ms_rp.v
46.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
/************************************************************************\
* *
* Copyright (C) 1994, Silicon Graphics, Inc. *
* *
* These coded instructions, statements, and computer programs contain *
* unpublished proprietary information of Silicon Graphics, Inc., and *
* are protected by Federal copyright law. They may not be disclosed *
* to third parties or copied or duplicated in any form, in whole or *
* in part, without the prior written consent of Silicon Graphics, Inc. *
* *
\************************************************************************/
// $Id: ms_rp.v,v 1.1.1.1 2002/05/17 06:07:47 blythe Exp $
// rdp-sync'd control and datapath for memspan
// this module receives "startspan" from EW pipe and delays it
// thru a pipeline for use by the memspan RMW datapath;
// generates validcycle, validcount, valid, endspan;
// contains all r/w c/z spanbuf regfile pointers and r/w c/z
// extraction/insertion pointers; generates overflow stalls
// for spanbuf accesses; phases data flow for spanbuf c/z writes
// depending on depth, z enable etc. to minimize (sustained) conflicts
// at spanbuf r/w ports; assembles c/z writemasks as needed and
// generates write requests (creqw, zreqw) to the state machine modules.
// mechanism: ptr if = rbptr generates immediate stall
// as fn of r/w enable, planes enable, valid. stall goes away at rbptr++.
// later: copy alphacompareenable wmask contributions....
// later: loadmode/copymode use for controlling load/copy wmask?
// also: rgb dither?????? maybe need to do in phil's block, as
// not enuf time in our path (in-mux-transp-mux-regwrite-3ns tsu!)
// **also remember there's a clock boundary too!**
//mods 10-12-94: two cycle mode requires c/z r/w -ptrold registers for reg gen
//mods 10-19-94: add dither rgb; affects input of reg rdpwcolord1; add dithen
//mods 10-20-94: disable spanbuf write requests/stalls if wrfillmode_buf set
//mods 10-24-94: cwmask uses (colorwen or fillmode)
//mods 10-25-94: rep fout2 to 8b; and with !fillmode/copymode;
//also mod'd cwmask update as fn of creqw/resetcreqw; test, mod z also.
//but...really need gclock stalls here..
//mods 11-2 add c/zr/wptrt*sb and nextc/zr/wptrsb versions
//mods 11-5 make fullc/zwmt11 independent of *enwritec/z, for ptr usage (ms_sc)
//mods 11-7 add endspant14 for sc usage; add copywen/mod cwmask; TBD: logic**
//mods 11-8 inhibit next c/zreqw with stopgclock, to avoid multi stall deadlock
// add clock domain for c/zreqw state
//mods 11-10 add c/zreqrdt4/2c, rdpc/zwptrsbc and output for ms_si transp latches
//mods 11-12/94 fix setvalid term; mod cptrinc to 2 for rmwloadtlut;
// add validt2ld, validt3ld for load_dv/dve calc and loadcount;
// mod startspant7 out to startspant7m, as it's a muxed value.
//mods 11-15-94: adj zreqwrt9 xor, have to do creqwr as well.....****
// 11-16-94 cwmask update also for loadmode; finish all nxtptrs fn copymode
// mod copywen to 8b; make it an input from ms_si;
// 11-17 add outputs rdpc/zwptrn (negedge clock, half phase early) to ms_si
// and generate likewise validt9cn,11cn and stall all of above;
// 11-20 force c/zwmzero low for now....test later. mod creqwrt11;
// 11-21 add stallwptr for ms_si we kill; add rmwcsize32 for cptrinc;
// 11-22 mod startvalid;
// 11-23 mod c/zwptrt10 to xor w/xdec all bits; **later: readptrs too***
// 12-1 mod stallzw for copymode16 case
// 12-5 add variable delay on startspant0, create d1-d6, and 0m versions
// mod fullc/zwmt11 to accommodate 4/8 word cases; import wrrender_buf;
// also, mod copy: delays = 6 (2cy), 1 (copy), 0 (load), 4 (other);
// 12-6 add nirvana, add 6 more delays startspan;
// load: d3, copy: d4, 1cycle: d10, 2cycle: d12;
// minus one above to startspant0, which then creates stalls;
// 12-7 mod above to have d1-d11, then t0; stall at d2 (conservative);
// mod input to "startspan", undo d2 mod; reset rd*modes;
// 12-8 re-enable write bypass of c/zwmzero;
//***************this version undoes above****************
// 12-12 revise always @ loop of endspant0 to fix simulator bug (now assigns)
// 12-13 allow culling of cwmzero/zwmzero cases; fix color dither field
// 12-14 fix color dither to use bitwise OR....and fix dith color generation
// 12-15 add ldstall, lddelayd1/d2 to fix load_tile bug? add wrloadmode in;
// 12-19 add mods to above via lddelayd1a/2a;
// 12-20 cleanup;
// 12-22 translucency fix: allow zreqw, set zwmzero for zr/!zw/!ldmode
// add inports: wrloadmode_buf, wrenreadz_buf;
// 12-27 cleanup and merge jlsmith's improvements;
// 12-29 fix alphacompare bitwise OR bug;
// 12-29 delete envphaset0 register, unused;
// 12-30 new year's hack: add output validt2 to ms_sc;
// 1-4 add inport test_mode1 to force high c/zwmzero to kill rdram writes;
// add/reg outports stallc/zr/wd;
// 1-5 remove c/zwmzero kill;
// 1-9 instantiate negedge dff's; add wires cwptrfn, zwptrfn[7:0];
// 1-24 this is a test version to convert latch8/10 to neg clock transp
// here we reassign rdpc/zwptrn to be merely c/zwptrt8/10sb
// and ditto for rdpreqzw/cw with validt9/11;
// 1-25 add gclk'd flop delay to rdpc/zwptrn generation;
`timescale 1ns/1ns
module ms_rp(clock, gclock, reset_l, startspan, pixcount, stepcount,
rdloadmode, rdfillmode, rdcopymode, rmwxdec, stopgclock,
rdtwophase, rmwtwophase, rmwloadmode, rmwcopymode, rmwfillmode,
rmwloadtlut, rdperclk8, rdperclk4, rdperclk2,
rmwperclk8, rmwperclk4, rmwperclk2, rmwcxi, rmwzxi,
