWBentry(mreq);
break;
default:
CPUError("State %d not handled.\n", mreq->state);
}
}
}
}
#endif /* DATA_HANDLING */
}