at_ew.v 16.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
/**************************************************************************
 *                                                                        *
 *               Copyright (C) 1994, Silicon Graphics, Inc.               *
 *                                                                        *
 *  These coded instructions, statements, and computer programs  contain  *
 *  unpublished  proprietary  information of Silicon Graphics, Inc., and  *
 *  are protected by Federal copyright  law.  They  may not be disclosed  *
 *  to  third  parties  or copied or duplicated in any form, in whole or  *
 *  in part, without the prior written consent of Silicon Graphics, Inc.  *
 *                                                                        *
 *************************************************************************/

// $Id: at_ew.v,v 1.1.1.1 2002/05/17 06:07:44 blythe Exp $

////////////////////////////////////////////////////////////////////////
//
// Project Reality
//
// module:      at_ew
// description: Attribute buffers for edge walker. Primitives data updates
//		the cycle before it is needed (via mux), but is only used
//		the following cycle. Hardware synchronized attribute data
//		is updated the cycle of the attribute (via mux), but is
//		only used the following cycle, which lines up with the
//		first cycle of a following primitive. QTV will barf on
//		this, since it will see the update cycle as not making
//		timing, while only the following cycle really matters.
//		Unsynchronized attributes update immediately, producing
//		trash for one cycle, followed by good data the next cycle.
//		The csim should generate garbage (0xDEADBEEF, for example)
//		during this trashed update cycle. Some logically synced
//		data require no special buffering because the timing
//		just works out (scissor, the EW dx's and dy's). Unsynced
//		attributes must be maintained by software, using the
//		sync_tile and sync_pipe commands after the last primitive
//		before any unsynced attribute update commands if necessary.
//
// designer:    Phil Gossett
// date:        12/9/94
//
////////////////////////////////////////////////////////////////////////

module at_ew (gclk, reset_l, ncyc, atomic, ew_ep_startspan,
	cs_st_prim, cs_st_attr, cs_cmd, cs_ew_d, ew_cs_busy,
	ew_dxr, ew_dxg, ew_dxb, ew_dxa, ew_dxz,
	ew_dxs, ew_dxt, ew_dxw, ew_dxl, 
	ew_dyr, ew_dyg, ew_dyb, ew_dya, ew_dyz,
	ew_dys, ew_dyt, ew_dyw, ew_dyl, 
	scissor, strobe_sync_full,
	rel_sync_tile, rel_sync_pipe, rel_sync_load,
	ew_image_load, ew_scissor_load, ew_stall_load, ew_offset_load,
	tc_load, st_ncyc, ew_major_sign, ew_offset_sign,
	ew_major_left, ew_minor_left, ew_offset_left, cv_left,
        st_r_left, st_g_left, st_b_left, st_a_left, st_z_left,
        st_s_left, st_t_left, st_w_left, st_l_left,
	ew_scissor_tlut, ew_stall_tlut, at_cs_busy);

input gclk;
input reset_l;
input ncyc;
input atomic;
input ew_ep_startspan;
input cs_st_prim;
input cs_st_attr;
input [5:0] cs_cmd;
input [63:0] cs_ew_d;
input ew_cs_busy;

