ms_rp.v 46.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
 /************************************************************************\
 *                                                                        *
 *               Copyright (C) 1994, Silicon Graphics, Inc.               *
 *                                                                        *
 *  These coded instructions, statements, and computer programs  contain  *
 *  unpublished  proprietary  information of Silicon Graphics, Inc., and  *
 *  are protected by Federal copyright  law.  They  may not be disclosed  *
 *  to  third  parties  or copied or duplicated in any form, in whole or  *
 *  in part, without the prior written consent of Silicon Graphics, Inc.  *
 *                                                                        *
 \************************************************************************/

// $Id: ms_rp.v,v 1.1.1.1 2002/05/17 06:07:47 blythe Exp $
//		rdp-sync'd control and datapath for memspan
//	this module receives "startspan" from EW pipe and delays it
//	thru a pipeline for use by the memspan RMW datapath;
//	generates validcycle, validcount, valid, endspan;
//	contains all r/w c/z spanbuf regfile pointers and r/w c/z
//	extraction/insertion pointers;  generates overflow stalls
//	for spanbuf accesses;  phases data flow for spanbuf c/z writes
//	depending on depth, z enable etc. to minimize (sustained) conflicts
//	at spanbuf r/w ports;  assembles c/z writemasks as needed and
//	generates write requests (creqw, zreqw) to the state machine modules.

//	mechanism: ptr if = rbptr generates immediate stall
//	as fn of r/w enable, planes enable, valid. stall goes away at rbptr++.

//	later:  copy alphacompareenable wmask contributions....
//	later: loadmode/copymode use for controlling load/copy wmask?
//      also:  rgb dither?????? maybe need to do in phil's block, as
//		not enuf time in our path (in-mux-transp-mux-regwrite-3ns tsu!)
//			**also remember there's a clock boundary too!**

//mods 10-12-94:  two cycle mode requires c/z r/w -ptrold registers for reg gen
//mods 10-19-94:  add dither rgb; affects input of reg rdpwcolord1; add dithen
//mods 10-20-94:  disable spanbuf write requests/stalls if wrfillmode_buf set
//mods 10-24-94:  cwmask uses (colorwen or fillmode)
//mods 10-25-94:  rep fout2 to 8b;  and with !fillmode/copymode;
//also mod'd cwmask update as fn of creqw/resetcreqw;  test, mod z also.
//but...really need gclock stalls here..
//mods 11-2  add c/zr/wptrt*sb and nextc/zr/wptrsb versions
//mods 11-5  make fullc/zwmt11 independent of *enwritec/z, for ptr usage (ms_sc)
//mods 11-7  add endspant14 for sc usage;  add copywen/mod cwmask; TBD: logic**
//mods 11-8  inhibit next c/zreqw with stopgclock, to avoid multi stall deadlock
//		add clock domain for c/zreqw state
//mods 11-10 add c/zreqrdt4/2c, rdpc/zwptrsbc and output for ms_si transp latches
//mods 11-12/94 fix setvalid term; mod cptrinc to 2 for rmwloadtlut;
//	add validt2ld, validt3ld for load_dv/dve calc and loadcount;
//	mod startspant7 out to startspant7m, as it's a muxed value.
//mods 11-15-94:  adj zreqwrt9 xor, have to do creqwr as well.....****
//  	11-16-94 cwmask update also for loadmode; finish all nxtptrs fn copymode
//	  mod copywen to 8b;  make it an input from ms_si;
//	11-17 add outputs rdpc/zwptrn (negedge clock, half phase early) to ms_si
//		and generate likewise validt9cn,11cn and stall all of above;
//	11-20 force c/zwmzero low for now....test later. mod creqwrt11;
//	11-21 add stallwptr for ms_si we kill; add rmwcsize32 for cptrinc;
//	11-22 mod startvalid;
//	11-23 mod c/zwptrt10 to xor w/xdec all bits; **later:  readptrs too***
//	12-1 mod stallzw for copymode16 case
//	12-5 add variable delay on startspant0, create d1-d6, and 0m versions
//	  mod fullc/zwmt11 to accommodate 4/8 word cases;  import wrrender_buf;
//	  also, mod copy:  delays = 6 (2cy), 1 (copy), 0 (load), 4 (other);
//	12-6 add nirvana, add 6 more delays startspan;
//		load:  d3, copy: d4, 1cycle: d10, 2cycle: d12;
//		minus one above to startspant0, which then creates stalls;
//	12-7 mod above to have d1-d11, then t0;  stall at d2 (conservative);
//		mod input to "startspan", undo d2 mod;  reset rd*modes;
//	12-8 re-enable write bypass of c/zwmzero;
//***************this version undoes above****************
//	12-12 revise always @ loop of endspant0 to fix simulator bug (now assigns)
//	12-13 allow culling of cwmzero/zwmzero cases; fix color dither field
//	12-14 fix color dither to use bitwise OR....and fix dith color generation
//	12-15 add ldstall, lddelayd1/d2 to fix load_tile bug? add wrloadmode in;
//	12-19 add mods to above via lddelayd1a/2a;
//	12-20 cleanup;
//	12-22 translucency fix:  allow zreqw, set zwmzero for zr/!zw/!ldmode
//		add inports:  wrloadmode_buf, wrenreadz_buf;
//	12-27 cleanup and merge jlsmith's improvements;
//	12-29 fix alphacompare bitwise OR bug;
//	12-29 delete envphaset0 register, unused;
//	12-30 new year's hack:  add output validt2 to ms_sc;
//	1-4  add inport test_mode1 to force high c/zwmzero to kill rdram writes;
//		add/reg outports stallc/zr/wd;
//	1-5  remove c/zwmzero kill;
//	1-9  instantiate negedge dff's;  add wires cwptrfn, zwptrfn[7:0];
//	1-24 this is a test version to convert latch8/10 to neg clock transp
//		here we reassign rdpc/zwptrn to be merely c/zwptrt8/10sb
//		and ditto for rdpreqzw/cw with validt9/11;
//	1-25 add gclk'd flop delay to rdpc/zwptrn generation;

`timescale 1ns/1ns

module ms_rp(clock, gclock, reset_l, startspan, pixcount, stepcount, 
	rdloadmode, rdfillmode, rdcopymode, rmwxdec, stopgclock,
	rdtwophase, rmwtwophase, rmwloadmode, rmwcopymode, rmwfillmode,
	rmwloadtlut, rdperclk8, rdperclk4, rdperclk2,
	rmwperclk8, rmwperclk4, rmwperclk2, rmwcxi, rmwzxi,
	wrcxi_buf, wrcxf_buf, wrzxi_buf, wrxdec_buf,
	rbzrptr, rbcrptr, rbzwptr, rbcwptr, rmwenreadz, rmwenreadc,
	rmwenwritec, rmwenwritez, rmwcsize16, rmwcsize32,
	rdpwdepthin, rdpwcolorin, rdpcolorwen, alphacompen, dithalphaen,
	dithrgben, blendalpha, dithalpha, ccalpha, rand_r, rand_g, rand_b,
	rdcxi, savezxi, rdxdec, wrloadmode,
	resetcreqw, resetzreqw, wrenwritez_buf, wrenwritec_buf,
	wrcsize8_buf, wrcsize16_buf, wrcsize32_buf,
	wrfillmode_buf, wrcopymode_buf, copywen, wrrender_buf,
	rmwrbcrptr, rdrbzrptr, wrrbcrptr_buf, wrrbzrptr_buf,
	wrloadmode_buf, wrenreadz_buf, test_mode1,
	
	startspant1, startspant7m, startspant12, endspant11,
	endspant12, endspant14, rdpcwptrn, rdpzwptrn, stallwptr,
	stallptr, stallczwm, load_dv, load_dve, startspant8,
	creqw, zreqw, cwmask, zwmask, cwmzero, zwmzero, validt2,
	stallcrd, stallzrd, stallcwd, stallzwd, stallczwmd,
	rdprpixz, rdprpixc, rdpwpixz, rdpwpixc, rdpreqzr, rdpreqcr,
	rdpreqzw, rdpreqcw, rdpzrptrsb, rdpcrptrsb, rdpzwptrsbc, rdpcwptrsbc,
	rdpwdepth, rdpwcolor, fullcwmt11, fullzwmt11, startspant0);

