dmem4.s
5.62 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/************************************************************************
Variations on the Nair, Thatte, Abraham (NTA) test by Nair, Thatte, and
Abraham for stuck-at and coupling faults.
<<< THIS TEST IS THE LAST SEGMENT OF THE PRMEM.S TEST. >>>
----------------------------------------------------------------------
While a complete NTA calls for each bit of the memory under test to be
treated as a cell, this test (Project Reality's own flavor)
incorporates several variations that use various groupings of bits to
reduce the test duration and yet provide a high confidence level.
We begin by assuming that the memory module (DMEM) is comprised of
address decoder, pre-charged bit-lines, bit cells, sense-amplifiers,
and output buffers/registers. The address decoder can be either
wired-OR or wired-AND types. Bit-lines are arranged in the same order
as the bits appear in a 32-bit data word. Our key assumptions that
allows us to reduce the length of Test B is: coupling faults occur
mainly between bits in different words (often along a bit-line), or
between adjacent bits in the same word.
Each variation uses the same 8-step algorithm:
0) for (i=1; i<=N; i++) { Wi=0; }
1) for (i=1; i<=N; i++) { Ri(=0); Wi=1; }
for (i=N-1; i>=1; i--) { Ri(=1); }
2) for (i=1; i<=N; i++) { Ri(=1); Wi=0; }
for (i=N-1; i>=1; i--) { Ri(=0); }
3) for (i=N; i<=1; i--) { Ri(=0); Wi=1; }
for (i=1; i>=N-1; i++) { Ri(=1); }
4) for (i=N; i<=1; i--) { Ri(=1); Wi=0; }
for (i=1; i>=N-1; i++) { Ri(=0); }
5) for (i=1; i<=N; i++) { Ri(=0); Wi=1; Wi=0; }
for (i=N-1; i>=1; i--) { Ri(=0); }
6) for (i=N; i<=1; i--) { Ri(=0); Wi=1; Wi=0; }
for (i=1; i>=N-1; i++) { Ri(=0); }
S) for (i=1; i<=N; i++) { Wi=1; }
7) for (i=1; i<=N; i++) { Ri(=1); Wi=0; Wi=1; }
for (i=N-1; i>=1; i--) { Ri(=1); }
8) for (i=N; i<=1; i--) { Ri(=1); Wi=0; Wi=1; }
for (i=1; i>=N-1; i++) { Ri(=1); }
************************************************************************/
#define FEED 0xFEED
#define ZERO $0 /* zero register */
#define TID $1 /* test ID */
#define SID $2 /* step ID */
#define TREG $3 /* test (scratch) register */
#define INCR $4 /* address increment register (4, -4) */
#define MEND $5 /* memory "end" (constant) register */
#define CHKV $7 /* set value register */
#define RET2 $26 /* return register for nested calls */
#define ADDR $27 /* address register (also loop start) */
#define PAT1 $28 /* pattern 1 register */
#define PAT2 $29 /* pattern 2 register */
#define STOP $30 /* loop stop register */
#define RETN $31 /* procedure call return register */
.base 0x04001000
or $1, $0, $0
or $2, $0, $0
or $3, $0, $0
or $4, $0, $0
or $5, $0, $0
or $6, $0, $0
or $7, $0, $0
or $8, $0, $0
or $9, $0, $0
or $10, $0, $0
or $11, $0, $0
or $12, $0, $0
or $13, $0, $0
or $14, $0, $0
or $15, $0, $0
or $16, $0, $0
or $17, $0, $0
or $18, $0, $0
or $19, $0, $0
or $20, $0, $0
or $21, $0, $0
or $22, $0, $0
or $23, $0, $0
or $24, $0, $0
or $25, $0, $0
or $26, $0, $0
or $27, $0, $0
or $28, $0, $0
or $29, $0, $0
or $30, $0, $0
or $31, $0, $0
ori MEND, ZERO, 0x0FFC
lui PAT1, 0x5555
ori PAT1, PAT1, 0x5555
lui PAT2, 0xAAAA
ori PAT2, PAT2, 0xAAAA
jal Test
ori TID, ZERO, 6
j End
Test: or RET2, RETN, ZERO
/* Step Reset */
or ADDR, ZERO, ZERO
or STOP, MEND, MEND
addi INCR, ZERO, 4
jal Reset
ori SID, ZERO, 0x000a
/* Step 5 */
or ADDR, ZERO, ZERO
or STOP, MEND, MEND
addi INCR, ZERO, 4
jal RdT2
ori SID, ZERO, 0x005a
addi ADDR, MEND, -4
or STOP, ZERO, ZERO
addi INCR, ZERO, -4
jal Read
ori SID, ZERO, 0x005b
/* Step 6 */
or ADDR, MEND, MEND
or STOP, ZERO, ZERO
addi INCR, ZERO, -4
jal RdT2
ori SID, ZERO, 0x006a
addi ADDR, ZERO, 4
or STOP, MEND, MEND
addi INCR, ZERO, 4
jal Read
ori SID, ZERO, 0x006b
/* Step Set */
xor PAT1, PAT1, PAT2
xor PAT2, PAT1, PAT2
xor PAT1, PAT1, PAT2
or ADDR, ZERO, ZERO
or STOP, MEND, MEND
addi INCR, ZERO, 4
jal Reset
ori SID, ZERO, 0x006c
/* Step 7 */
or ADDR, ZERO, ZERO
or STOP, MEND, MEND
addi INCR, ZERO, 4
jal RdT2
ori SID, ZERO, 0x007a
addi ADDR, MEND, -4
or STOP, ZERO, ZERO
addi INCR, ZERO, -4
jal Read
ori SID, ZERO, 0x007b
/* Step 8 */
or ADDR, MEND, MEND
or STOP, ZERO, ZERO
addi INCR, ZERO, -4
jal RdT2
ori SID, ZERO, 0x008a
addi ADDR, ZERO, 4
or STOP, MEND, MEND
addi INCR, ZERO, 4
jal Read
ori SID, ZERO, 0x008b
/* Return */
jr RET2
nop
/********************************
Read( TREG, ADDR, PAT1, STOP,
INCR, RETN)
********************************/
Read: lw TREG, 0 (ADDR)
bne TREG, PAT1, Fail
nop
bne ADDR, STOP, Read
add ADDR, ADDR, INCR
jr RETN
nop
/****************************************
RdT1( TREG, ADDR, PAT1, PAT2, STOP,
INCR, RETN)
****************************************/
RdT1: lw TREG, 0 (ADDR)
bne TREG, PAT1, Fail
sw PAT2, 0 (ADDR)
bne ADDR, STOP, RdT1
add ADDR, ADDR, INCR
jr RETN
nop
/****************************************
RdT2( TREG, ADDR, PAT1, PAT2, STOP,
INCR, RETN)
****************************************/
RdT2: lw TREG, 0 (ADDR)
bne TREG, PAT1, Fail
sw PAT2, 0 (ADDR)
sw PAT1, 0 (ADDR)
bne ADDR, STOP, RdT2
add ADDR, ADDR, INCR
jr RETN
nop
/****************************************
Reset( PAT1, ADDR, STOP, INCR, RETN)
****************************************/
Reset: sw PAT1, 0 (ADDR)
bne ADDR, STOP, Reset
add ADDR, ADDR, INCR
jr RETN
nop
End: or SID, ZERO, ZERO
ori TID, ZERO, FEED
Fail:
sw TID, 0 (ZERO)
break