output [22:0] ew_dxr;		// s15.7  (single buffer)
output [22:0] ew_dxg;		// s15.7  (single buffer)
output [22:0] ew_dxb;		// s15.7  (double buffer off st span)
output [22:0] ew_dxa;		// s15.7  (double buffer off st span)
output [22:0] ew_dxz;		// s15.7  (single buffer)
output [22:0] ew_dxs;		// s15.7  (double buffer off st span)
output [22:0] ew_dxt;		// s15.7  (double buffer off st span)
output [22:0] ew_dxw;		// s15.7  (single buffer)
output [22:0] ew_dxl;		// s15.7  (single buffer)
output [22:0] ew_dyr;		// s15.7  (single buffer)
output [22:0] ew_dyg;		// s15.7  (single buffer)
output [22:0] ew_dyb;		// s15.7  (single buffer)
output [22:0] ew_dya;		// s15.7  (single buffer)
output [22:0] ew_dyz;		// s15.7  (single buffer)
output [22:0] ew_dys;		// s15.7  (single buffer)
output [22:0] ew_dyt;		// s15.7  (single buffer)
output [22:0] ew_dyw;		// s15.7  (single buffer)
output [22:0] ew_dyl;		// s15.7  (single buffer)
output [55:0] scissor;		// 2d 55:32, 25:0	 (single buffer)
output strobe_sync_full;	// 29			 (counter)
output rel_sync_tile;		// 28			 (counter)
output rel_sync_pipe;		// 27			 (counter)
output rel_sync_load;		// 31			 (counter)
output ew_image_load;		// tile(34),block(33),tlut(30) (pipe)
output ew_scissor_load;		// tile(34),block(33),tlut(30) (pipe)
output ew_stall_load;		// tile(34),block(33),tlut(30) (pipe)
output ew_offset_load;		// tile(34),block(33),tlut(30) (pipe)
output tc_load;			// tile(34),block(33),tlut(30) (pipe)
output st_ncyc;			// ncyc for s,t steppers (load overrides)
output ew_major_sign;		// primitives (36,24,25,0f-08) (pipe)
output ew_offset_sign;		// primitives (36,24,25,0f-08) (pipe)
output ew_major_left;		// primitives (36,24,25,0f-08) (pipe)
output ew_minor_left;		// primitives (36,24,25,0f-08) (pipe)
output ew_offset_left;		// primitives (36,24,25,0f-08) (pipe)
output cv_left;			// primitives (36,24,25,0f-08) (pipe)
output st_r_left;               // primitives (36,24,25,0f-08) (pipe)
output st_g_left;               // primitives (36,24,25,0f-08) (pipe)
output st_b_left;               // primitives (36,24,25,0f-08) (pipe)
output st_a_left;               // primitives (36,24,25,0f-08) (pipe)
output st_z_left;               // primitives (36,24,25,0f-08) (pipe)
output st_s_left;               // primitives (36,24,25,0f-08) (pipe)
output st_t_left;               // primitives (36,24,25,0f-08) (pipe)
output st_w_left;               // primitives (36,24,25,0f-08) (pipe)
output st_l_left;               // primitives (36,24,25,0f-08) (pipe)
output ew_scissor_tlut;		// tlut(30)                    (pipe)
output ew_stall_tlut;		// tlut(30)                    (pipe)
output at_cs_busy;		// extended version of ew_cs_busy (counter)

wire [63:0] d_lat;		// delayed latched input
wire [7:0] code_0d;		// control pipeline input

reg [2:0] code_1d;		// pipeline for control
reg [2:0] code_2d;
reg [2:0] code_3d;
reg [2:0] code_4d;
reg [2:0] code_5d;
reg [2:0] code_6d;
reg [2:0] code_7d;
reg [2:0] code_8d;
reg [2:0] code_9d;
reg [2:0] code_10d;
reg [2:0] code_11d;
reg [2:0] code_12d;
reg [2:0] code_13d;
reg [2:0] code_14d;
reg [2:0] code_15d;
reg [2:0] code_16d;
reg [2:0] code_17d;
reg [2:0] code_18d;
reg [2:0] code_19d;
reg [2:0] code_20d;
reg [2:0] code_21d;

wire [1:0] dxr_g;	// latch enables
wire [1:0] dxg_g;
wire [1:0] dxb_g;
wire [1:0] dxa_g;
wire [1:0] dxz_g;
wire [1:0] dxs_g;
wire [1:0] dxt_g;
wire [1:0] dxw_g;
wire [1:0] dxl_g;
wire [1:0] dyr_g;
wire [1:0] dyg_g;
wire [1:0] dyb_g;
wire [1:0] dya_g;
wire [1:0] dyz_g;
wire [1:0] dys_g;
wire [1:0] dyt_g;
wire [1:0] dyw_g;
wire [1:0] dyl_g;
wire sc_g;
wire load_g;
wire sign_g;
wire left_g;
wire tlut_g;
wire sync_full;
wire sync_tile;
wire sync_pipe;
wire sync_load;

wire d_ld;		// synthesized for primitives
wire d_tl;