`include "ms.vh"

input clock;					// system clock
input gclock;
input reset_l;					// system reset
input stopgclock;

input startspan;
input [11:0] pixcount;				//total span iterations
input [11:0] stepcount;				//post-scissored iterations
input rmwxdec;
input rdtwophase;
input rmwtwophase;
input rmwloadmode;
input rmwcopymode;
input rmwfillmode;
input rdperclk8;
input rdperclk4;
input rdperclk2;
input rmwperclk8;
input rmwperclk4;
input rmwperclk2;
input [25:0] rmwcxi;
input [25:0] rmwzxi;

input [3:0] rbzrptr;
input [3:0] rbcrptr;
input [3:0] rbzwptr;
input [3:0] rbcwptr;

input rdloadmode;
input rdfillmode;
input rdcopymode;

input rmwenreadc;
input rmwenreadz;
input rmwenwritec;
input rmwenwritez;
input rmwcsize16;
input rmwcsize32;
input rmwloadtlut;
input wrloadmode;

input [17:0] rdpwdepthin;
input [26:0] rdpwcolorin;	
input rdpcolorwen;
input alphacompen;
input dithalphaen;
input dithrgben;
input [7:0] blendalpha;
input [7:0] dithalpha;
input [7:0] ccalpha;
input [2:0] rand_r;
input [2:0] rand_g;
input [2:0] rand_b;

input [25:0] rdcxi;
input [25:0] savezxi;
input rdxdec;
input [25:0] wrcxi_buf;
input [11:0] wrcxf_buf;
input [25:0] wrzxi_buf;
input wrxdec_buf;
input wrenwritec_buf;
input wrenwritez_buf;

input resetcreqw;
input resetzreqw;
input wrcsize8_buf, wrcsize16_buf, wrcsize32_buf;
input wrfillmode_buf, wrcopymode_buf;

input [3:0] rmwrbcrptr, rdrbzrptr, wrrbcrptr_buf, wrrbzrptr_buf;
input [7:0] copywen;
input wrrender_buf;
input wrloadmode_buf, wrenreadz_buf;
input test_mode1;

output startspant1;
output startspant7m;
output startspant12;
output endspant11;
output stallptr;
output stallczwm;
output stallczwmd;
output creqw;
output zreqw;
output [63:0] cwmask;
output [31:0] zwmask;
output cwmzero;
output zwmzero;
output validt2;

output stallcrd, stallzrd, stallcwd, stallzwd;

output endspant12, endspant14;

output rdpreqzr, rdpreqcr, rdpreqzw, rdpreqcw;
output rdprpixz, rdprpixc, rdpwpixz, rdpwpixc;
output [6:0] rdpzrptrsb, rdpcrptrsb, rdpzwptrsbc, rdpcwptrsbc;
output startspant8;
output [6:0] rdpcwptrn, rdpzwptrn;

output [17:0] rdpwdepth;
output [26:0] rdpwcolor;
output load_dv, load_dve;			//for tristate WE's on loads
output fullcwmt11, fullzwmt11;
output stallwptr;
output startspant0;

// input/output registers

reg validcyclet1;
reg endvalidt1;
reg enphaset0;
reg [11:0] currcount;
reg [11:0] rmwstepcount;
reg startvalid; 

reg [7:0] zrptrt1;
reg [7:0] zrptrt2;
reg [7:0] crptrt3;
reg [7:0] crptrt4;

reg [17:0] rdpwdepthd1;
reg [17:0] rdpwdepthd2;
reg [26:0] rdpwcolord1;
reg [26:0] rdpwcolord2;
reg [26:0] rdpwcolord3;

reg [7:0] zwptrt8;
reg [7:0] zwptrt9;
reg [7:0] zwptrt10;
reg [7:0] zwptrt11;
reg [7:0] cwptrt11;
reg [7:0] cwptrt10;

reg [63:0] cwmask;
reg [31:0] zwmask;
reg [63:0] nxtwmaskc;
reg [31:0] nxtwmaskz;
reg cwmzero, zwmzero;

reg xdect3, xdect8, xdect10;
reg rdpwend1, rdpwend2, rdpwend3;
reg alphacompd1, alphacompd2, alphacompd3;
reg [12:0] loadcount;

reg stallcrd, stallzrd, stallcwd, stallzwd;

// internal registers

reg [2:0] cxit11, cxft11;
reg endspant0en;
reg [4:0] nirvana;				//test coverage indicator only
reg load_dv, load_dve;

// non-resettable registers

reg lddelayd1, lddelayd2;
reg lddelayd1a, lddelayd2a;
//reg [6:0] rdpcwptrn, rdpzwptrn;
reg zrptrold, crptrold, zwptrold, cwptrold;
reg zwptrold2, cwptrold2;
reg zreqrdt2, zreqrdt2c, creqrdt4, creqrdt4c, zreqwrt9, creqwrt11;
reg creqw, zreqw;
reg startspand1, startspand2, startspand3, startspand4,
        startspand5, startspand6, startspand7, startspand8,
        startspand9, startspand10, startspand11, startspant0;
reg [2:0] cwptrmodt11;
reg fullcwmt11, fullzwmt11;
reg [7:0] zrptrt1sb, crptrt3sb, zwptrt8sb, cwptrt10sb;
reg [7:0] zrptrt2sb, crptrt4sb, zwptrt9sb, cwptrt11sb;
//reg validt11cn, validt9cn;
reg [6:0] cwptrt11sbc, zwptrt9sbc;
reg validt2ld, validt3ld;

reg startspant1, startspant2, startspant3, startspant4, startspant5,
        startspant6, startspant7, startspant7m,
        startspant8, startspant9, startspant10,
        startspant11, startspant12;
reg endspant1, endspant2, endspant3, endspant4, endspant5, endspant6,
        endspant7, endspant8, endspant9, endspant10, endspant11, endspant12;
reg endspant13, endspant14;
reg validphaset1;
reg validt2, validt3, validt4, validt5, validt6, validt7, validt8, validt9,
                                validt10, validt11;

// pseudo registers

reg [12:0] nextcount;
reg [7:0] cptrinc;				//color r/w ptr increment/valclk
reg rdpwen;
reg [17:0] rdpwdepth;
reg [26:0] rdpwcolor;
reg stallcr, stallzr, stallcw, stallzw;
reg rdpreqzr, rdpreqcr, rdpreqcw, rdpreqzw;
reg [6:0] rdpzrptrsb, rdpcrptrsb, rdpzwptrsbc, rdpcwptrsbc;
reg rdprpixc, rdprpixz, rdpwpixc, rdpwpixz;
reg stallptr;
reg stallczwm;
reg stallczwmd;
wire validt1, endspant0, validphaset0, setvalid;
wire [7:0] nextzrptr;
wire [7:0] nextcrptr;
wire [7:0] nextzwptr;
wire [7:0] nextcwptr;
reg [7:0] fstart;
reg [7:0] fend;
reg [7:0] fsetcbmask;
reg [3:0] fsetzbmask;
reg [63:0] fsetcwmask;
reg [31:0] fsetzwmask;
reg [7:0] fout1;
reg [7:0] fout2;
reg [7:0] fcbptr;
reg [7:0] fcwptr;
reg [3:0] fzbptr;
reg [7:0] fzwptr;
reg [23:0] rdpwcolordith;
reg [7:0] dithred;
reg [7:0] dithgreen;
reg [7:0] dithblue;

wire [6:0] cwptrfn, zwptrfn;
reg [6:0] rdpcwptrn, rdpzwptrn;
wire validt9cn, validt11cn;

wire [7:0] nextzrptrsb;
wire [7:0] nextcrptrsb;
wire [7:0] nextzwptrsb;
wire [7:0] nextcwptrsb;
reg stallwptr;
reg ldstall;