wrcxi_buf, wrcxf_buf, wrzxi_buf, wrxdec_buf,
rbzrptr, rbcrptr, rbzwptr, rbcwptr, rmwenreadz, rmwenreadc,
rmwenwritec, rmwenwritez, rmwcsize16, rmwcsize32,
rdpwdepthin, rdpwcolorin, rdpcolorwen, alphacompen, dithalphaen,
dithrgben, blendalpha, dithalpha, ccalpha, rand_r, rand_g, rand_b,
rdcxi, savezxi, rdxdec, wrloadmode,
resetcreqw, resetzreqw, wrenwritez_buf, wrenwritec_buf,
wrcsize8_buf, wrcsize16_buf, wrcsize32_buf,
wrfillmode_buf, wrcopymode_buf, copywen, wrrender_buf,
rmwrbcrptr, rdrbzrptr, wrrbcrptr_buf, wrrbzrptr_buf,
wrloadmode_buf, wrenreadz_buf, test_mode1,
startspant1, startspant7m, startspant12, endspant11,
endspant12, endspant14, rdpcwptrn, rdpzwptrn, stallwptr,
stallptr, stallczwm, load_dv, load_dve, startspant8,
creqw, zreqw, cwmask, zwmask, cwmzero, zwmzero, validt2,
stallcrd, stallzrd, stallcwd, stallzwd, stallczwmd,
rdprpixz, rdprpixc, rdpwpixz, rdpwpixc, rdpreqzr, rdpreqcr,
rdpreqzw, rdpreqcw, rdpzrptrsb, rdpcrptrsb, rdpzwptrsbc, rdpcwptrsbc,
rdpwdepth, rdpwcolor, fullcwmt11, fullzwmt11, startspant0);
`include "ms.vh"
input clock; // system clock
input gclock;
input reset_l; // system reset
input stopgclock;
input startspan;
input [11:0] pixcount; //total span iterations
input [11:0] stepcount; //post-scissored iterations
input rmwxdec;
input rdtwophase;
input rmwtwophase;
input rmwloadmode;
input rmwcopymode;
input rmwfillmode;
input rdperclk8;
input rdperclk4;
input rdperclk2;
input rmwperclk8;
input rmwperclk4;
input rmwperclk2;
input [25:0] rmwcxi;
input [25:0] rmwzxi;
input [3:0] rbzrptr;
input [3:0] rbcrptr;
input [3:0] rbzwptr;
input [3:0] rbcwptr;
input rdloadmode;
input rdfillmode;
input rdcopymode;
input rmwenreadc;
input rmwenreadz;
input rmwenwritec;
input rmwenwritez;
input rmwcsize16;
input rmwcsize32;
input rmwloadtlut;
input wrloadmode;
input [17:0] rdpwdepthin;
input [26:0] rdpwcolorin;
input rdpcolorwen;
input alphacompen;
input dithalphaen;
input dithrgben;
input [7:0] blendalpha;
input [7:0] dithalpha;
input [7:0] ccalpha;
input [2:0] rand_r;
input [2:0] rand_g;
input [2:0] rand_b;
input [25:0] rdcxi;
input [25:0] savezxi;
input rdxdec;
input [25:0] wrcxi_buf;
input [11:0] wrcxf_buf;
input [25:0] wrzxi_buf;
input wrxdec_buf;
input wrenwritec_buf;
input wrenwritez_buf;
input resetcreqw;
input resetzreqw;
input wrcsize8_buf, wrcsize16_buf, wrcsize32_buf;
input wrfillmode_buf, wrcopymode_buf;
input [3:0] rmwrbcrptr, rdrbzrptr, wrrbcrptr_buf, wrrbzrptr_buf;
input [7:0] copywen;
input wrrender_buf;
input wrloadmode_buf, wrenreadz_buf;
input test_mode1;
output startspant1;
output startspant7m;
output startspant12;
output endspant11;
output stallptr;
output stallczwm;
output stallczwmd;
output creqw;
output zreqw;
output [63:0] cwmask;
output [31:0] zwmask;
output cwmzero;
output zwmzero;
output validt2;
output stallcrd, stallzrd, stallcwd, stallzwd;
output endspant12, endspant14;
output rdpreqzr, rdpreqcr, rdpreqzw, rdpreqcw;
output rdprpixz, rdprpixc, rdpwpixz, rdpwpixc;
output [6:0] rdpzrptrsb, rdpcrptrsb, rdpzwptrsbc, rdpcwptrsbc;
output startspant8;
output [6:0] rdpcwptrn, rdpzwptrn;
output [17:0] rdpwdepth;
output [26:0] rdpwcolor;
output load_dv, load_dve; //for tristate WE's on loads
output fullcwmt11, fullzwmt11;
output stallwptr;
output startspant0;
// input/output registers
reg validcyclet1;
reg endvalidt1;
reg enphaset0;
reg [11:0] currcount;
reg [11:0] rmwstepcount;
reg startvalid;
reg [7:0] zrptrt1;
reg [7:0] zrptrt2;
reg [7:0] crptrt3;
reg [7:0] crptrt4;
reg [17:0] rdpwdepthd1;
reg [17:0] rdpwdepthd2;
reg [26:0] rdpwcolord1;
reg [26:0] rdpwcolord2;
reg [26:0] rdpwcolord3;
reg [7:0] zwptrt8;
reg [7:0] zwptrt9;
reg [7:0] zwptrt10;
reg [7:0] zwptrt11;
reg [7:0] cwptrt11;
reg [7:0] cwptrt10;
reg [63:0] cwmask;
reg [31:0] zwmask;
reg [63:0] nxtwmaskc;
reg [31:0] nxtwmaskz;
reg cwmzero, zwmzero;
reg xdect3, xdect8, xdect10;
reg rdpwend1, rdpwend2, rdpwend3;
reg alphacompd1, alphacompd2, alphacompd3;
reg [12:0] loadcount;
reg stallcrd, stallzrd, stallcwd, stallzwd;
// internal registers
reg [2:0] cxit11, cxft11;
reg endspant0en;
reg [4:0] nirvana; //test coverage indicator only
reg load_dv, load_dve;
// non-resettable registers
reg lddelayd1, lddelayd2;
reg lddelayd1a, lddelayd2a;
//reg [6:0] rdpcwptrn, rdpzwptrn;
reg zrptrold, crptrold, zwptrold, cwptrold;
reg zwptrold2, cwptrold2;
reg zreqrdt2, zreqrdt2c, creqrdt4, creqrdt4c, zreqwrt9, creqwrt11;
reg creqw, zreqw;
reg startspand1, startspand2, startspand3, startspand4,
startspand5, startspand6, startspand7, startspand8,
startspand9, startspand10, startspand11, startspant0;
reg [2:0] cwptrmodt11;
reg fullcwmt11, fullzwmt11;
reg [7:0] zrptrt1sb, crptrt3sb, zwptrt8sb, cwptrt10sb;
reg [7:0] zrptrt2sb, crptrt4sb, zwptrt9sb, cwptrt11sb;
//reg validt11cn, validt9cn;
reg [6:0] cwptrt11sbc, zwptrt9sbc;
reg validt2ld, validt3ld;
reg startspant1, startspant2, startspant3, startspant4, startspant5,
startspant6, startspant7, startspant7m,
startspant8, startspant9, startspant10,
startspant11, startspant12;
reg endspant1, endspant2, endspant3, endspant4, endspant5, endspant6,
endspant7, endspant8, endspant9, endspant10, endspant11, endspant12;
reg endspant13, endspant14;
reg validphaset1;
reg validt2, validt3, validt4, validt5, validt6, validt7, validt8, validt9,
validt10, validt11;
// pseudo registers
reg [12:0] nextcount;
reg [7:0] cptrinc; //color r/w ptr increment/valclk
reg rdpwen;
reg [17:0] rdpwdepth;
reg [26:0] rdpwcolor;
reg stallcr, stallzr, stallcw, stallzw;
reg rdpreqzr, rdpreqcr, rdpreqcw, rdpreqzw;
