reverb.c
13.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/*====================================================================
* reverb.c
*
* Copyright 1993, Silicon Graphics, Inc.
* All Rights Reserved.
*
* This is UNPUBLISHED PROPRIETARY SOURCE CODE of Silicon Graphics,
* Inc.; the contents of this file may not be disclosed to third
* parties, copied or duplicated in any form, in whole or in part,
* without the prior written permission of Silicon Graphics, Inc.
*
* RESTRICTED RIGHTS LEGEND:
* Use, duplication or disclosure by the Government is subject to
* restrictions as set forth in subdivision (c)(1)(ii) of the Rights
* in Technical Data and Computer Software clause at DFARS
* 252.227-7013, and/or in similar or successor clauses in the FAR,
* DOD or NASA FAR Supplement. Unpublished - rights reserved under the
* Copyright Laws of the United States.
*====================================================================*/
#include <libaudio.h>
#include <ultraerror.h>
#include "synthInternals.h"
#include <os.h>
#include <os_internal.h>
#include <assert.h>
#include "initfx.h"
#define RANGE 2.0
extern ALGlobals *alGlobals;
#ifdef AUD_PROFILE
extern u32 cnt_index, reverb_num, reverb_cnt, reverb_max, reverb_min, lastCnt[];
extern u32 load_num, load_cnt, load_max, load_min, save_num, save_cnt, save_max, save_min;
#endif
/*
* macros
*/
#define SWAP(in, out) \
{ \
s16 t = out; \
out = in; \
in = t; \
}
Acmd *_loadOutputBuffer(ALFx *r, ALDelay *d, s32 buff, s32 incount, Acmd *p);
Acmd *_loadBuffer(ALFx *r, s16 *curr_ptr, s32 buff, s32 count, Acmd *p);
Acmd *_saveBuffer(ALFx *r, s16 *curr_ptr, s32 buff, s32 count, Acmd *p);
Acmd *_filterBuffer(ALLowPass *lp, s32 buff, s32 count, Acmd *p);
f32 _doModFunc(ALDelay *d, s32 count);
static s32 L_INC[] = { L0_INC, L1_INC, L2_INC };
/***********************************************************************
* Reverb filter public interfaces
***********************************************************************/
Acmd *alFxPull(void *filter, s16 *outp, s32 outCount, s32 sampleOffset,
Acmd *p)
{
Acmd *ptr = p;
ALFx *r = (ALFx *)filter;
ALFilter *source = r->filter.source;
s16 i, buff1, buff2, input, output;
s16 *in_ptr, *out_ptr, gain, *prev_out_ptr = 0;
ALDelay *d, *pd;
#ifdef AUD_PROFILE
lastCnt[++cnt_index] = osGetCount();
#endif
#ifdef _DEBUG
assert(source);
#endif
/*
* pull channels going into this effect first
*/
ptr = (*source->handler)(source, outp, outCount, sampleOffset, p);
input = AL_AUX_L_OUT;
output = AL_AUX_R_OUT;
buff1 = AL_TEMP_0;
buff2 = AL_TEMP_1;
aSetBuffer(ptr++, 0, 0, 0, outCount<<1); /* set the buffer size */
aMix(ptr++, 0, 0xda83, AL_AUX_L_OUT, input); /* .707L = L - .293L */
aMix(ptr++, 0, 0x5a82, AL_AUX_R_OUT, input); /* mix the AuxL and AuxR into the AuxL */
/* and write the mixed value to the delay line at r->input */
ptr = _saveBuffer(r, r->input, input, outCount, ptr);
aClearBuffer(ptr++, output, outCount<<1); /* clear the AL_AUX_R_OUT */
for (i = 0; i < r->section_count; i++) {
d = &r->delay[i]; /* get the ALDelay structure */
in_ptr = &r->input[-d->input];
out_ptr = &r->input[-d->output];
if (in_ptr == prev_out_ptr) {
SWAP(buff1, buff2);