// wires

//startspant0m generation (3:1 mux output):

//always @(startspant0 or startspant0d1 or startspant0d2 or startspant0d3 or
//	startspant0d4 or startspant0d5 or startspant0d6 or rdloadmode or
//	startspant0d7 or startspant0d8 or startspant0d9 or startspant0d10
//	or startspant0d11 or rdcopymode or rdtwophase) begin

//	if (rdloadmode) begin
//		startspant0m <= #1 startspant0;
//	end
//	else if (rdtwophase) begin
//		startspant0m <= #1 startspant0d6;
//	end
//	else if (rdcopymode) begin
//		startspant0m <= #1 startspant0d1;
//	end
//	else begin
//		startspant0m <= #1 startspant0d4;
//	end
//end

//startspant7m generation (3:1 mux output):

always @(rmwtwophase or rmwenreadz or rmwenwritez or startspant5 or
	startspant6 or startspant7) begin

        if (!rmwtwophase & (rmwenreadz || rmwenwritez)) begin
                startspant7m <= startspant5;
        end
        else if (rmwtwophase & !(rmwenreadz || rmwenwritez)) begin
                startspant7m <= startspant6;
        end
        else begin
                startspant7m <= startspant7;
        end
end

//DELAYED DEPTH, COLOR to ms_si.v
//note:  don't code up unknown case, as don't plan to reset req'd state

//note:  rdpwcolor is 1b (we) and 8 8 8 3;  only 27 lsb's output, rest use here

always @(rdpwdepthin or rdpwdepthd1 or rdpwdepthd2 or rdpwcolorin or
		rdpwcolord1 or rdpwcolord2 or rdpwcolord3 or
		rmwenreadz or rmwenwritez or rmwtwophase or
		rdpwend1 or rdpwend2 or rdpwend3) begin

	if (!rmwtwophase & (rmwenreadz || rmwenwritez)) begin
		rdpwdepth <= rdpwdepthin;
		rdpwcolor <= rdpwcolord1;
		rdpwen <= rdpwend1;
	end
	else if (rmwtwophase & !(rmwenreadz || rmwenwritez)) begin
		rdpwdepth <= rdpwdepthd1;
		rdpwcolor <= rdpwcolord2;
		rdpwen <= rdpwend2;
	end
	else begin
		rdpwdepth <= rdpwdepthd2;
		rdpwcolor <= rdpwcolord3;
		rdpwen <= rdpwend3;
	end
end

//NEXTCOUNT DECREMENTER:  determines "endspant0" (via nextcount[12]);

always @(currcount or rdperclk8 or rdperclk4 or rdperclk2 or
		rmwperclk8 or rmwperclk4 or rmwperclk2 or startspant1) begin
  if (startspant1) begin
	if (rdperclk8) begin
		nextcount <= {1'b0, currcount} + 13'h0ff8;
	end
        else if (rdperclk4) begin
                nextcount <= {1'b0, currcount} + 13'h0ffc;
        end
        else if (rdperclk2) begin
                nextcount <= {1'b0, currcount} + 13'h0ffe;
        end
        else if (!rdperclk8 & !rdperclk4 & !rdperclk2) begin
                nextcount <= {1'b0, currcount} + 13'h0fff;
        end
        else begin
                nextcount <= 13'bx;
        end
  end
  else begin
        if (rmwperclk8) begin
                nextcount <= {1'b0, currcount} + 13'h0ff8;
        end
        else if (rmwperclk4) begin
                nextcount <= {1'b0, currcount} + 13'h0ffc;
        end
        else if (rmwperclk2) begin
                nextcount <= {1'b0, currcount} + 13'h0ffe;
        end
        else if (!rmwperclk8 & !rmwperclk4 & !rmwperclk2) begin
                nextcount <= {1'b0, currcount} + 13'h0fff;
        end
        else begin
                nextcount <= 13'bx;
        end
  end
end

//RDP COLOR R/W POINTER INCREMENT VALUES

always @(rmwperclk8 or rmwperclk4 or rmwperclk2 or rmwcsize16 or
	rmwcsize32 or rmwloadtlut) begin

	if (rmwperclk8 || rmwperclk2) begin
		cptrinc <= 8'h8;
	end
	else if (rmwperclk4 & rmwcsize16) begin
		cptrinc <= 8'h8;
	end
        else if (rmwperclk4 & !rmwcsize16) begin
                cptrinc <= 8'h4;
        end
        else if (rmwloadtlut) begin
                cptrinc <= 8'h2;
        end
	else if (!rmwperclk8 & !rmwperclk4 & !rmwperclk2 & !rmwloadtlut) begin
	  if (rmwcsize32) begin
		cptrinc <= 8'h4;
	  end
          else if (rmwcsize16) begin
                cptrinc <= 8'h2;
	  end
          else begin
                cptrinc <= 8'h1;
	  end
	end
	else begin
		cptrinc <= 8'bx;
	end
end

//RDP POINTERS AND REQUESTS TO ms_si.v and...
//STALL GENERATION:  read/write c/z pointers exceed rdram-based buffer domain
//  stallzr generated when read request has regword ptr[7:4] = rbrptr[3:0]
//      this stall goes away at rbptr update, as it's not a gclock domain reg

always @(zreqrdt2 or creqrdt4 or zreqwrt9 or creqwrt11 or rbzrptr or rbcrptr or
		rbzwptr or rbcwptr or zrptrt2sb or crptrt4sb or
			zwptrt9sb or cwptrt11sb or
			zreqrdt2c or creqrdt4c or zwptrt9sbc or cwptrt11sbc or
		stallzr or stallzw or stallcr or stallcw or wrcsize16_buf or
			wrcopymode_buf or zreqw) begin

        stallzr <= zreqrdt2 & (zrptrt2sb[7:4] == rbzrptr[3:0]);

        stallcr <= creqrdt4 & (crptrt4sb[7:4] == rbcrptr[3:0]);

        stallzw <= (wrcsize16_buf & wrcopymode_buf & zreqw) || (!(wrcsize16_buf & wrcopymode_buf) & zreqwrt9 & (zwptrt9sb[7:4] == rbzwptr[3:0]));

        stallcw <= creqwrt11 & (cwptrt11sb[7:4] == rbcwptr[3:0]);

	stallptr <= stallzr || stallcr || stallzw || stallcw;

	stallwptr <= stallzw || stallcw;
		
	rdpreqzr <= zreqrdt2c;
	rdpreqcr <= creqrdt4c;
	rdpreqzw <= zreqwrt9;
	rdpreqcw <= creqwrt11;

	rdpzrptrsb <= zrptrt2sb[6:0];
	rdpcrptrsb <= crptrt4sb[6:0];
	rdpzwptrsbc <= zwptrt9sbc[6:0];
	rdpcwptrsbc <= cwptrt11sbc[6:0];
end

always @(validt2 or validt4 or validt9 or validt11) begin
	rdprpixz <= validt2;
	rdprpixc <= validt4;
	rdpwpixz <= validt9;
	rdpwpixc <= validt11;
end