reg [6:0] rdpzrptrsb, rdpcrptrsb, rdpzwptrsbc, rdpcwptrsbc;
reg rdprpixc, rdprpixz, rdpwpixc, rdpwpixz;
reg stallptr;
reg stallczwm;
reg stallczwmd;
wire validt1, endspant0, validphaset0, setvalid;
wire [7:0] nextzrptr;
wire [7:0] nextcrptr;
wire [7:0] nextzwptr;
wire [7:0] nextcwptr;
reg [7:0] fstart;
reg [7:0] fend;
reg [7:0] fsetcbmask;
reg [3:0] fsetzbmask;
reg [63:0] fsetcwmask;
reg [31:0] fsetzwmask;
reg [7:0] fout1;
reg [7:0] fout2;
reg [7:0] fcbptr;
reg [7:0] fcwptr;
reg [3:0] fzbptr;
reg [7:0] fzwptr;
reg [23:0] rdpwcolordith;
reg [7:0] dithred;
reg [7:0] dithgreen;
reg [7:0] dithblue;
wire [6:0] cwptrfn, zwptrfn;
reg [6:0] rdpcwptrn, rdpzwptrn;
wire validt9cn, validt11cn;
wire [7:0] nextzrptrsb;
wire [7:0] nextcrptrsb;
wire [7:0] nextzwptrsb;
wire [7:0] nextcwptrsb;
reg stallwptr;
reg ldstall;
// wires
//startspant0m generation (3:1 mux output):
//always @(startspant0 or startspant0d1 or startspant0d2 or startspant0d3 or
// startspant0d4 or startspant0d5 or startspant0d6 or rdloadmode or
// startspant0d7 or startspant0d8 or startspant0d9 or startspant0d10
// or startspant0d11 or rdcopymode or rdtwophase) begin
// if (rdloadmode) begin
// startspant0m <= #1 startspant0;
// end
// else if (rdtwophase) begin
// startspant0m <= #1 startspant0d6;
// end
// else if (rdcopymode) begin
// startspant0m <= #1 startspant0d1;
// end
// else begin
// startspant0m <= #1 startspant0d4;
// end
//end
//startspant7m generation (3:1 mux output):
always @(rmwtwophase or rmwenreadz or rmwenwritez or startspant5 or
startspant6 or startspant7) begin
if (!rmwtwophase & (rmwenreadz || rmwenwritez)) begin
startspant7m <= startspant5;
end
else if (rmwtwophase & !(rmwenreadz || rmwenwritez)) begin
startspant7m <= startspant6;
end
else begin
startspant7m <= startspant7;
end
end
//DELAYED DEPTH, COLOR to ms_si.v
//note: don't code up unknown case, as don't plan to reset req'd state
//note: rdpwcolor is 1b (we) and 8 8 8 3; only 27 lsb's output, rest use here
always @(rdpwdepthin or rdpwdepthd1 or rdpwdepthd2 or rdpwcolorin or
rdpwcolord1 or rdpwcolord2 or rdpwcolord3 or
rmwenreadz or rmwenwritez or rmwtwophase or
rdpwend1 or rdpwend2 or rdpwend3) begin
if (!rmwtwophase & (rmwenreadz || rmwenwritez)) begin
rdpwdepth <= rdpwdepthin;
rdpwcolor <= rdpwcolord1;
rdpwen <= rdpwend1;
end
else if (rmwtwophase & !(rmwenreadz || rmwenwritez)) begin
rdpwdepth <= rdpwdepthd1;
rdpwcolor <= rdpwcolord2;
rdpwen <= rdpwend2;
end
else begin
rdpwdepth <= rdpwdepthd2;
rdpwcolor <= rdpwcolord3;
rdpwen <= rdpwend3;
end
end
//NEXTCOUNT DECREMENTER: determines "endspant0" (via nextcount[12]);
always @(currcount or rdperclk8 or rdperclk4 or rdperclk2 or
rmwperclk8 or rmwperclk4 or rmwperclk2 or startspant1) begin
if (startspant1) begin
if (rdperclk8) begin
nextcount <= {1'b0, currcount} + 13'h0ff8;
end
else if (rdperclk4) begin
nextcount <= {1'b0, currcount} + 13'h0ffc;
end
else if (rdperclk2) begin
nextcount <= {1'b0, currcount} + 13'h0ffe;
end
else if (!rdperclk8 & !rdperclk4 & !rdperclk2) begin
nextcount <= {1'b0, currcount} + 13'h0fff;
end
else begin
nextcount <= 13'bx;
end
end
else begin
if (rmwperclk8) begin
nextcount <= {1'b0, currcount} + 13'h0ff8;
end
else if (rmwperclk4) begin
nextcount <= {1'b0, currcount} + 13'h0ffc;
end
else if (rmwperclk2) begin
nextcount <= {1'b0, currcount} + 13'h0ffe;
end
else if (!rmwperclk8 & !rmwperclk4 & !rmwperclk2) begin
nextcount <= {1'b0, currcount} + 13'h0fff;
end
else begin
nextcount <= 13'bx;
end
end
end
//RDP COLOR R/W POINTER INCREMENT VALUES
always @(rmwperclk8 or rmwperclk4 or rmwperclk2 or rmwcsize16 or
rmwcsize32 or rmwloadtlut) begin
if (rmwperclk8 || rmwperclk2) begin
cptrinc <= 8'h8;
end
else if (rmwperclk4 & rmwcsize16) begin
cptrinc <= 8'h8;
end
else if (rmwperclk4 & !rmwcsize16) begin
cptrinc <= 8'h4;
end
else if (rmwloadtlut) begin
cptrinc <= 8'h2;
end
else if (!rmwperclk8 & !rmwperclk4 & !rmwperclk2 & !rmwloadtlut) begin
if (rmwcsize32) begin
cptrinc <= 8'h4;
end
else if (rmwcsize16) begin
cptrinc <= 8'h2;
end
else begin
cptrinc <= 8'h1;
end
end
else begin
cptrinc <= 8'bx;
end
end
//RDP POINTERS AND REQUESTS TO ms_si.v and...
//STALL GENERATION: read/write c/z pointers exceed rdram-based buffer domain
// stallzr generated when read request has regword ptr[7:4] = rbrptr[3:0]
// this stall goes away at rbptr update, as it's not a gclock domain reg
always @(zreqrdt2 or creqrdt4 or zreqwrt9 or creqwrt11 or rbzrptr or rbcrptr or
rbzwptr or rbcwptr or zrptrt2sb or crptrt4sb or
zwptrt9sb or cwptrt11sb or
zreqrdt2c or creqrdt4c or zwptrt9sbc or cwptrt11sbc or
stallzr or stallzw or stallcr or stallcw or wrcsize16_buf or
wrcopymode_buf or zreqw) begin
stallzr <= zreqrdt2 & (zrptrt2sb[7:4] == rbzrptr[3:0]);
stallcr <= creqrdt4 & (crptrt4sb[7:4] == rbcrptr[3:0]);
stallzw <= (wrcsize16_buf & wrcopymode_buf & zreqw) || (!(wrcsize16_buf & wrcopymode_buf) & zreqwrt9 & (zwptrt9sb[7:4] == rbzwptr[3:0]));
stallcw <= creqwrt11 & (cwptrt11sb[7:4] == rbcwptr[3:0]);
stallptr <= stallzr || stallcr || stallzw || stallcw;
stallwptr <= stallzw || stallcw;
rdpreqzr <= zreqrdt2c;
rdpreqcr <= creqrdt4c;
rdpreqzw <= zreqwrt9;
rdpreqcw <= creqwrt11;
rdpzrptrsb <= zrptrt2sb[6:0];
rdpcrptrsb <= crptrt4sb[6:0];
rdpzwptrsbc <= zwptrt9sbc[6:0];
rdpcwptrsbc <= cwptrt11sbc[6:0];
end
always @(validt2 or validt4 or validt9 or validt11) begin
rdprpixz <= validt2;
rdprpixc <= validt4;
rdpwpixz <= validt9;
rdpwpixc <= validt11;
end
//WRITEMASK BUFFER STALL GENERATION for case of wmasks busy...