} else { /* load data at in_ptr into buff1 */
ptr = _loadBuffer(r, in_ptr, buff1, outCount, ptr);
}
ptr = _loadOutputBuffer(r, d, buff2, outCount, ptr);
if (d->ffcoef) {
aMix(ptr++, 0, (u16)d->ffcoef, buff1, buff2);
if (!d->rs && !d->lp) {
ptr = _saveBuffer(r, out_ptr, buff2, outCount, ptr);
}
}
if (d->fbcoef) {
aMix(ptr++, 0, (u16)d->fbcoef, buff2, buff1);
ptr = _saveBuffer(r, in_ptr, buff1, outCount, ptr);
}
if (d->lp)
ptr = _filterBuffer(d->lp, buff2, outCount, ptr);
if (!d->rs)
ptr = _saveBuffer(r, out_ptr, buff2, outCount, ptr);
if (d->gain)
aMix(ptr++, 0, (u16)d->gain, buff2, output);
prev_out_ptr = &r->input[d->output];
}
/*
* bump the master delay line input pointer
* modulo the length
*/
r->input += outCount;
if (r->input > &r->base[r->length])
r->input -= r->length;
/*
* output already in AL_AUX_R_OUT
* just copy to AL_AUX_L_OUT
*/
aDMEMMove(ptr++, output, AL_AUX_L_OUT, outCount<<1);
#ifdef AUD_PROFILE
PROFILE_AUD(reverb_num, reverb_cnt, reverb_max, reverb_min);
#endif
return ptr;
}
s32 alFxParam(void *filter, s32 paramID, void *param)
{
if(paramID == AL_FILTER_SET_SOURCE)
{
ALFilter *f = (ALFilter *) filter;
f->source = (ALFilter*) param;
}
return 0;
}
/*
* This routine gets called by alSynSetFXParam. No checking takes place to
* verify the validity of the paramID or the param value. input and output
* values must be 8 byte aligned, so round down any param passed.
*/
s32 alFxParamHdl(void *filter, s32 paramID, void *param)
{
ALFx *f = (ALFx *) filter;
s32 p = (paramID - 2) % 8;
s32 s = (paramID - 2) / 8;
s32 val = *(s32*)param;
#define INPUT_PARAM 0
#define OUTPUT_PARAM 1
#define FBCOEF_PARAM 2
#define FFCOEF_PARAM 3
#define GAIN_PARAM 4
#define CHORUSRATE_PARAM 5
#define CHORUSDEPTH_PARAM 6
#define LPFILT_PARAM 7
switch(p)
{
case INPUT_PARAM:
f->delay[s].input = (u32)val & 0xFFFFFFF8;
break;
case OUTPUT_PARAM:
f->delay[s].output = (u32)val & 0xFFFFFFF8;
break;
case FFCOEF_PARAM:
f->delay[s].ffcoef = (s16)val;
break;
case FBCOEF_PARAM:
f->delay[s].fbcoef = (s16)val;
break;
case GAIN_PARAM:
f->delay[s].gain = (s16)val;
break;
case CHORUSRATE_PARAM:
/* f->delay[s].rsinc = ((f32)val)/0xffffff; */
f->delay[s].rsinc = ((((f32)val)/1000) * RANGE)/alGlobals->drvr.outputRate;
break;
/*
* the following constant is derived from:
*
* ratio = 2^(cents/1200)
*
* and therefore for hundredths of a cent
* x
* ln(ratio) = ---------------
* (120,000)/ln(2)
* where
* 120,000/ln(2) = 173123.40...
*/
#define CONVERT 173123.404906676
#define LENGTH (f->delay[s].output - f->delay[s].input)
case CHORUSDEPTH_PARAM:
/*f->delay[s].rsgain = (((f32)val) / CONVERT) * LENGTH; */
f->delay[s].rsgain = (((f32)val) / CONVERT) * LENGTH;
break;
case LPFILT_PARAM:
if(f->delay[s].lp)
{
f->delay[s].lp->fc = (s16)val;
_init_lpfilter(f->delay[s].lp);
}
break;
}
return 0;
}
Acmd *_loadOutputBuffer(ALFx *r, ALDelay *d, s32 buff, s32 incount, Acmd *p)
{
Acmd *ptr = p;
s32 ratio, count, rbuff = AL_TEMP_2;
s16 *out_ptr;
f32 fincount, fratio, delta;
s32 ramalign = 0, length;
static f32 val=0.0, lastval=-10.0;
static f32 blob=0;
/*
* The following section implements the chorus resampling. Modulate where you pull
* the samples from, since you need varying amounts of samples.