//WRITEMASK BUFFER STALL GENERATION for case of wmasks busy...

always @(creqw or zreqw or resetcreqw or resetzreqw or
		endspant12 or fullcwmt11 or fullzwmt11 or wrenwritec_buf or
			ldstall or wrenwritez_buf or wrenreadz_buf or
				wrloadmode_buf) begin

//	stallcwm <= creqw & (endspant12 || fullcwmt11);
//	stallzwm <= zreqw & (endspant12 || fullzwmt11);
//	stallczwm <= ((creqw || zreqw) & (endspant12 ||
//			fullcwmt11 || fullzwmt11));

//**new and improved wmask stalls....to be checked out....

	stallczwm <= (ldstall || (((creqw & !resetcreqw) || (zreqw & !resetzreqw)) &
		((fullcwmt11 & wrenwritec_buf) ||
			(fullzwmt11 & (wrenwritez_buf ||
			(wrenreadz_buf & !wrloadmode_buf))) || endspant12)));
end

always @(endspant12 or lddelayd1 or lddelayd2 or fullzwmt11 or lddelayd1a or
					lddelayd2a) begin
	
	ldstall <= (endspant12 & (lddelayd1 || lddelayd2)) ||
			(fullzwmt11 & (lddelayd1a || lddelayd2a));
end

//********bug above:  if endspant11, still need to stall because otherwise
//lose the request.  (creqw will not be set again).  maybe need a buffer
//for the creqw so it can be loaded when available;  e.g. nxtwmask can wait,
//and we have add'l stall if a startspan comes....in which case must stall.

//solution: for now, use endspant12 as a stall condition.  later may add
//a buffer of it to generate a further request, this is tricky due to
//must still stall a 1 pixel span coming afterward....case.

//RGB DITHERING

always @(dithred or dithgreen or dithblue or rdpwcolorin or rand_r or rand_g or rand_b) begin
	if (rdpwcolorin[21:19] > rand_r) begin
		dithred <= ({rdpwcolorin[26:22], 3'h0} + 8'h8) |
				{8{rdpwcolorin[26:22] == 5'h1f}};
	end
	else begin
		dithred <= rdpwcolorin[26:19];
	end
        if (rdpwcolorin[13:11] > rand_g) begin
                dithgreen <= ({rdpwcolorin[18:14], 3'h0} + 8'h8) |
                                {8{rdpwcolorin[18:14] == 5'h1f}};
	end
        else begin
                dithgreen <= rdpwcolorin[18:11];
        end
        if (rdpwcolorin[5:3] > rand_b) begin
                dithblue <= ({rdpwcolorin[10:6], 3'h0} + 8'h8) |
                                {8{rdpwcolorin[10:6] == 5'h1f}};
	end
        else begin
                dithblue <= rdpwcolorin[10:3];
        end
	rdpwcolordith <= {dithred, dithgreen, dithblue};
end

assign       validt1 =  validphaset1 & validcyclet1;

assign       endspant0 = validphaset0 & !nextcount[12] & endspant0en;

//endspant0en added to come out of reset, otherwise endspan cycles by itself
//combinational assigns for ease of interpretation (in theory...)

assign       validphaset0 = enphaset0 || (!rmwtwophase & !startspant1 ||
                                !rdtwophase & startspant1);
assign       setvalid = (startspant1 & (rdloadmode || rdfillmode || rdcopymode)) ||
                (((startspant1 & !(rdloadmode || rdfillmode || rdcopymode)) ||
                (startvalid & !(rmwloadmode || rmwfillmode || rmwcopymode))) &
                        !(currcount > rmwstepcount));
assign       nextzrptr = zrptrt1 + (8'h2 & ~{8{rmwloadmode || rmwcopymode}}) +
				(cptrinc & {8{rmwloadmode || rmwcopymode}});
assign       nextcrptr = crptrt3 + cptrinc;
assign       nextzwptr = zwptrt8 + (8'h2 & ~{8{rmwloadmode || rmwcopymode}}) +
                              	(cptrinc & {8{rmwloadmode || rmwcopymode}});
assign       nextcwptr = cwptrt10 + cptrinc;

assign       nextzrptrsb = zrptrt1sb + (8'h2 & ~{8{rmwloadmode || rmwcopymode}}) +
                               	(cptrinc & {8{rmwloadmode || rmwcopymode}});
assign       nextcrptrsb = crptrt3sb + cptrinc;
assign       nextzwptrsb = zwptrt8sb + (8'h2 & ~{8{rmwloadmode || rmwcopymode}}) +
                                (cptrinc & {8{rmwloadmode || rmwcopymode}});
assign       nextcwptrsb = cwptrt10sb + cptrinc;

//stuff for converting transp latches in ms_si to clock domain

//first, advance write ptrs a half clock for glitch-free usage in ldc/zbufwen's

//always @(negedge clock) begin
//  if (!stopgclock) begin
//        validt11cn <= validt10;
//        validt9cn <= validt8;
//	rdpcwptrn <= cwptrt10sb ^ {4'h0, {4{xdect10}}};
//	rdpzwptrn <= zwptrt8sb ^ {4'h0, {4{xdect8}}};
//  end
//  else begin
//        validt11cn <= validt11cn;
//        validt9cn <= validt9cn;
//        rdpcwptrn <= rdpcwptrn;
//	rdpzwptrn <= rdpzwptrn;
//  end
//end
//recode above as instantiated dff's to maintain negedge clock species for synth

//assign	rdpcwptrn = (cwptrt10sb[6:0] ^ {3'h0, {4{xdect10}}});
//assign rdpzwptrn = (zwptrt8sb[6:0] ^ {3'h0, {4{xdect8}}});

//mbnfnr ndff_1(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(validt10), .db(validt11cn), .q(validt11cn));
//mbnfnr ndff_2(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(validt8), .db(validt9cn), .q(validt9cn));

//assign cwptrfn = (cwptrt10sb[6:0] ^ {3'h0, {4{xdect10}}});
//assign zwptrfn = (zwptrt8sb[6:0] ^ {3'h0, {4{xdect8}}});

//mbnfnr ndff_4(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(cwptrfn[6]), .db(rdpcwptrn[6]), .q(rdpcwptrn[6]));
//mbnfnr ndff_5(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(cwptrfn[5]), .db(rdpcwptrn[5]), .q(rdpcwptrn[5]));
//mbnfnr ndff_6(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(cwptrfn[4]), .db(rdpcwptrn[4]), .q(rdpcwptrn[4]));
//mbnfnr ndff_7(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(cwptrfn[3]), .db(rdpcwptrn[3]), .q(rdpcwptrn[3]));
//mbnfnr ndff_8(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(cwptrfn[2]), .db(rdpcwptrn[2]), .q(rdpcwptrn[2]));
//mbnfnr ndff_9(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(cwptrfn[1]), .db(rdpcwptrn[1]), .q(rdpcwptrn[1]));
//mbnfnr ndff_a(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(cwptrfn[0]), .db(rdpcwptrn[0]), .q(rdpcwptrn[0]));