always @(creqw or zreqw or resetcreqw or resetzreqw or
endspant12 or fullcwmt11 or fullzwmt11 or wrenwritec_buf or
ldstall or wrenwritez_buf or wrenreadz_buf or
wrloadmode_buf) begin
// stallcwm <= creqw & (endspant12 || fullcwmt11);
// stallzwm <= zreqw & (endspant12 || fullzwmt11);
// stallczwm <= ((creqw || zreqw) & (endspant12 ||
// fullcwmt11 || fullzwmt11));
//**new and improved wmask stalls....to be checked out....
stallczwm <= (ldstall || (((creqw & !resetcreqw) || (zreqw & !resetzreqw)) &
((fullcwmt11 & wrenwritec_buf) ||
(fullzwmt11 & (wrenwritez_buf ||
(wrenreadz_buf & !wrloadmode_buf))) || endspant12)));
end
always @(endspant12 or lddelayd1 or lddelayd2 or fullzwmt11 or lddelayd1a or
lddelayd2a) begin
ldstall <= (endspant12 & (lddelayd1 || lddelayd2)) ||
(fullzwmt11 & (lddelayd1a || lddelayd2a));
end
//********bug above: if endspant11, still need to stall because otherwise
//lose the request. (creqw will not be set again). maybe need a buffer
//for the creqw so it can be loaded when available; e.g. nxtwmask can wait,
//and we have add'l stall if a startspan comes....in which case must stall.
//solution: for now, use endspant12 as a stall condition. later may add
//a buffer of it to generate a further request, this is tricky due to
//must still stall a 1 pixel span coming afterward....case.
//RGB DITHERING
always @(dithred or dithgreen or dithblue or rdpwcolorin or rand_r or rand_g or rand_b) begin
if (rdpwcolorin[21:19] > rand_r) begin
dithred <= ({rdpwcolorin[26:22], 3'h0} + 8'h8) |
{8{rdpwcolorin[26:22] == 5'h1f}};
end
else begin
dithred <= rdpwcolorin[26:19];
end
if (rdpwcolorin[13:11] > rand_g) begin
dithgreen <= ({rdpwcolorin[18:14], 3'h0} + 8'h8) |
{8{rdpwcolorin[18:14] == 5'h1f}};
end
else begin
dithgreen <= rdpwcolorin[18:11];
end
if (rdpwcolorin[5:3] > rand_b) begin
dithblue <= ({rdpwcolorin[10:6], 3'h0} + 8'h8) |
{8{rdpwcolorin[10:6] == 5'h1f}};
end
else begin
dithblue <= rdpwcolorin[10:3];
end
rdpwcolordith <= {dithred, dithgreen, dithblue};
end
assign validt1 = validphaset1 & validcyclet1;
assign endspant0 = validphaset0 & !nextcount[12] & endspant0en;
//endspant0en added to come out of reset, otherwise endspan cycles by itself
//combinational assigns for ease of interpretation (in theory...)
assign validphaset0 = enphaset0 || (!rmwtwophase & !startspant1 ||
!rdtwophase & startspant1);
assign setvalid = (startspant1 & (rdloadmode || rdfillmode || rdcopymode)) ||
(((startspant1 & !(rdloadmode || rdfillmode || rdcopymode)) ||
(startvalid & !(rmwloadmode || rmwfillmode || rmwcopymode))) &
!(currcount > rmwstepcount));
assign nextzrptr = zrptrt1 + (8'h2 & ~{8{rmwloadmode || rmwcopymode}}) +
(cptrinc & {8{rmwloadmode || rmwcopymode}});
assign nextcrptr = crptrt3 + cptrinc;
assign nextzwptr = zwptrt8 + (8'h2 & ~{8{rmwloadmode || rmwcopymode}}) +
(cptrinc & {8{rmwloadmode || rmwcopymode}});
assign nextcwptr = cwptrt10 + cptrinc;
assign nextzrptrsb = zrptrt1sb + (8'h2 & ~{8{rmwloadmode || rmwcopymode}}) +
(cptrinc & {8{rmwloadmode || rmwcopymode}});
assign nextcrptrsb = crptrt3sb + cptrinc;
assign nextzwptrsb = zwptrt8sb + (8'h2 & ~{8{rmwloadmode || rmwcopymode}}) +
(cptrinc & {8{rmwloadmode || rmwcopymode}});
assign nextcwptrsb = cwptrt10sb + cptrinc;
//stuff for converting transp latches in ms_si to clock domain
//first, advance write ptrs a half clock for glitch-free usage in ldc/zbufwen's
//always @(negedge clock) begin
// if (!stopgclock) begin
// validt11cn <= validt10;
// validt9cn <= validt8;
// rdpcwptrn <= cwptrt10sb ^ {4'h0, {4{xdect10}}};
// rdpzwptrn <= zwptrt8sb ^ {4'h0, {4{xdect8}}};
// end
// else begin
// validt11cn <= validt11cn;
// validt9cn <= validt9cn;
// rdpcwptrn <= rdpcwptrn;
// rdpzwptrn <= rdpzwptrn;
// end
//end
//recode above as instantiated dff's to maintain negedge clock species for synth
//assign rdpcwptrn = (cwptrt10sb[6:0] ^ {3'h0, {4{xdect10}}});
//assign rdpzwptrn = (zwptrt8sb[6:0] ^ {3'h0, {4{xdect8}}});
//mbnfnr ndff_1(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(validt10), .db(validt11cn), .q(validt11cn));
//mbnfnr ndff_2(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(validt8), .db(validt9cn), .q(validt9cn));
//assign cwptrfn = (cwptrt10sb[6:0] ^ {3'h0, {4{xdect10}}});
//assign zwptrfn = (zwptrt8sb[6:0] ^ {3'h0, {4{xdect8}}});
//mbnfnr ndff_4(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(cwptrfn[6]), .db(rdpcwptrn[6]), .q(rdpcwptrn[6]));
//mbnfnr ndff_5(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(cwptrfn[5]), .db(rdpcwptrn[5]), .q(rdpcwptrn[5]));
//mbnfnr ndff_6(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(cwptrfn[4]), .db(rdpcwptrn[4]), .q(rdpcwptrn[4]));
//mbnfnr ndff_7(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(cwptrfn[3]), .db(rdpcwptrn[3]), .q(rdpcwptrn[3]));
//mbnfnr ndff_8(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(cwptrfn[2]), .db(rdpcwptrn[2]), .q(rdpcwptrn[2]));
//mbnfnr ndff_9(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(cwptrfn[1]), .db(rdpcwptrn[1]), .q(rdpcwptrn[1]));
//mbnfnr ndff_a(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(cwptrfn[0]), .db(rdpcwptrn[0]), .q(rdpcwptrn[0]));
//mbnfnr ndff_c(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(zwptrfn[6]), .db(rdpzwptrn[6]), .q(rdpzwptrn[6]));
//mbnfnr ndff_d(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(zwptrfn[5]), .db(rdpzwptrn[5]), .q(rdpzwptrn[5]));
//mbnfnr ndff_e(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(zwptrfn[4]), .db(rdpzwptrn[4]), .q(rdpzwptrn[4]));
//mbnfnr ndff_f(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(zwptrfn[3]), .db(rdpzwptrn[3]), .q(rdpzwptrn[3]));