*/
if (d->rs) {
length = d->output - d->input;
delta = _doModFunc(d, incount); /* get the number of samples to modulate by */
/*
* find ratio of delta to delay length and quantize
* to same resolution as resampler
*/
delta /= length; /* convert delta from number of samples to a pitch ratio */
delta = (s32)(delta * UNITY_PITCH); /* quantize to value microcode will use */
delta = delta / UNITY_PITCH;
fratio = 1.0 - delta; /* pitch ratio needs to be centered around 1, not zero */
/* d->rs->delta is the difference between the fractional and integer value
* of the samples needed. fratio * incount + rs->delta gives the number of samples
* needed for this frame.
*/
fincount = d->rs->delta + (fratio * (f32)incount);
count = (s32) fincount; /* quantize to s32 */
d->rs->delta = fincount - (f32)count; /* calculate the round off and store */
/*
* d->rsdelta is amount the out_ptr has deviated from its starting position.
* You calc the out_ptr by taking d->output - d->rsdelta, and then using the
* negative of that as an index into the delay buffer. loadBuffer that uses this
* value then bumps it up if it is below the delay buffer.
*/
out_ptr = &r->input[-(d->output - d->rsdelta)];
ramalign = ((s32)out_ptr & 0x7) >> 1; /* calculate the number of samples needed
to align the buffer*/
#ifdef _DEBUG
#if 0
if(length > 0) {
if (length - d->rsdelta > (s32)r->length) {
__osError(ERR_ALMODDELAYOVERFLOW, 1, length - d->rsdelta - r->length);
}
}
else if(length < 0) {
if ((-length) - d->rsdelta > (s32)r->length) {
__osError(ERR_ALMODDELAYOVERFLOW, 1, (-length) - d->rsdelta - r->length);
}
}
#endif
#endif
/* load the rbuff with samples, note that there will be ramalign worth of
* samples at the begining which you don't care about. */
ptr = _loadBuffer(r, out_ptr - ramalign, rbuff, count + ramalign, ptr);
/* convert fratio to 16 bit fraction for microcode use */
ratio = (s32)(fratio * UNITY_PITCH);
/* set the buffers, and do the resample */
aSetBuffer(ptr++, 0, rbuff + (ramalign<<1), buff, incount<<1);
aResample(ptr++, d->rs->first, ratio, osVirtualToPhysical(d->rs->state));
d->rs->first = 0; /* turn off first time flag */
d->rsdelta += count - incount; /* add the number of samples to d->rsdelta */
} else {
out_ptr = &r->input[-d->output];
ptr = _loadBuffer(r, out_ptr, buff, incount, ptr);
}
return ptr;
}
/*
* This routine is for loading data from the delay line buff. If the
* address of curr_ptr < r->base, it will force it to be within r->base
* space, If the load goes past the end of r->base it will wrap around.