//mbnfnr ndff_c(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(zwptrfn[6]), .db(rdpzwptrn[6]), .q(rdpzwptrn[6]));
//mbnfnr ndff_d(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(zwptrfn[5]), .db(rdpzwptrn[5]), .q(rdpzwptrn[5]));
//mbnfnr ndff_e(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(zwptrfn[4]), .db(rdpzwptrn[4]), .q(rdpzwptrn[4]));
//mbnfnr ndff_f(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(zwptrfn[3]), .db(rdpzwptrn[3]), .q(rdpzwptrn[3]));
//mbnfnr ndff_g(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(zwptrfn[2]), .db(rdpzwptrn[2]), .q(rdpzwptrn[2]));
//mbnfnr ndff_h(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(zwptrfn[1]), .db(rdpzwptrn[1]), .q(rdpzwptrn[1]));
//mbnfnr ndff_i(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
                        //.da(zwptrfn[0]), .db(rdpzwptrn[0]), .q(rdpzwptrn[0]));

always @(posedge clock) begin
	lddelayd1 <= #1 fullzwmt11 & wrloadmode & !endspant12;
	lddelayd2 <= lddelayd1;
	lddelayd1a <= #1 endspant12 & wrloadmode & !fullzwmt11;
	lddelayd2a <= lddelayd1a;
	
	stallcrd <= stallcr;
	stallzrd <= stallzr;
	stallcwd <= stallcw;
	stallzwd <= stallzw;
	stallczwmd <= stallczwm;

  if (!stopgclock) begin
//	validt11c <= validt10;
//	validt9c <= validt8;
	cwptrt11sbc <= cwptrt10sb ^ {4'h0, {4{xdect10}}};
        zwptrt9sbc <= zwptrt8sb ^ {4'h0, {4{xdect8}}};
       creqrdt4c <=  rmwenreadc & (startspant4 ||
               ((crptrold ^ crptrt3[4]) & validt3));
        zreqrdt2c <=  rmwenreadz & (startspant2 ||
                ((zrptrold ^ zrptrt1[4]) & validt1));
	rdpcwptrn <= #1 (cwptrt10sb[6:0] ^ {3'h0, {4{xdect10}}});
	rdpzwptrn <= #1 (zwptrt8sb[6:0] ^ {3'h0, {4{xdect8}}});

  end
  else begin
//	validt11c <= validt11c;
//	validt9c <= validt9c;
	cwptrt11sbc <= cwptrt11sbc;
	zwptrt9sbc <= zwptrt9sbc;
	creqrdt4c <= creqrdt4c;
	zreqrdt2c <= zreqrdt2c;
        rdpcwptrn <= rdpcwptrn;
        rdpzwptrn <= rdpzwptrn;
  end

end


always @(posedge gclock) begin

//calculating write enable for rdp pixel as fn of alphacompare

        rdpwend1 <= rdpcolorwen & (!alphacompen || alphacompd3);
        alphacompd3 <= alphacompd2;
        alphacompd2 <= alphacompd1;
        alphacompd1 <= ~(ccalpha < ({8{dithalphaen}} & dithalpha |
                                {8{!dithalphaen}} & blendalpha));

//delayed versions of data and we

        rdpwend2 <= rdpwend1;
        rdpwend3 <= rdpwend2;

        rdpwdepthd1 <= rdpwdepthin;
        rdpwdepthd2 <= rdpwdepthd1;
  if (!dithrgben) begin
        rdpwcolord1 <= rdpwcolorin;
  end
  else if (dithrgben) begin
        rdpwcolord1 <= {rdpwcolordith, rdpwcolorin[2:0]};
  end
        rdpwcolord2 <= rdpwcolord1;
        rdpwcolord3 <= rdpwcolord2;

//delayed versions of startspan from EW

	startspand1 <= startspan;
        startspand2 <= startspand1;
        startspand3 <= startspand2;
        startspand4 <= startspand3;
        startspand5 <= startspand4;
        startspand6 <= startspand5;
        startspand7 <= startspand6;
        startspand8 <= startspand7;
        startspand9 <= startspand8;
        startspand10 <= startspand9;
        startspand11 <= startspand10;

  if (rdloadmode) begin
        startspant0 <= startspand2;
  end
  else if (rdcopymode) begin
	startspant0 <= startspand3;
  end
  else if (!rdtwophase) begin
	startspant0 <= startspand9;
  end
  else begin
	startspant0 <= startspand11;
  end

        startspant1 <=  startspant0;
        startspant2 <= #1 startspant1;
        startspant3 <= startspant2;
        startspant4 <= #1 startspant3;
        startspant5 <= startspant4;
        startspant6 <= startspant5;
        startspant7 <= startspant6;


//calculating valid and endspan, also delayed versions

        if (!rmwtwophase & (rmwenreadz || rmwenwritez)) begin
                startspant8 <= startspant5;
                endspant7 <= endspant4;
                validt7 <= validt4;
        end
        else if (rmwtwophase & !(rmwenreadz || rmwenwritez)) begin
                startspant8 <= startspant6;
                endspant7 <= endspant5;
                validt7 <= validt5;
        end
        else begin
                startspant8 <= startspant7;
                endspant7 <= endspant6;
                validt7 <= validt6;
        end

        startspant9 <= startspant8;
        startspant10 <= startspant9;
        startspant11 <= startspant10;
        startspant12 <= startspant11;

        validphaset1 <= validphaset0;

        validt2 <= validt1;
        validt3 <= #1 validt2;
        validt4 <= validt3;
        validt5 <= validt4;
        validt6 <= validt5;
//missing entry is above in startspan pipemod code
        validt8 <= #1 validt7;
        validt9 <= validt8;
        validt10 <= #1 validt9;
	validt11 <= validt10;


        endspant1 <= endspant0;
        endspant2 <= endspant1 & validcyclet1;
        endspant3 <= endspant2;
        endspant4 <= endspant3;
        endspant5 <= endspant4;
        endspant6 <= endspant5;
//missing entry is above in startspan pipemod code
        endspant8 <= endspant7;
        endspant9 <= endspant8;
        endspant10 <= endspant9;
        endspant11 <= #1 endspant10;
        endspant12 <= #1 endspant11;
        endspant13 <= #1 endspant12;
        endspant14 <= #1 endspant13;

end
always @(posedge gclock or negedge reset_l) begin
   if (!reset_l) begin
      // resettable registers
	endvalidt1 <= low;
	validcyclet1 <= low;
	startvalid <= low;
	enphaset0 <= low;
        nxtwmaskc <= 64'b0;
	nxtwmaskz <= 32'b0;
	load_dv <= low;
	load_dve <= low;
	endspant0en <= low;
        cwmzero <= low;
        zwmzero <= low;
	nirvana <= 5'b0;

//assume EWpipe resets startspan before memspan receives it...
	
//nonresettable registers
  
	currcount <= 12'bx;
	loadcount <= 13'bx;
	rmwstepcount <= 12'bx;
	rdpwdepthd1 <= 18'bx;
	rdpwdepthd2 <= 18'bx;
	rdpwcolord1 <= 27'bx;
	rdpwcolord2 <= 27'bx;
	rdpwcolord3 <= 27'bx;

	cwmask <= 64'bx;
	zwmask <= 32'bx;

	alphacompd1 <= 'bx;
        alphacompd2 <= 'bx;
        alphacompd3 <= 'bx;

	rdpwend1 <= 'bx;
	rdpwend2 <= 'bx;
	rdpwend3 <= 'bx;

	validt2ld <= 'bx;
	validt3ld <= 'bx;

   end
   else if (reset_l) begin

	nirvana <= {(rdpreqzr & rdpreqcr & rdpreqzw & rdpreqcw) || nirvana[4],
		(!rdpreqzr & rdpreqcr & rdpreqzw & rdpreqcw) || nirvana[3],
		(rdpreqzr & !rdpreqcr & rdpreqzw & rdpreqcw) || nirvana[2],
		(rdpreqzr & rdpreqcr & !rdpreqzw & rdpreqcw) || nirvana[1],
		(rdpreqzr & rdpreqcr & rdpreqzw & !rdpreqcw) || nirvana[0]};

	if (startspant0) begin
		currcount <= pixcount;
	end
	else if (validphaset0) begin
		currcount <= nextcount;
	end
	else if (!startspant0 & !validphaset0) begin
		currcount <= currcount;
	end
	else begin
		currcount <= 12'bx;
	end

	enphaset0 <= startspant0 || (!enphaset0);

	if (startspant0) begin
		rmwstepcount <= stepcount;
	end
	else if (!startspant0) begin
		rmwstepcount <= rmwstepcount;
	end
	else begin
		rmwstepcount <= 12'bx;
	end
//loadcount determines # of load_dv cycles, can be one less than valid...