//mbnfnr ndff_g(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(zwptrfn[2]), .db(rdpzwptrn[2]), .q(rdpzwptrn[2]));
//mbnfnr ndff_h(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(zwptrfn[1]), .db(rdpzwptrn[1]), .q(rdpzwptrn[1]));
//mbnfnr ndff_i(.cpn(clock), .sa(~stopgclock), .sb(stopgclock),
//.da(zwptrfn[0]), .db(rdpzwptrn[0]), .q(rdpzwptrn[0]));
always @(posedge clock) begin
lddelayd1 <= #1 fullzwmt11 & wrloadmode & !endspant12;
lddelayd2 <= lddelayd1;
lddelayd1a <= #1 endspant12 & wrloadmode & !fullzwmt11;
lddelayd2a <= lddelayd1a;
stallcrd <= stallcr;
stallzrd <= stallzr;
stallcwd <= stallcw;
stallzwd <= stallzw;
stallczwmd <= stallczwm;
if (!stopgclock) begin
// validt11c <= validt10;
// validt9c <= validt8;
cwptrt11sbc <= cwptrt10sb ^ {4'h0, {4{xdect10}}};
zwptrt9sbc <= zwptrt8sb ^ {4'h0, {4{xdect8}}};
creqrdt4c <= rmwenreadc & (startspant4 ||
((crptrold ^ crptrt3[4]) & validt3));
zreqrdt2c <= rmwenreadz & (startspant2 ||
((zrptrold ^ zrptrt1[4]) & validt1));
rdpcwptrn <= #1 (cwptrt10sb[6:0] ^ {3'h0, {4{xdect10}}});
rdpzwptrn <= #1 (zwptrt8sb[6:0] ^ {3'h0, {4{xdect8}}});
end
else begin
// validt11c <= validt11c;
// validt9c <= validt9c;
cwptrt11sbc <= cwptrt11sbc;
zwptrt9sbc <= zwptrt9sbc;
creqrdt4c <= creqrdt4c;
zreqrdt2c <= zreqrdt2c;
rdpcwptrn <= rdpcwptrn;
rdpzwptrn <= rdpzwptrn;
end
end
always @(posedge gclock) begin
//calculating write enable for rdp pixel as fn of alphacompare
rdpwend1 <= rdpcolorwen & (!alphacompen || alphacompd3);
alphacompd3 <= alphacompd2;
alphacompd2 <= alphacompd1;
alphacompd1 <= ~(ccalpha < ({8{dithalphaen}} & dithalpha |
{8{!dithalphaen}} & blendalpha));
//delayed versions of data and we
rdpwend2 <= rdpwend1;
rdpwend3 <= rdpwend2;
rdpwdepthd1 <= rdpwdepthin;
rdpwdepthd2 <= rdpwdepthd1;
if (!dithrgben) begin
rdpwcolord1 <= rdpwcolorin;
end
else if (dithrgben) begin
rdpwcolord1 <= {rdpwcolordith, rdpwcolorin[2:0]};
end
rdpwcolord2 <= rdpwcolord1;
rdpwcolord3 <= rdpwcolord2;
//delayed versions of startspan from EW
startspand1 <= startspan;
startspand2 <= startspand1;
startspand3 <= startspand2;
startspand4 <= startspand3;
startspand5 <= startspand4;
startspand6 <= startspand5;
startspand7 <= startspand6;
startspand8 <= startspand7;
startspand9 <= startspand8;
startspand10 <= startspand9;
startspand11 <= startspand10;
if (rdloadmode) begin
startspant0 <= startspand2;
end
else if (rdcopymode) begin
startspant0 <= startspand3;
end
else if (!rdtwophase) begin
startspant0 <= startspand9;
end
else begin
startspant0 <= startspand11;
end
startspant1 <= startspant0;
startspant2 <= #1 startspant1;
startspant3 <= startspant2;
startspant4 <= #1 startspant3;
startspant5 <= startspant4;
startspant6 <= startspant5;
startspant7 <= startspant6;
//calculating valid and endspan, also delayed versions
if (!rmwtwophase & (rmwenreadz || rmwenwritez)) begin
startspant8 <= startspant5;
endspant7 <= endspant4;
validt7 <= validt4;
end
else if (rmwtwophase & !(rmwenreadz || rmwenwritez)) begin
startspant8 <= startspant6;
endspant7 <= endspant5;
validt7 <= validt5;
end
else begin
startspant8 <= startspant7;
endspant7 <= endspant6;
validt7 <= validt6;
end
startspant9 <= startspant8;
startspant10 <= startspant9;
startspant11 <= startspant10;
startspant12 <= startspant11;
validphaset1 <= validphaset0;
validt2 <= validt1;
validt3 <= #1 validt2;
validt4 <= validt3;
validt5 <= validt4;
validt6 <= validt5;
//missing entry is above in startspan pipemod code
validt8 <= #1 validt7;
validt9 <= validt8;
validt10 <= #1 validt9;
validt11 <= validt10;
endspant1 <= endspant0;
endspant2 <= endspant1 & validcyclet1;
endspant3 <= endspant2;
endspant4 <= endspant3;
endspant5 <= endspant4;
endspant6 <= endspant5;
//missing entry is above in startspan pipemod code
endspant8 <= endspant7;
endspant9 <= endspant8;
endspant10 <= endspant9;
endspant11 <= #1 endspant10;
endspant12 <= #1 endspant11;
endspant13 <= #1 endspant12;
endspant14 <= #1 endspant13;
end
always @(posedge gclock or negedge reset_l) begin
if (!reset_l) begin
// resettable registers
endvalidt1 <= low;
validcyclet1 <= low;
startvalid <= low;
enphaset0 <= low;
nxtwmaskc <= 64'b0;
nxtwmaskz <= 32'b0;
load_dv <= low;
load_dve <= low;
endspant0en <= low;
cwmzero <= low;
zwmzero <= low;
nirvana <= 5'b0;
//assume EWpipe resets startspan before memspan receives it...
//nonresettable registers
currcount <= 12'bx;
loadcount <= 13'bx;
rmwstepcount <= 12'bx;
rdpwdepthd1 <= 18'bx;
rdpwdepthd2 <= 18'bx;
rdpwcolord1 <= 27'bx;
rdpwcolord2 <= 27'bx;
rdpwcolord3 <= 27'bx;
cwmask <= 64'bx;
zwmask <= 32'bx;
alphacompd1 <= 'bx;
alphacompd2 <= 'bx;
alphacompd3 <= 'bx;
rdpwend1 <= 'bx;
rdpwend2 <= 'bx;
rdpwend3 <= 'bx;
validt2ld <= 'bx;
validt3ld <= 'bx;
end
else if (reset_l) begin
nirvana <= {(rdpreqzr & rdpreqcr & rdpreqzw & rdpreqcw) || nirvana[4],
(!rdpreqzr & rdpreqcr & rdpreqzw & rdpreqcw) || nirvana[3],
(rdpreqzr & !rdpreqcr & rdpreqzw & rdpreqcw) || nirvana[2],
(rdpreqzr & rdpreqcr & !rdpreqzw & rdpreqcw) || nirvana[1],
(rdpreqzr & rdpreqcr & rdpreqzw & !rdpreqcw) || nirvana[0]};
if (startspant0) begin
currcount <= pixcount;
end
else if (validphaset0) begin
currcount <= nextcount;
end
else if (!startspant0 & !validphaset0) begin
currcount <= currcount;
end
else begin
currcount <= 12'bx;
end
enphaset0 <= startspant0 || (!enphaset0);
if (startspant0) begin
rmwstepcount <= stepcount;
end
else if (!startspant0) begin
rmwstepcount <= rmwstepcount;
end
else begin
rmwstepcount <= 12'bx;
end
//loadcount determines # of load_dv cycles, can be one less than valid...