* Cause count bytes of data at curr_ptr (within the delay line) to be
* loaded into buff. (Buff is a dmem buffer)
*/
Acmd *_loadBuffer(ALFx *r, s16 *curr_ptr, s32 buff, s32 count, Acmd *p)
{
Acmd *ptr = p;
s32 after_end, before_end;
s16 *updated_ptr, *delay_end;
#ifdef AUD_PROFILE
lastCnt[++cnt_index] = osGetCount();
#endif
delay_end = &r->base[r->length];
#ifdef _DEBUG
if(curr_ptr > delay_end)
__osError(ERR_ALMODDELAYOVERFLOW, 1, delay_end - curr_ptr);
#endif
if (curr_ptr < r->base)
curr_ptr += r->length;
updated_ptr = curr_ptr + count;
if (updated_ptr > delay_end) {
after_end = updated_ptr - delay_end;
before_end = delay_end - curr_ptr;
aSetBuffer(ptr++, 0, buff, 0, before_end<<1);
aLoadBuffer(ptr++, osVirtualToPhysical(curr_ptr));
aSetBuffer(ptr++, 0, buff+(before_end<<1), 0, after_end<<1);
aLoadBuffer(ptr++, osVirtualToPhysical(r->base));
} else {
aSetBuffer(ptr++, 0, buff, 0, count<<1);
aLoadBuffer(ptr++, osVirtualToPhysical(curr_ptr));
}
aSetBuffer(ptr++, 0, 0, 0, count<<1);
#ifdef AUD_PROFILE
PROFILE_AUD(load_num, load_cnt, load_max, load_min);
#endif
return ptr;
}
/*
* This routine is for writing data to the delay line buff. If the
* address of curr_ptr < r->base, it will force it to be within r->base
* space. If the write goes past the end of r->base, it will wrap around
* Cause count bytes of data at buff to be written to delay line, curr_ptr.
*/
Acmd *_saveBuffer(ALFx *r, s16 *curr_ptr, s32 buff, s32 count, Acmd *p)
{
Acmd *ptr = p;
s32 after_end, before_end;
s16 *updated_ptr, *delay_end;
#ifdef AUD_PROFILE
lastCnt[++cnt_index] = osGetCount();
#endif
delay_end = &r->base[r->length];
if (curr_ptr < r->base) /* probably just security */
curr_ptr += r->length; /* shouldn't occur */
updated_ptr = curr_ptr + count;
if (updated_ptr > delay_end) { /* if the data wraps past end of r->base */
after_end = updated_ptr - delay_end;
before_end = delay_end - curr_ptr;
aSetBuffer(ptr++, 0, 0, buff, before_end<<1);
aSaveBuffer(ptr++, osVirtualToPhysical(curr_ptr));
aSetBuffer(ptr++, 0, 0, buff+(before_end<<1), after_end<<1);
aSaveBuffer(ptr++, osVirtualToPhysical(r->base));
aSetBuffer(ptr++, 0, 0, 0, count<<1);
} else {
aSetBuffer(ptr++, 0, 0, buff, count<<1);
aSaveBuffer(ptr++, osVirtualToPhysical(curr_ptr));
}
#ifdef AUD_PROFILE
PROFILE_AUD(save_num, save_cnt, save_max, save_min);
#endif
return ptr;
}
Acmd *_filterBuffer(ALLowPass *lp, s32 buff, s32 count, Acmd *p)
{
Acmd *ptr = p;
aSetBuffer(ptr++, 0, buff, buff, count<<1);
aLoadADPCM(ptr++, 32, osVirtualToPhysical(lp->fcvec.fccoef));
aPoleFilter(ptr++, lp->first, lp->fgain, osVirtualToPhysical(lp->fstate));
lp->first = 0;
return ptr;
}
/*
* Generate a triangle wave from -1 to 1, and find the current position
* in the wave. (Rate of the wave is controlled by d->rsinc, which is chorus
* rate) Multiply the current triangle wave value by d->rsgain, (chorus depth)
* which is expressed in number of samples back from output pointer the chorus
* should go at it's full chorus. In otherwords, this function returns a number
* of samples the output pointer should modulate backwards.
*/
f32 _doModFunc(ALDelay *d, s32 count)
{
f32 val;
/*
* generate bipolar sawtooth
* from -RANGE to +RANGE
*/
d->rsval += d->rsinc * count;
d->rsval = (d->rsval > RANGE) ? d->rsval-(RANGE*2) : d->rsval;
/*
* convert to monopolar triangle
* from 0 to RANGE
*/
val = d->rsval;
val = (val < 0) ? -val : val;
/*
* convert to bipolar triangle
* from -1 to 1
*/
val -= RANGE/2;
return(d->rsgain * val);
}