wire [31:0] ew_dxr_a;	// latch outputs
wire [31:0] ew_dxg_a;
wire [31:0] ew_dxb_a;
wire [22:0] ew_dxb_b;
wire [31:0] ew_dxa_a;
wire [22:0] ew_dxa_b;
wire [31:0] ew_dxz_a;
wire [31:0] ew_dxs_a;
wire [22:0] ew_dxs_b;
wire [31:0] ew_dxt_a;
wire [22:0] ew_dxt_b;
wire [31:0] ew_dxw_a;
wire [31:0] ew_dxl_a;
wire [31:0] ew_dyr_a;
wire [31:0] ew_dyg_a;
wire [31:0] ew_dyb_a;
wire [31:0] ew_dya_a;
wire [31:0] ew_dyz_a;
wire [31:0] ew_dys_a;
wire [31:0] ew_dyt_a;
wire [31:0] ew_dyw_a;
wire [31:0] ew_dyl_a;
wire [55:0] scissor_a;
wire load_1d;
wire sign_3d;
wire left_1d;
wire tlut_1d;

reg load_2d;	// pipeline
reg load_3d;
reg load_4d;
reg load_5d;
reg load_6d;
reg load_7d;
reg load_8d;
reg load_9d;
reg load_10d;
reg load_11d;
reg load_12d;
reg load_13d;
reg load_14d;
reg load_15d;
reg load_16d;
reg load_17d;
reg load_18d;
reg load_19d;
reg load_20d;
reg load_21d;

reg sign_4d;	// pipeline
reg sign_5d;
reg sign_6d;
reg sign_7d;
reg sign_8d;
reg sign_9d;
reg sign_10d;
reg sign_11d;
reg sign_12d;
reg sign_13d;
reg sign_14d;
reg sign_15d;
reg sign_16d;
reg sign_17d;

reg left_2d;	// pipeline
reg left_3d;
reg left_4d;
reg left_5d;
reg left_6d;
reg left_7d;
reg left_8d;
reg left_9d;
reg left_10d;
reg left_11d;
reg left_12d;
reg left_13d;
reg left_14d;
reg left_15d;
reg left_16d;
reg left_17d;
reg left_18d;
reg left_19d;
reg left_20d;
reg left_21d;
reg left_22d;
reg left_23d;
reg left_24d;
reg left_25d;
reg left_26d;
reg left_27d;
reg left_28d;
reg left_29d;
reg left_30d;
reg left_31d;
reg left_32d;
reg left_33d;
reg left_34d;
reg left_35d;
reg left_36d;

reg tlut_2d;	// pipeline
reg tlut_3d;
reg tlut_4d;
reg tlut_5d;
reg tlut_6d;
reg tlut_7d;
reg tlut_8d;
reg tlut_9d;
reg tlut_10d;
reg tlut_11d;
reg tlut_12d;
reg tlut_13d;

reg st_ncyc;		// outputs

wire reset;

// invert reset (this week)
assign reset = ~reset_l;

// control pipeline input
assign code_0d = {cs_st_prim,cs_st_attr,cs_cmd};

// pipeline for control
always @(posedge gclk)
begin
	code_1d <= {code_0d[7], (code_0d[6:0] == 7'h7a),  // prim color
				(code_0d[6:0] == 7'h6e)}; // prim depth
	code_2d <= code_1d;
	code_3d <= code_2d;
	code_4d <= code_3d;
	code_5d <= code_4d;
	code_6d <= code_5d;
	code_7d <= code_6d;
	code_8d <= code_7d;
	code_9d <= code_8d;
	code_10d <= code_9d;
	code_11d <= code_10d;
	code_12d <= code_11d;
	code_13d <= code_12d;
	code_14d <= code_13d;
	code_15d <= code_14d;
	code_16d <= code_15d;
	code_17d <= code_16d;
	code_18d <= code_17d;
	code_19d <= code_18d;
	code_20d <= code_19d;
	code_21d <= code_20d;
end