	if (startspant1) begin
		loadcount <= {1'b1, rmwstepcount};
	end
	else if (validt1 & !rmwloadtlut) begin
	  if (rmwperclk4) begin
		loadcount <= loadcount + 13'h1ffc;
   	  end
          else if (rmwperclk8) begin
                loadcount <= loadcount + 13'h1ff8;
          end
          else if (rmwperclk2) begin
                loadcount <= loadcount + 13'h1ffe;
          end
	end
        else if (validt1 & rmwloadtlut) begin
                loadcount <= loadcount + 13'h1fff;
        end
	else begin
		loadcount <= loadcount;
	end

  	validt2ld <= loadcount[12] & validt1 & rmwloadmode;

	endvalidt1 <= endspant0 & validphaset0;

	if (startspant1) begin
		startvalid <= high;
	end
	else if (validcyclet1) begin
		startvalid <= low;
	end
	else if (!(startspant1 || validcyclet1)) begin
		startvalid <= startvalid;
	end
	else begin
		startvalid <= 'bx;
	end

	if (setvalid) begin
		validcyclet1 <= high;
	end
	else if (endvalidt1) begin
		validcyclet1 <= low;
	end
	else if (!(setvalid || endvalidt1)) begin
		validcyclet1 <= validcyclet1;
	end
	else begin
		validcyclet1 <= 'bx;
	end

	load_dv <= validt3ld;			//indicate valid data load clks
	load_dve <= validt2ld;			//one clk earlier for io mux si
	validt3ld <= validt2ld;

//endspant0en added to come out of reset, otherwise endspan cycles by itself
        if (startspant0) begin
                endspant0en <= high;
        end
        else if (validphaset0 & !nextcount[12]) begin
                endspant0en <= low;
        end
        else begin
                endspant0en <= endspant0en;
        end

//R-S flipflop:

nxtwmaskc <= fsetcwmask | (nxtwmaskc &
  {~{64{endspant12 || (fullcwmt11 & (wrenwritec_buf || wrcopymode_buf))}}});

if (endspant12 || (fullcwmt11 & (wrenwritec_buf || (wrcopymode_buf)))) begin
        cwmask <= nxtwmaskc;
        cwmzero <=    ~|(nxtwmaskc);
end
else if (!(endspant12 ||
		(fullcwmt11 & (wrenwritec_buf || (wrcopymode_buf))))) begin
        cwmask <= cwmask;
        cwmzero <= cwmzero;
end
else begin
        cwmask <= 64'bx;
        cwmzero <= cwmzero;
end

//R-S flipflop:

nxtwmaskz <= fsetzwmask | (nxtwmaskz & {~{32{endspant12 || (fullzwmt11 & wrenwritez_buf)}}});


//if (endspant12 || (fullzwmt11 & wrenwritez_buf)) begin
if (endspant12 || (fullzwmt11)) begin
        zwmask <= nxtwmaskz;
        zwmzero <=  (wrcopymode_buf ? ~|(nxtwmaskc) : ~|(nxtwmaskz)) ||
			(wrenreadz_buf & !wrenwritez_buf & !wrloadmode_buf);
end
//else if (!(endspant12 || (fullzwmt11 & wrenwritez_buf))) begin
else if (!(endspant12 || (fullzwmt11))) begin
        zwmask <= zwmask;
        zwmzero <= zwmzero;
end
else begin
        zwmask <= 32'bx;
        zwmzero <= zwmzero;
end

end 
end


always @(posedge clock or negedge reset_l) begin
   if (!reset_l) begin
      // resettable registers
        creqw <= low;
        zreqw <= low;
   end
   else begin

//WRITE REQUEST GENERATION when wmasks full or end of span
//**have set higher priority than reset;  allow no gap in reqw**
//must add stopgclock to avoid deadlock in event of multiple stall sources!

if (wrenwritec_buf & !stopgclock & (endspant12 || fullcwmt11)) begin
        creqw <= high;
end
else if (resetcreqw) begin
        creqw <= low;
end
else if (!resetcreqw & !(wrenwritec_buf & !stopgclock &
				(endspant12 || fullcwmt11))) begin
        creqw <= creqw;
end
else begin
        creqw <= 'bx;
end

if ((wrenwritez_buf || (wrenreadz_buf & !wrloadmode_buf)) &
		!stopgclock & (endspant12 || fullzwmt11)) begin
        zreqw <= high;
end
else if (resetzreqw) begin
        zreqw <= low;
end
else if (!resetzreqw & !((wrenwritez_buf || (wrenreadz_buf & !wrloadmode_buf)) &
		!stopgclock & (endspant12 || fullzwmt11))) begin

        zreqw <= zreqw;
end
else begin
        zreqw <= 'bx;
end

end
end

always @(posedge gclock or negedge reset_l) begin
	if (!reset_l) begin

        fullcwmt11 <= low;
        fullzwmt11 <= low;
        zrptrt1 <= 8'bx;
        zrptrt2 <= 8'bx;
        crptrt3 <= 8'bx;
        crptrt4 <= 8'bx;
        zwptrt8 <= 8'bx;
        zwptrt9 <= 8'bx;
        zwptrt10 <= 8'bx;
        zwptrt11 <= 8'bx;
        cwptrt10 <= 8'bx;
        cwptrt11 <= 8'bx;
        zrptrt1sb <= 8'bx;
        crptrt3sb <= 8'bx;
        zwptrt8sb <= 8'bx;
        cwptrt10sb <= 8'bx;
        zrptrt2sb <= 8'bx;
        crptrt4sb <= 8'bx;
        zwptrt9sb <= 8'bx;
        cwptrt11sb <= 8'bx;
        xdect3 <= 'bx;
        xdect8 <= 'bx;
        xdect10 <= 'bx;
        cwptrmodt11 <= 3'bx;

        zrptrold <= 'bx;
        crptrold <= 'bx;
        zwptrold <= 'bx;
        cwptrold <= 'bx;
        zwptrold2 <= 'bx;
        cwptrold2 <= 'bx;
        zreqrdt2 <= 'bx;
        creqrdt4 <= 'bx;
        zreqwrt9 <= 'bx;
        creqwrt11 <= 'bx;
        cxit11 <= 'bx;
        cxft11 <= 'bx;
end
	else begin

//RDPTR LOGIC
//mod'd for xdec (note:  xdec is set for right major triangle)
//	init is xdec xor ptr 2:0 due to up/down iterations
//	then always increment...at this point. (xor again afterward).
//also:  must locally buffer xdec...changes per primitive

//nasty changes 10-12-94:  due to twophase/validcycle behavior, the
//c/zreqrd/wr xor detect fails;  address is stable per 2 clocks!
//fix:  must latch with validcycle, create *ptrold registers.
//for writes, set to same polarity to kill any write during first detect xor;
//same for reads but OR in startspan to force prefetch...

	if (startspant1) begin
		zrptrt1 <= #1 savezxi[7:0] ^ {4'h0, {4{rdxdec}}};
		zrptrt1sb <= {rdrbzrptr[3:0], savezxi[3:0]} ^ {4'h0, {4{rdxdec}}};
	end
	else if (validt1) begin
		zrptrt1 <= #1 nextzrptr;
		zrptrt1sb <= nextzrptrsb;
	end
	else if (!startspant1 & !validt1) begin
		zrptrt1 <= zrptrt1;
		zrptrt1sb <= zrptrt1sb;
	end
	else begin
		zrptrt1 <= 8'bx;
		zrptrt1sb <= 8'bx;
	end