if (startspant1) begin
loadcount <= {1'b1, rmwstepcount};
end
else if (validt1 & !rmwloadtlut) begin
if (rmwperclk4) begin
loadcount <= loadcount + 13'h1ffc;
end
else if (rmwperclk8) begin
loadcount <= loadcount + 13'h1ff8;
end
else if (rmwperclk2) begin
loadcount <= loadcount + 13'h1ffe;
end
end
else if (validt1 & rmwloadtlut) begin
loadcount <= loadcount + 13'h1fff;
end
else begin
loadcount <= loadcount;
end
validt2ld <= loadcount[12] & validt1 & rmwloadmode;
endvalidt1 <= endspant0 & validphaset0;
if (startspant1) begin
startvalid <= high;
end
else if (validcyclet1) begin
startvalid <= low;
end
else if (!(startspant1 || validcyclet1)) begin
startvalid <= startvalid;
end
else begin
startvalid <= 'bx;
end
if (setvalid) begin
validcyclet1 <= high;
end
else if (endvalidt1) begin
validcyclet1 <= low;
end
else if (!(setvalid || endvalidt1)) begin
validcyclet1 <= validcyclet1;
end
else begin
validcyclet1 <= 'bx;
end
load_dv <= validt3ld; //indicate valid data load clks
load_dve <= validt2ld; //one clk earlier for io mux si
validt3ld <= validt2ld;
//endspant0en added to come out of reset, otherwise endspan cycles by itself
if (startspant0) begin
endspant0en <= high;
end
else if (validphaset0 & !nextcount[12]) begin
endspant0en <= low;
end
else begin
endspant0en <= endspant0en;
end
//R-S flipflop:
nxtwmaskc <= fsetcwmask | (nxtwmaskc &
{~{64{endspant12 || (fullcwmt11 & (wrenwritec_buf || wrcopymode_buf))}}});
if (endspant12 || (fullcwmt11 & (wrenwritec_buf || (wrcopymode_buf)))) begin
cwmask <= nxtwmaskc;
cwmzero <= ~|(nxtwmaskc);
end
else if (!(endspant12 ||
(fullcwmt11 & (wrenwritec_buf || (wrcopymode_buf))))) begin
cwmask <= cwmask;
cwmzero <= cwmzero;
end
else begin
cwmask <= 64'bx;
cwmzero <= cwmzero;
end
//R-S flipflop:
nxtwmaskz <= fsetzwmask | (nxtwmaskz & {~{32{endspant12 || (fullzwmt11 & wrenwritez_buf)}}});
//if (endspant12 || (fullzwmt11 & wrenwritez_buf)) begin
if (endspant12 || (fullzwmt11)) begin
zwmask <= nxtwmaskz;
zwmzero <= (wrcopymode_buf ? ~|(nxtwmaskc) : ~|(nxtwmaskz)) ||
(wrenreadz_buf & !wrenwritez_buf & !wrloadmode_buf);
end
//else if (!(endspant12 || (fullzwmt11 & wrenwritez_buf))) begin
else if (!(endspant12 || (fullzwmt11))) begin
zwmask <= zwmask;
zwmzero <= zwmzero;
end
else begin
zwmask <= 32'bx;
zwmzero <= zwmzero;
end
end
end
always @(posedge clock or negedge reset_l) begin
if (!reset_l) begin
// resettable registers
creqw <= low;
zreqw <= low;
end
else begin
//WRITE REQUEST GENERATION when wmasks full or end of span
//**have set higher priority than reset; allow no gap in reqw**
//must add stopgclock to avoid deadlock in event of multiple stall sources!
if (wrenwritec_buf & !stopgclock & (endspant12 || fullcwmt11)) begin
creqw <= high;
end
else if (resetcreqw) begin
creqw <= low;
end
else if (!resetcreqw & !(wrenwritec_buf & !stopgclock &
(endspant12 || fullcwmt11))) begin
creqw <= creqw;
end
else begin
creqw <= 'bx;
end
if ((wrenwritez_buf || (wrenreadz_buf & !wrloadmode_buf)) &
!stopgclock & (endspant12 || fullzwmt11)) begin
zreqw <= high;
end
else if (resetzreqw) begin
zreqw <= low;
end
else if (!resetzreqw & !((wrenwritez_buf || (wrenreadz_buf & !wrloadmode_buf)) &
!stopgclock & (endspant12 || fullzwmt11))) begin
zreqw <= zreqw;
end
else begin
zreqw <= 'bx;
end
end
end
always @(posedge gclock or negedge reset_l) begin
if (!reset_l) begin
fullcwmt11 <= low;
fullzwmt11 <= low;
zrptrt1 <= 8'bx;
zrptrt2 <= 8'bx;
crptrt3 <= 8'bx;
crptrt4 <= 8'bx;
zwptrt8 <= 8'bx;
zwptrt9 <= 8'bx;
zwptrt10 <= 8'bx;
zwptrt11 <= 8'bx;
cwptrt10 <= 8'bx;
cwptrt11 <= 8'bx;
zrptrt1sb <= 8'bx;
crptrt3sb <= 8'bx;
zwptrt8sb <= 8'bx;
cwptrt10sb <= 8'bx;
zrptrt2sb <= 8'bx;
crptrt4sb <= 8'bx;
zwptrt9sb <= 8'bx;
cwptrt11sb <= 8'bx;
xdect3 <= 'bx;
xdect8 <= 'bx;
xdect10 <= 'bx;
cwptrmodt11 <= 3'bx;
zrptrold <= 'bx;
crptrold <= 'bx;
zwptrold <= 'bx;
cwptrold <= 'bx;
zwptrold2 <= 'bx;
cwptrold2 <= 'bx;
zreqrdt2 <= 'bx;
creqrdt4 <= 'bx;
zreqwrt9 <= 'bx;
creqwrt11 <= 'bx;
cxit11 <= 'bx;
cxft11 <= 'bx;
end
else begin
//RDPTR LOGIC
//mod'd for xdec (note: xdec is set for right major triangle)
// init is xdec xor ptr 2:0 due to up/down iterations
// then always increment...at this point. (xor again afterward).
//also: must locally buffer xdec...changes per primitive
//nasty changes 10-12-94: due to twophase/validcycle behavior, the
//c/zreqrd/wr xor detect fails; address is stable per 2 clocks!
//fix: must latch with validcycle, create *ptrold registers.