// generate latch enables for single buffers
assign dxr_g[1] = code_11d[2];
assign dxr_g[0] = code_10d[2];
assign dxg_g[1] = code_11d[2];
assign dxg_g[0] = code_10d[2];
assign dxb_g[1] = code_9d[2];
assign dxb_g[0] = code_8d[2];
assign dxa_g[1] = code_9d[2];
assign dxa_g[0] = code_8d[2];
assign dxz_g[1] = code_12d[2];
assign dxz_g[0] = code_12d[2];
assign dxs_g[1] = code_5d[2];
assign dxs_g[0] = code_4d[2];
assign dxt_g[1] = code_5d[2];
assign dxt_g[0] = code_4d[2];
assign dxw_g[1] = code_7d[2];
assign dxw_g[0] = code_6d[2];
assign dxl_g[1] = code_7d[2];
assign dxl_g[0] = code_6d[2];
assign dyr_g[1] = code_20d[2];
assign dyr_g[0] = code_19d[2];
assign dyg_g[1] = code_20d[2];
assign dyg_g[0] = code_19d[2];
assign dyb_g[1] = code_18d[2];
assign dyb_g[0] = code_17d[2];
assign dya_g[1] = code_18d[2];
assign dya_g[0] = code_17d[2];
assign dyz_g[1] = code_21d[2];
assign dyz_g[0] = code_21d[2];
assign dys_g[1] = code_14d[2];
assign dys_g[0] = code_13d[2];
assign dyt_g[1] = code_14d[2];
assign dyt_g[0] = code_13d[2];
assign dyw_g[1] = code_16d[2];
assign dyw_g[0] = code_15d[2];
assign dyl_g[1] = code_16d[2];
assign dyl_g[0] = code_15d[2];
assign sc_g     = (code_0d[6:0] == 7'h6d);
assign sync_full= (code_0d[6:0] == 7'h69);
assign sync_tile= (code_0d[6:0] == 7'h68);
assign sync_pipe= (code_0d[6:0] == 7'h67);
assign sync_load= (code_0d[6:0] == 7'h66);
assign load_g   = code_0d[7];
assign left_g   = code_0d[7];
assign sign_g	= code_2d[2];
assign tlut_g   = code_0d[7];
assign d_ld     = (code_0d[5:0] == 6'h34) ||	// load tile
		  (code_0d[5:0] == 6'h33) ||	// load block
		  (code_0d[5:0] == 6'h30);	// load tlut
assign d_tl     =  code_0d[5:0] == 6'h30;	// load tlut