// FYI:	zrwordptr = zrptrt1[4:0]; (used on t2).

	zrptrt2 <= zrptrt1 ^ {4'h0, {4{rmwxdec}}};
//sb used for spanbuf addressing
        zrptrt2sb <= zrptrt1sb ^ {4'h0, {4{rmwxdec}}};

//	zreqrdt2 <= rmwenreadz & (startspant2 ||
//		((zrptrt2[4] ^ zrptrt1[4]) & validt1));
	zreqrdt2 <= #1 rmwenreadz & (startspant2 ||
                ((zrptrold ^ zrptrt1[4]) & validt1));

	if (startspant2 || validt1) begin
		zrptrold <= #1 zrptrt1[4];
	end
	else begin
		zrptrold <= zrptrold;
	end

//  we request z word read when iterate out of current word (and valid)
//  	OR when startspan received (regardless of scissor delay) for prefetch;
//  therefore, when zrptr[4] changes, it's a new word.

        if (startspant3) begin
               crptrt3 <= #1 rmwcxi[7:0] ^ {4'h0, {4{rmwxdec}}};
               crptrt3sb <= {rmwrbcrptr[3:0], rmwcxi[3:0]} ^ {4'h0, {4{rmwxdec}}};
        end
        else if (validt3) begin
                crptrt3 <= #1 nextcrptr;
		crptrt3sb <= nextcrptrsb;
        end
        else if (!startspant3 & !validt3) begin
                crptrt3 <= crptrt3;
		crptrt3sb <= crptrt3sb;
        end
        else begin
                crptrt3 <= 8'bx;
                crptrt3sb <= 8'bx;
        end

// FYI: crwordptr = crptrt3[4:0]; (use on t4).

	if (startspant3) begin
		xdect3 <= rmwxdec;
	end
	else if (!startspant3) begin
		xdect3 <= xdect3;
	end
	else begin
		xdect3 <= 'bx;
	end

        crptrt4 <= crptrt3 ^ {4'h0, {4{xdect3}}};
        crptrt4sb <= crptrt3sb ^ {4'h0, {4{xdect3}}};
//  moved to clock, creqrdt4c for transp latch timing
       creqrdt4 <= #1 rmwenreadc & (startspant4 ||
               ((crptrold ^ crptrt3[4]) & validt3));

        if (startspant4 || validt3) begin
                crptrold <= #1 crptrt3[4];
        end
        else begin
                crptrold <= crptrold;
        end

//WRPTR LOGIC
//mod'd for xdec (note:  xdec is set for right major triangle)
//      init is xdec xor 3:0
//      then always increment...at this point.
//also:  must locally buffer xdec...changes per primitive
//******and must add xdec buffer at z stage, use delayed version for c.....

        if (startspant8) begin
                zwptrt8 <= wrzxi_buf[7:0] ^ {{8{wrxdec_buf}}};
//                zwptrt8 <= wrzxi_buf[7:0] ^ {{8{wrxdec_buf}}}; funky
                zwptrt8sb <= #1 {wrrbzrptr_buf[3:0], wrzxi_buf[3:0]} ^
                                        {4'h0, {4{wrxdec_buf}}};
        end
        else if (validt8) begin
                zwptrt8 <= nextzwptr;
		zwptrt8sb <= #1 nextzwptrsb;
        end
        else if (!startspant8 & !validt8) begin
                zwptrt8 <= zwptrt8;
                zwptrt8sb <= zwptrt8sb;
        end
        else begin
                zwptrt8 <= 8'bx;
                zwptrt8sb <= 8'bx;
        end

// FYI: zwwordptr = zwptrt9[4:0];

        if (startspant8) begin
                xdect8 <= #1 wrxdec_buf;
        end
        else if (!startspant8) begin
                xdect8 <= xdect8;
        end
        else begin
                xdect8 <= 'bx;
        end

//        zwptrt9 <= zwptrt8 ^ {5'h0, {3{xdect8}}};
        zwptrt9 <= zwptrt8 ^ {{8{xdect8}}};
        zwptrt9sb <= zwptrt8sb ^ {4'h0, {4{xdect8}}};

	zwptrt10 <= zwptrt9;
	zwptrt11 <= zwptrt10;
//we use zwptrt11 for wmask calculation;  cwptr is already generated for t11;
//        zreqwrt9 <= #1 !wrfillmode_buf & wrenwritez_buf & (endspant8 ||
//                !startspant9 & (zwptrold ^ zwptrt8[4])) & validt8;

        zreqwrt9 <= #1 !wrfillmode_buf & wrenwritez_buf & (endspant8 ||
                !startspant8 & (nextzwptr[4] ^ zwptrt8[4])) & validt8;

//above, kill with startspant9 because zwptrold is stale, and because
//we never generate write at first pixel of span it's not a problem.

        if (startspant9 || validt8) begin
                zwptrold <= zwptrt8[4];
        end
        else begin
                zwptrold <= zwptrold;
        end


//  we request z word write when iterate out of current word (and valid)
//      OR when endspan received;

        if (startspant10) begin
                cwptrt10 <= wrcxi_buf[7:0] ^ {{8{wrxdec_buf}}};
//                cwptrt10 <= wrcxi_buf[7:0] ^ {5'h0, {3{wrxdec_buf}}};
                cwptrt10sb <= #1 {wrrbcrptr_buf[3:0], wrcxi_buf[3:0]} ^
				{4'h0, {4{wrxdec_buf}}};
        end
        else if (validt10) begin
                cwptrt10 <= nextcwptr;
                cwptrt10sb <= #1 nextcwptrsb;
        end
        else if (!startspant10 & !validt10) begin
                cwptrt10 <= cwptrt10;
                cwptrt10sb <= cwptrt10sb;
        end
        else begin
                cwptrt10 <= 8'bx;
                cwptrt10sb <= 8'bx;
        end

// FYI: cwwordptr = cwptrt11[4:0];

        if (startspant10) begin
                xdect10 <= #1 wrxdec_buf;
        end
        else if (!startspant10) begin
                xdect10 <= xdect10;
        end
        else begin
                xdect10 <= 'bx;
        end
	
//        cwptrt11 <= cwptrt10 ^ {5'h0, {3{xdect10}}};
        cwptrt11 <= cwptrt10 ^ {{8{xdect10}}};
        cwptrt11sb <= cwptrt10sb ^ {4'h0, {4{xdect10}}};

        creqwrt11 <= #1 !wrfillmode_buf & wrenwritec_buf & (endspant10 ||
                !startspant10 & (nextcwptr[4] ^ cwptrt10[4]) & validt10);


//        zreqwrt9 <= #1 !wrfillmode_buf & wrenwritez_buf & (endspant8 ||
//                !startspant8 & (nextzwptr[4] ^ zwptrt8[4])) & validt8;



//was sst11, try t10:
        if (startspant11 || validt10) begin
                cwptrold <= cwptrt10[4];
        end
        else begin
                cwptrold <= cwptrold;
        end

//COLOR WRITEMASK GENERATION
//use cwptrt11/zwptrt11 and wr_buf attributes
//
//calc wmask, store in rs flop, pass to register yielding cwmask/zwmask

//use also:   endspant11, startspant12

cwptrmodt11 <= (cwptrt10[2:0] ^ {3{xdect10}}) & {1'h1, !wrcsize32_buf,
						wrcsize8_buf};

if (startspant11) begin
	cxit11 <= wrcxi_buf[2:0];
	cxft11 <= wrcxf_buf[2:0];
end
else begin
	cxit11 <= cxit11;
	cxft11 <= cxft11;
end