//for writes, set to same polarity to kill any write during first detect xor;
//same for reads but OR in startspan to force prefetch...
if (startspant1) begin
zrptrt1 <= #1 savezxi[7:0] ^ {4'h0, {4{rdxdec}}};
zrptrt1sb <= {rdrbzrptr[3:0], savezxi[3:0]} ^ {4'h0, {4{rdxdec}}};
end
else if (validt1) begin
zrptrt1 <= #1 nextzrptr;
zrptrt1sb <= nextzrptrsb;
end
else if (!startspant1 & !validt1) begin
zrptrt1 <= zrptrt1;
zrptrt1sb <= zrptrt1sb;
end
else begin
zrptrt1 <= 8'bx;
zrptrt1sb <= 8'bx;
end
// FYI: zrwordptr = zrptrt1[4:0]; (used on t2).
zrptrt2 <= zrptrt1 ^ {4'h0, {4{rmwxdec}}};
//sb used for spanbuf addressing
zrptrt2sb <= zrptrt1sb ^ {4'h0, {4{rmwxdec}}};
// zreqrdt2 <= rmwenreadz & (startspant2 ||
// ((zrptrt2[4] ^ zrptrt1[4]) & validt1));
zreqrdt2 <= #1 rmwenreadz & (startspant2 ||
((zrptrold ^ zrptrt1[4]) & validt1));
if (startspant2 || validt1) begin
zrptrold <= #1 zrptrt1[4];
end
else begin
zrptrold <= zrptrold;
end
// we request z word read when iterate out of current word (and valid)
// OR when startspan received (regardless of scissor delay) for prefetch;
// therefore, when zrptr[4] changes, it's a new word.
if (startspant3) begin
crptrt3 <= #1 rmwcxi[7:0] ^ {4'h0, {4{rmwxdec}}};
crptrt3sb <= {rmwrbcrptr[3:0], rmwcxi[3:0]} ^ {4'h0, {4{rmwxdec}}};
end
else if (validt3) begin
crptrt3 <= #1 nextcrptr;
crptrt3sb <= nextcrptrsb;
end
else if (!startspant3 & !validt3) begin
crptrt3 <= crptrt3;
crptrt3sb <= crptrt3sb;
end
else begin
crptrt3 <= 8'bx;
crptrt3sb <= 8'bx;
end
// FYI: crwordptr = crptrt3[4:0]; (use on t4).
if (startspant3) begin
xdect3 <= rmwxdec;
end
else if (!startspant3) begin
xdect3 <= xdect3;
end
else begin
xdect3 <= 'bx;
end
crptrt4 <= crptrt3 ^ {4'h0, {4{xdect3}}};
crptrt4sb <= crptrt3sb ^ {4'h0, {4{xdect3}}};
// moved to clock, creqrdt4c for transp latch timing
creqrdt4 <= #1 rmwenreadc & (startspant4 ||
((crptrold ^ crptrt3[4]) & validt3));
if (startspant4 || validt3) begin
crptrold <= #1 crptrt3[4];
end
else begin
crptrold <= crptrold;
end
//WRPTR LOGIC
//mod'd for xdec (note: xdec is set for right major triangle)
// init is xdec xor 3:0
// then always increment...at this point.
//also: must locally buffer xdec...changes per primitive
//******and must add xdec buffer at z stage, use delayed version for c.....
if (startspant8) begin
zwptrt8 <= wrzxi_buf[7:0] ^ {{8{wrxdec_buf}}};
// zwptrt8 <= wrzxi_buf[7:0] ^ {{8{wrxdec_buf}}}; funky
zwptrt8sb <= #1 {wrrbzrptr_buf[3:0], wrzxi_buf[3:0]} ^
{4'h0, {4{wrxdec_buf}}};
end
else if (validt8) begin
zwptrt8 <= nextzwptr;
zwptrt8sb <= #1 nextzwptrsb;
end
else if (!startspant8 & !validt8) begin
zwptrt8 <= zwptrt8;
zwptrt8sb <= zwptrt8sb;
end
else begin
zwptrt8 <= 8'bx;
zwptrt8sb <= 8'bx;
end
// FYI: zwwordptr = zwptrt9[4:0];
if (startspant8) begin
xdect8 <= #1 wrxdec_buf;
end
else if (!startspant8) begin
xdect8 <= xdect8;
end
else begin
xdect8 <= 'bx;
end
// zwptrt9 <= zwptrt8 ^ {5'h0, {3{xdect8}}};
zwptrt9 <= zwptrt8 ^ {{8{xdect8}}};
zwptrt9sb <= zwptrt8sb ^ {4'h0, {4{xdect8}}};
zwptrt10 <= zwptrt9;
zwptrt11 <= zwptrt10;
//we use zwptrt11 for wmask calculation; cwptr is already generated for t11;
// zreqwrt9 <= #1 !wrfillmode_buf & wrenwritez_buf & (endspant8 ||
// !startspant9 & (zwptrold ^ zwptrt8[4])) & validt8;
zreqwrt9 <= #1 !wrfillmode_buf & wrenwritez_buf & (endspant8 ||
!startspant8 & (nextzwptr[4] ^ zwptrt8[4])) & validt8;
//above, kill with startspant9 because zwptrold is stale, and because
//we never generate write at first pixel of span it's not a problem.
if (startspant9 || validt8) begin
zwptrold <= zwptrt8[4];
end
else begin
zwptrold <= zwptrold;
end
// we request z word write when iterate out of current word (and valid)
// OR when endspan received;
if (startspant10) begin
cwptrt10 <= wrcxi_buf[7:0] ^ {{8{wrxdec_buf}}};
// cwptrt10 <= wrcxi_buf[7:0] ^ {5'h0, {3{wrxdec_buf}}};
cwptrt10sb <= #1 {wrrbcrptr_buf[3:0], wrcxi_buf[3:0]} ^
{4'h0, {4{wrxdec_buf}}};
end
else if (validt10) begin
cwptrt10 <= nextcwptr;
cwptrt10sb <= #1 nextcwptrsb;
end
else if (!startspant10 & !validt10) begin
cwptrt10 <= cwptrt10;
cwptrt10sb <= cwptrt10sb;
end
else begin
cwptrt10 <= 8'bx;
cwptrt10sb <= 8'bx;
end
// FYI: cwwordptr = cwptrt11[4:0];
if (startspant10) begin
xdect10 <= #1 wrxdec_buf;
end
else if (!startspant10) begin
xdect10 <= xdect10;
end
else begin
xdect10 <= 'bx;
end
// cwptrt11 <= cwptrt10 ^ {5'h0, {3{xdect10}}};
cwptrt11 <= cwptrt10 ^ {{8{xdect10}}};
cwptrt11sb <= cwptrt10sb ^ {4'h0, {4{xdect10}}};
creqwrt11 <= #1 !wrfillmode_buf & wrenwritec_buf & (endspant10 ||
!startspant10 & (nextcwptr[4] ^ cwptrt10[4]) & validt10);
// zreqwrt9 <= #1 !wrfillmode_buf & wrenwritez_buf & (endspant8 ||
// !startspant8 & (nextzwptr[4] ^ zwptrt8[4])) & validt8;
//was sst11, try t10:
if (startspant11 || validt10) begin
cwptrold <= cwptrt10[4];
end
else begin
cwptrold <= cwptrold;
end
//COLOR WRITEMASK GENERATION
//use cwptrt11/zwptrt11 and wr_buf attributes
//
//calc wmask, store in rs flop, pass to register yielding cwmask/zwmask
//use also: endspant11, startspant12
cwptrmodt11 <= (cwptrt10[2:0] ^ {3{xdect10}}) & {1'h1, !wrcsize32_buf,
wrcsize8_buf};
if (startspant11) begin
cxit11 <= wrcxi_buf[2:0];
cxft11 <= wrcxf_buf[2:0];
end
else begin
cxit11 <= cxit11;
cxft11 <= cxft11;
end
//fullcwmt11 detects when we start a new bytemask group (64 bytes, aligned)
//this is used to enable stalls, and to launch new write events. c/z sync'd.