// instanciated latches
at_latch64 dlat   (.clkn( gclk),   .i(cs_ew_d), .z(d_lat));
at_latch32 ewdxr (.clk(gclk),.g( dxr_g),.i({2{d_lat[31:16]}}),.z(ew_dxr_a));
at_latch32 ewdxg (.clk(gclk),.g( dxg_g),.i({2{d_lat[15: 0]}}),.z(ew_dxg_a));
at_latch32 ewdxb (.clk(gclk),.g( dxb_g),.i({2{d_lat[31:16]}}),.z(ew_dxb_a));
at_latch32 ewdxa (.clk(gclk),.g( dxa_g),.i({2{d_lat[15: 0]}}),.z(ew_dxa_a));
at_latch32 ewdxz (.clk(gclk),.g( dxz_g),.i(   d_lat[31: 0]  ),.z(ew_dxz_a));
at_latch32 ewdxs (.clk(gclk),.g( dxs_g),.i({2{d_lat[31:16]}}),.z(ew_dxs_a));
at_latch32 ewdxt (.clk(gclk),.g( dxt_g),.i({2{d_lat[15: 0]}}),.z(ew_dxt_a));
at_latch32 ewdxw (.clk(gclk),.g( dxw_g),.i({2{d_lat[31:16]}}),.z(ew_dxw_a));
at_latch32 ewdxl (.clk(gclk),.g( dxl_g),.i({2{d_lat[15: 0]}}),.z(ew_dxl_a));
at_latch32 ewdyr (.clk(gclk),.g( dyr_g),.i({2{d_lat[31:16]}}),.z(ew_dyr_a));
at_latch32 ewdyg (.clk(gclk),.g( dyg_g),.i({2{d_lat[15: 0]}}),.z(ew_dyg_a));
at_latch32 ewdyb (.clk(gclk),.g( dyb_g),.i({2{d_lat[31:16]}}),.z(ew_dyb_a));
at_latch32 ewdya (.clk(gclk),.g( dya_g),.i({2{d_lat[15: 0]}}),.z(ew_dya_a));
at_latch32 ewdyz (.clk(gclk),.g( dyz_g),.i(   d_lat[31: 0]  ),.z(ew_dyz_a));
at_latch32 ewdys (.clk(gclk),.g( dys_g),.i({2{d_lat[31:16]}}),.z(ew_dys_a));
at_latch32 ewdyt (.clk(gclk),.g( dyt_g),.i({2{d_lat[15: 0]}}),.z(ew_dyt_a));
at_latch32 ewdyw (.clk(gclk),.g( dyw_g),.i({2{d_lat[31:16]}}),.z(ew_dyw_a));
at_latch32 ewdyl (.clk(gclk),.g( dyl_g),.i({2{d_lat[15: 0]}}),.z(ew_dyl_a));
at_latch23 ewdzb (.g(ew_ep_startspan),    .i(ew_dxb_a[31:9]),   .z(ew_dxb_b));
at_latch23 ewdza (.g(ew_ep_startspan),    .i(ew_dxa_a[31:9]),   .z(ew_dxa_b));
at_latch23 ewdzs (.g(ew_ep_startspan),    .i(ew_dxs_a[31:9]),   .z(ew_dxs_b));
at_latch23 ewdzt (.g(ew_ep_startspan),    .i(ew_dxt_a[31:9]),   .z(ew_dxt_b));
at_latch56 sca   (.clk(gclk),.g(  sc_g),.i(d_lat[55:0]),      .z(scissor_a));
at_latch1  loada (.clk(gclk),.g(load_g),.i(d_ld),             .z(load_1d));
at_latch1  sgn3d (.clk(gclk),.g(sign_g),.i(d_lat[31]),        .z(sign_3d));
at_latch1  lft1d (.clk(gclk),.g(left_g),.i(d_lat[55]),        .z(left_1d));
at_latch1  tluta (.clk(gclk),.g(tlut_g),.i(d_tl),             .z(tlut_1d));

// pipeline for load, sign and left
always @(posedge gclk)
begin
	load_2d <= load_1d;
	load_3d <= load_2d;
	load_4d <= load_3d;
	load_5d <= load_4d;
	load_6d <= load_5d;
	load_7d <= load_6d;
	load_8d <= load_7d;
	load_9d <= load_8d;
	load_10d <= load_9d;
	load_11d <= load_10d;
	load_12d <= load_11d;
	load_13d <= load_12d;
	load_14d <= load_13d;
	load_15d <= load_14d;
	load_16d <= load_15d;
	load_17d <= load_16d;
	load_18d <= load_17d;
	load_19d <= load_18d;
	load_20d <= load_19d;
	load_21d <= load_20d;

	sign_4d <= sign_3d;
	sign_5d <= sign_4d;
	sign_6d <= sign_5d;
	sign_7d <= sign_6d;
	sign_8d <= sign_7d;
	sign_9d <= sign_8d;
	sign_10d <= sign_9d;
	sign_11d <= sign_10d;
	sign_12d <= sign_11d;
	sign_13d <= sign_12d;
	sign_14d <= sign_13d;
	sign_15d <= sign_14d;
	sign_16d <= sign_15d;
	sign_17d <= sign_16d;

	left_2d <= left_1d;
	left_3d <= left_2d;
	left_4d <= left_3d;
	left_5d <= left_4d;
	left_6d <= left_5d;
	left_7d <= left_6d;
	left_8d <= left_7d;
	left_9d <= left_8d;
	left_10d <= left_9d;
	left_11d <= left_10d;
	left_12d <= left_11d;
	left_13d <= left_12d;
	left_14d <= left_13d;
	left_15d <= left_14d;
	left_16d <= left_15d;
	left_17d <= left_16d;
	left_18d <= left_17d;
	left_19d <= left_18d;
	left_20d <= left_19d;
	left_21d <= left_20d;
	left_22d <= left_21d;
	left_23d <= left_22d;
	left_24d <= left_23d;
	left_25d <= left_24d;
	left_26d <= left_25d;
	left_27d <= left_26d;
	left_28d <= left_27d;
	left_29d <= left_28d;
	left_30d <= left_29d;
	left_31d <= left_30d;
	left_32d <= left_31d;
	left_33d <= left_32d;
	left_34d <= left_33d;
	left_35d <= left_34d;
	left_36d <= left_35d;