//fullcwmt11 detects when we start a new bytemask group (64 bytes, aligned)
//this is used to enable stalls, and to launch new write events. c/z sync'd.
//it is NOT and'd here with wrenwritec_buf

if (!wrrender_buf) begin
	fullcwmt11 <= #1 !startspant11 & (cwptrt10[6] ^ cwptrold2) &
						validt10;
end
else begin
        fullcwmt11 <= #1 !startspant11 & (cwptrt10[5] ^ cwptrold2) &
                                                validt10;
end
if (startspant11 || validt10) begin
  if (!wrrender_buf) begin
	cwptrold2 <= cwptrt10[6];
  end
  else begin
	cwptrold2 <= cwptrt10[5];
  end
end
else begin
	cwptrold2 <= cwptrold2;
end

//fullzwmt11 detects when we start a new bytemask group (64 bytes, aligned)
//this is used to enable stalls, and to launch new write events. c/z sync'd.

if (!wrrender_buf) begin
	fullzwmt11 <= #1 !startspant11 & (zwptrt10[6] ^ zwptrold2) &
						validt10;
end
else begin
        fullzwmt11 <= #1 !startspant11 & (zwptrt10[5] ^ zwptrold2) &
                                                validt10;
end

if (startspant11 || validt10) begin
  if (!wrrender_buf) begin
        zwptrold2 <= zwptrt10[6];
  end   
  else begin
        zwptrold2 <= zwptrt10[5];
  end
end
else begin
        zwptrold2 <= zwptrold2;
end
end

end

always @(cxit11 or cxft11 or fstart or fend or fcbptr or fcwptr or
		cwptrmodt11 or cwptrt11 or startspant12 or endspant11 or
		wrfillmode_buf or wrcopymode_buf or wrcsize8_buf or
		wrcsize16_buf or wrcsize32_buf or fout1 or fout2 or copywen or
		validt11 or rdpwen or wrenwritec_buf or fsetcbmask or
		wrenwritez_buf) begin

//first generate start/end 8b masks for load/fill/copy usage

case (cxit11[2:0])
        3'h0: fstart = 8'hff;
        3'h1: fstart = 8'h7f;
        3'h2: fstart = 8'h3f;
        3'h3: fstart = 8'h1f;
        3'h4: fstart = 8'h0f;
        3'h5: fstart = 8'h07;
        3'h6: fstart = 8'h03;
        3'h7: fstart = 8'h01;
endcase

case (cxft11[2:0])
        3'h0: fend = 8'h80;
        3'h1: fend = 8'hc0;
        3'h2: fend = 8'he0;
        3'h3: fend = 8'hf0;
        3'h4: fend = 8'hf8;
        3'h5: fend = 8'hfc;
        3'h6: fend = 8'hfe;
        3'h7: fend = 8'hff;
endcase

//below, fcbptr is function byte pointer (per 64b field) for !(fill/copy/load)

case (cwptrmodt11[2:0])
        3'h0: fcbptr = 8'h80;
        3'h1: fcbptr = 8'h40;
        3'h2: fcbptr = 8'h20;
        3'h3: fcbptr = 8'h10;
        3'h4: fcbptr = 8'h08;
        3'h5: fcbptr = 8'h04;
        3'h6: fcbptr = 8'h02;
        3'h7: fcbptr = 8'h01;
endcase

//below fcwptr is function word pointer (of 8 words)

case (cwptrt11[5:3])
        3'h0: fcwptr = 8'h80;
        3'h1: fcwptr = 8'h40;
        3'h2: fcwptr = 8'h20;
        3'h3: fcwptr = 8'h10;
        3'h4: fcwptr = 8'h08;
        3'h5: fcwptr = 8'h04;
        3'h6: fcwptr = 8'h02;
        3'h7: fcwptr = 8'h01;
endcase

//must zero out sub-pixel precision lsb's of xi/xf for below!!!!!!
//this was done in cwptrmodt11[2:0]

        fout1 <= (~{8{startspant12}} | fstart) & (~{8{endspant11}} | fend) &
                {8{(wrfillmode_buf || wrcopymode_buf)}} &
                (~{8{wrcopymode_buf & wrcsize8_buf}} |
                        {~{4{cwptrt11[2]}}, {4{cwptrt11[2]}}});

        fout2 <= {fcbptr[7], fcbptr[6] || (fcbptr[7] & (wrcsize16_buf ||
                wrcsize32_buf)),
          (fcbptr[5] || (fcbptr[7] & wrcsize32_buf)),
          (fcbptr[4] || (fcbptr[5] & wrcsize16_buf ||
                                        fcbptr[7] & wrcsize32_buf)),
		fcbptr[3], fcbptr[2] || (fcbptr[3] & (wrcsize16_buf ||
                wrcsize32_buf)),
          (fcbptr[1] || (fcbptr[3] & wrcsize32_buf)),
          (fcbptr[0] || (fcbptr[1] & wrcsize16_buf ||
                                        fcbptr[3] & wrcsize32_buf))} &
		~{8{(wrfillmode_buf || wrcopymode_buf)}};

//bytemask selects within 8 byte field

        fsetcbmask <= (fout1 | fout2) &
			{8{(wrenwritec_buf & !wrcopymode_buf || 
			wrenwritez_buf & wrcopymode_buf) & validt11}} &
                      ({8{!wrcopymode_buf & rdpwen || wrfillmode_buf}} |
			{8{wrcopymode_buf}} & {{copywen}});

//enwritec unnecessary above but might help sim interpretation...

//expanded into 64 byte field using 8b word select: fcwptr

        fsetcwmask <= {8{fsetcbmask}} & {{8{fcwptr[7]}}, {8{fcwptr[6]}},
                {8{fcwptr[5]}}, {8{fcwptr[4]}}, {8{fcwptr[3]}}, {8{fcwptr[2]}},
                        {8{fcwptr[1]}}, {8{fcwptr[0]}}};

end

always @(zwptrt11 or fzbptr or fsetzbmask or rdpwen or validt11 or
		wrenwritez_buf or fzwptr or fsetzwmask) begin

//DEPTH WRITEMASK GENERATION

case (zwptrt11[2:1])
        2'h3: fzbptr = 4'h8;
        2'h2: fzbptr = 4'h4;
        2'h1: fzbptr = 4'h2;
        2'h0: fzbptr = 4'h1;
endcase

case (zwptrt11[5:3])
        3'h0: fzwptr = 8'h80;
        3'h1: fzwptr = 8'h40;
        3'h2: fzwptr = 8'h20;
        3'h3: fzwptr = 8'h10;
        3'h4: fzwptr = 8'h08;
        3'h5: fzwptr = 8'h04;
        3'h6: fzwptr = 8'h02;
        3'h7: fzwptr = 8'h01;
endcase

//bytemask selects within 8 byte field
//note for z each bit rep's 2 bytes in memory, since z is 16b

        fsetzbmask <= {fzbptr[0], fzbptr[1], fzbptr[2], fzbptr[3]} &
                {4{wrenwritez_buf & validt11 & rdpwen}};

//enwritez above unnecessary but might help sim interpretation

//expanded into 64 byte field using 8b word select: fzwptr

        fsetzwmask <= {8{fsetzbmask}} & {{4{fzwptr[7]}}, {4{fzwptr[6]}},
                {4{fzwptr[5]}}, {4{fzwptr[4]}}, {4{fzwptr[3]}}, {4{fzwptr[2]}},
                        {4{fzwptr[1]}}, {4{fzwptr[0]}}};

end

endmodule