//it is NOT and'd here with wrenwritec_buf
if (!wrrender_buf) begin
fullcwmt11 <= #1 !startspant11 & (cwptrt10[6] ^ cwptrold2) &
validt10;
end
else begin
fullcwmt11 <= #1 !startspant11 & (cwptrt10[5] ^ cwptrold2) &
validt10;
end
if (startspant11 || validt10) begin
if (!wrrender_buf) begin
cwptrold2 <= cwptrt10[6];
end
else begin
cwptrold2 <= cwptrt10[5];
end
end
else begin
cwptrold2 <= cwptrold2;
end
//fullzwmt11 detects when we start a new bytemask group (64 bytes, aligned)
//this is used to enable stalls, and to launch new write events. c/z sync'd.
if (!wrrender_buf) begin
fullzwmt11 <= #1 !startspant11 & (zwptrt10[6] ^ zwptrold2) &
validt10;
end
else begin
fullzwmt11 <= #1 !startspant11 & (zwptrt10[5] ^ zwptrold2) &
validt10;
end
if (startspant11 || validt10) begin
if (!wrrender_buf) begin
zwptrold2 <= zwptrt10[6];
end
else begin
zwptrold2 <= zwptrt10[5];
end
end
else begin
zwptrold2 <= zwptrold2;
end
end
end
always @(cxit11 or cxft11 or fstart or fend or fcbptr or fcwptr or
cwptrmodt11 or cwptrt11 or startspant12 or endspant11 or
wrfillmode_buf or wrcopymode_buf or wrcsize8_buf or
wrcsize16_buf or wrcsize32_buf or fout1 or fout2 or copywen or
validt11 or rdpwen or wrenwritec_buf or fsetcbmask or
wrenwritez_buf) begin
//first generate start/end 8b masks for load/fill/copy usage
case (cxit11[2:0])
3'h0: fstart = 8'hff;
3'h1: fstart = 8'h7f;
3'h2: fstart = 8'h3f;
3'h3: fstart = 8'h1f;
3'h4: fstart = 8'h0f;
3'h5: fstart = 8'h07;
3'h6: fstart = 8'h03;
3'h7: fstart = 8'h01;
endcase
case (cxft11[2:0])
3'h0: fend = 8'h80;
3'h1: fend = 8'hc0;
3'h2: fend = 8'he0;
3'h3: fend = 8'hf0;
3'h4: fend = 8'hf8;
3'h5: fend = 8'hfc;
3'h6: fend = 8'hfe;
3'h7: fend = 8'hff;
endcase
//below, fcbptr is function byte pointer (per 64b field) for !(fill/copy/load)
case (cwptrmodt11[2:0])
3'h0: fcbptr = 8'h80;
3'h1: fcbptr = 8'h40;
3'h2: fcbptr = 8'h20;
3'h3: fcbptr = 8'h10;
3'h4: fcbptr = 8'h08;
3'h5: fcbptr = 8'h04;
3'h6: fcbptr = 8'h02;
3'h7: fcbptr = 8'h01;
endcase
//below fcwptr is function word pointer (of 8 words)
case (cwptrt11[5:3])
3'h0: fcwptr = 8'h80;
3'h1: fcwptr = 8'h40;
3'h2: fcwptr = 8'h20;
3'h3: fcwptr = 8'h10;
3'h4: fcwptr = 8'h08;
3'h5: fcwptr = 8'h04;
3'h6: fcwptr = 8'h02;
3'h7: fcwptr = 8'h01;
endcase
//must zero out sub-pixel precision lsb's of xi/xf for below!!!!!!
//this was done in cwptrmodt11[2:0]
fout1 <= (~{8{startspant12}} | fstart) & (~{8{endspant11}} | fend) &
{8{(wrfillmode_buf || wrcopymode_buf)}} &
(~{8{wrcopymode_buf & wrcsize8_buf}} |
{~{4{cwptrt11[2]}}, {4{cwptrt11[2]}}});
fout2 <= {fcbptr[7], fcbptr[6] || (fcbptr[7] & (wrcsize16_buf ||
wrcsize32_buf)),
(fcbptr[5] || (fcbptr[7] & wrcsize32_buf)),
(fcbptr[4] || (fcbptr[5] & wrcsize16_buf ||
fcbptr[7] & wrcsize32_buf)),
fcbptr[3], fcbptr[2] || (fcbptr[3] & (wrcsize16_buf ||
wrcsize32_buf)),
(fcbptr[1] || (fcbptr[3] & wrcsize32_buf)),
(fcbptr[0] || (fcbptr[1] & wrcsize16_buf ||
fcbptr[3] & wrcsize32_buf))} &
~{8{(wrfillmode_buf || wrcopymode_buf)}};
//bytemask selects within 8 byte field
fsetcbmask <= (fout1 | fout2) &
{8{(wrenwritec_buf & !wrcopymode_buf ||
wrenwritez_buf & wrcopymode_buf) & validt11}} &
({8{!wrcopymode_buf & rdpwen || wrfillmode_buf}} |
{8{wrcopymode_buf}} & {{copywen}});
//enwritec unnecessary above but might help sim interpretation...
//expanded into 64 byte field using 8b word select: fcwptr
fsetcwmask <= {8{fsetcbmask}} & {{8{fcwptr[7]}}, {8{fcwptr[6]}},
{8{fcwptr[5]}}, {8{fcwptr[4]}}, {8{fcwptr[3]}}, {8{fcwptr[2]}},
{8{fcwptr[1]}}, {8{fcwptr[0]}}};
end
always @(zwptrt11 or fzbptr or fsetzbmask or rdpwen or validt11 or
wrenwritez_buf or fzwptr or fsetzwmask) begin
//DEPTH WRITEMASK GENERATION
case (zwptrt11[2:1])
2'h3: fzbptr = 4'h8;
2'h2: fzbptr = 4'h4;
2'h1: fzbptr = 4'h2;
2'h0: fzbptr = 4'h1;
endcase
case (zwptrt11[5:3])
3'h0: fzwptr = 8'h80;
3'h1: fzwptr = 8'h40;
3'h2: fzwptr = 8'h20;
3'h3: fzwptr = 8'h10;
3'h4: fzwptr = 8'h08;
3'h5: fzwptr = 8'h04;
3'h6: fzwptr = 8'h02;
3'h7: fzwptr = 8'h01;
endcase
//bytemask selects within 8 byte field
//note for z each bit rep's 2 bytes in memory, since z is 16b
fsetzbmask <= {fzbptr[0], fzbptr[1], fzbptr[2], fzbptr[3]} &
{4{wrenwritez_buf & validt11 & rdpwen}};
//enwritez above unnecessary but might help sim interpretation
//expanded into 64 byte field using 8b word select: fzwptr
fsetzwmask <= {8{fsetzbmask}} & {{4{fzwptr[7]}}, {4{fzwptr[6]}},
{4{fzwptr[5]}}, {4{fzwptr[4]}}, {4{fzwptr[3]}}, {4{fzwptr[2]}},
{4{fzwptr[1]}}, {4{fzwptr[0]}}};
end
endmodule