	tlut_2d <= tlut_1d;
	tlut_3d <= tlut_2d;
	tlut_4d <= tlut_3d;
	tlut_5d <= tlut_4d;
	tlut_6d <= tlut_5d;
	tlut_7d <= tlut_6d;
	tlut_8d <= tlut_7d;
	tlut_9d <= tlut_8d;
	tlut_10d <= tlut_9d;
	tlut_11d <= tlut_10d;
	tlut_12d <= tlut_11d;
	tlut_13d <= tlut_12d;
end

// counters for sync release
at_ctrn ctsyfu	(.clk(gclk), .rst(reset), .enb(sync_full),
			.cnt(6'd42), .z(strobe_sync_full));
at_ctrn ctsypi	(.clk(gclk), .rst(reset), .enb(sync_pipe),
			.cnt(6'd42),    .z(rel_sync_pipe));
at_ctrn ctsyti	(.clk(gclk), .rst(reset), .enb(sync_tile),
			.cnt(6'd25),    .z(rel_sync_tile));
at_ctrn ctsyld	(.clk(gclk), .rst(reset), .enb(sync_load),
			.cnt(6'd17),    .z(rel_sync_load));
at_ctrb ctbusy	(.clk(gclk), .rst(reset), .enb(ew_cs_busy & atomic),
			.cnt(6'd37),        .z(at_cs_busy));

// read latches with bit assignments and padding (unused latches eaten)
assign ew_dxr = ew_dxr_a[31:9];					// s15.7
assign ew_dxg = ew_dxg_a[31:9];
assign ew_dxb = ew_dxb_b;
assign ew_dxa = ew_dxa_b;
assign ew_dxz = ew_dxz_a[31:9];
assign ew_dxs = ew_dxs_b;
assign ew_dxt = ew_dxt_b;
assign ew_dxw = ew_dxw_a[31:9];
assign ew_dxl = ew_dxl_a[31:9];
assign ew_dyr = ew_dyr_a[31:9];
assign ew_dyg = ew_dyg_a[31:9];
assign ew_dyb = ew_dyb_a[31:9];
assign ew_dya = ew_dya_a[31:9];
assign ew_dyz = ew_dyz_a[31:9];
assign ew_dys = ew_dys_a[31:9];
assign ew_dyt = ew_dyt_a[31:9];
assign ew_dyw = ew_dyw_a[31:9];
assign ew_dyl = ew_dyl_a[31:9];
assign scissor = {scissor_a[55:32], 6'b0, scissor_a[25:0]};
assign ew_image_load   = load_1d;			// 1
assign ew_scissor_load = load_4d;			// 4
assign ew_stall_load   = load_13d;			// 13
assign ew_offset_load  = load_17d;			// 17
assign ew_major_sign   = sign_4d;			// 4
assign ew_offset_sign  = sign_17d;			// 17
assign ew_major_left   = left_4d;			// 4
assign ew_minor_left   = left_13d;			// 13
assign ew_offset_left  = left_17d;			// 17
assign cv_left         = left_13d;			// 13
assign tc_load         = load_21d;			// 21
assign st_s_left       = left_23d;			// 23
assign st_t_left       = left_23d;			// 23
assign st_w_left       = left_21d;			// 21
assign st_l_left       = left_22d;			// 22
assign st_r_left       = left_34d;			// 34
assign st_g_left       = left_34d;			// 34
assign st_b_left       = left_34d;			// 34
assign st_a_left       = left_34d;			// 34
assign st_z_left       = left_36d;			// 36
assign ew_scissor_tlut = tlut_4d;			// 4
assign ew_stall_tlut   = tlut_13d;			// 13

// reclock load and left mux outputs for speed
always @(posedge gclk)
begin
	st_ncyc   <= ncyc & !load_21d;			// 22
end

endmodule // at_ew