gline.s 20.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
 ##########################################################################
 #
 # Line Setup Routine.
 # When entering this code we have a points buffer full of points,
 # and registers r1, r2 point to the two vertices of a line.
 # r4 points to the vertex with the normal for flat-shaded case.
 # 
 # Kevin Luster, kluster@sgi.com	
 #
 ##########################################################################

 # pointers to vertices
.name 	minp,		$1
.name	maxp,		$2
.name	flatp,		$4
	
 # point y coordinates
.name 	miny,		$3
.name	maxy,		$17
	
.name	rdp_cmd,	$5
.name	rdp_flg,	$6
.name	temp,		$7	

.name 	minx,		$8
.name	maxx,		$9

.name 	Hdx, 		$10
.name	Hdy,		$11

.name	xHigh,		$12
.name	xMid,		$13

.name	yHigh,		$14
.name	yMid,		$15
.name	yLow,		$16

.name	attrmask,	$18
	
 # vector registers

.name	vzero,		$v0	
.name	vtmp,		$v1

.name	vHdxi,		$v2
.name	vHdxf,		$v3

.name	aMini,		$v4
.name	aMinf,		$v5	
	
.name	aDeli,		$v6	
	
.name	iHdyi,		$v8
.name	iHdyf,		$v9

.name	dxyHi,		$v10
.name	dxyHf,		$v11

.name	dxyMi,		$v12
.name	dxyMf,		$v13

.name	xHi,		$v14
.name	xHf,		$v15

.name	xMi,		$v16
.name	xMf,		$v17

.name	iHdxi,		$v20
.name	iHdxf,		$v21

.name	aMaxi,		$v22
.name	aMaxf,		$v23

.name	aDelf,		$v24

.name	dadei,		$v26
.name	dadef,		$v27

.name	dadyi,		$v28
.name	dadyf,		$v29
		
.ent	lineSetup

lineSetup:

	# Store what's in RSP_STATE_TRI off into rdp_cmd 
	lb	rdp_cmd, 	RSP_STATE_TRI(rsp_state)
	ori	rdp_cmd, 	rdp_cmd,	G_TRI_FILL	
	
	# set up a zero register for use in various places
	vxor	vzero,	vzero,	vzero	

	# open for output, do this here before register 18
	# gets used for output values
	
#if !(defined(OUTPUT_DRAM)||defined(OUTPUT_FIFO))
	jal	OutputOpen
	addi	$18, zero, 184 	# worst case guess (delay slot)
#endif /* !(OUTPUT_DRAM || OUTPUT_FIFO) */

	
sort:	# Sort input points along the y direction
	lh	miny,	RSP_PTS_YS(minp)
	lh	maxy, 	RSP_PTS_YS(maxp)

	slt	temp, 	maxy, 	miny

	# jump to done if points already sorted
	blez	temp, 	sortDone	

	# swap y values
	addi	temp, 	miny, 	0	
	addi	miny, 	maxy, 	0
	addi	maxy, 	temp, 	0

	# swap point buffer pointers
	addi	temp, 	minp, 	0	
	addi	minp, 	maxp, 	0
	addi	maxp, 	temp, 	0

.unname temp	
.name rendState,	$7	

sortDone:

	# load in point x values
	lh	minx,	RSP_PTS_XS(minp)
	lh	maxx, 	RSP_PTS_XS(maxp)

	# check to see if we need to do any attribute setup

	andi	attrmask,	rdp_cmd,	(G_RDP_TRI_ZBUFF_MASK | G_RDP_TRI_TXTR_MASK | G_RDP_TRI_SHADE_MASK)
	blez	attrmask,	SetupDone
			
	# do some preliminary setup for the attribute
	# calculation. Code is here since we rename the
	# minp and maxp registers later

	# load in rgba values, will get trashed if branch
	# not taken..
	
	luv	aMini[0], RSP_PTS_R_NX(minp)

	# 
	lw	rendState, RSP_STATE_RENDER(rsp_state)	
	andi	rendState, rendState, G_SHADING_SMOOTH
	bgtz	rendState, smoothShade	
		
	# delay slot, value will get trashed if branch
	# not taken..
	luv	aMaxi[0], RSP_PTS_R_NX(maxp)

	# ok, we're doing flat shading, so load in
	# the flat vertex rgba values instead
		
	luv	aMini[0], RSP_PTS_R_NX(flatp)
	luv	aMaxi[0], RSP_PTS_R_NX(flatp)		
	
.unname rendState
.name	temp,		$7		
			
smoothShade:
	
	# zero out the fractional registers since we need to
	# do some massaging on the rgba values before loading
	# in the Z values

	vadd	aMinf,	vzero,	vzero
	vadd	aMaxf,	vzero,	vzero
	
	# Now multiply the rgba attribute values by 1/128 to 
	# get their real values I x F

	vmudm	aMini,	aMini,	vconst[7]
	vmudm	aMaxi,	aMaxi,	vconst[7]

	# at this point the rgba values are loaded and ready to
	# go. Now need to load in the Z values into the integer
	# and fractional locations

	lsv	aMini[8],	RSP_PTS_ZS(minp)
	lsv	aMaxi[8],	RSP_PTS_ZS(maxp)
	lsv	aMinf[8],	RSP_PTS_ZSF(minp)
	lsv	aMaxf[8],	RSP_PTS_ZSF(maxp)

	# load in S and T values for both points
	# there are no fractional values to load
	
	llv	aMini[10],	RSP_PTS_S(minp)
	llv	aMaxi[10],	RSP_PTS_S(maxp)
		
	# Now that all values are loaded, we do an IF subtract
	# to get what the attribute delta values are
			
	vsubc	aDelf,	aMaxf,	aMinf		
	vsub 	aDeli,	aMaxi,	aMini

	# now multiply aDel down so that we get maximal precision
	# later when computing the attribute slopes IF X F

	vmudl	aDelf,	aDelf,	vconst1[2]
	vmadm	aDeli,	aDeli,	vconst1[2]
	vmadn	aDelf,	vconst,	vconst[0]

.unname minp
.unname maxp

.name	sXH,		$1
.name	sXL,		$2

SetupDone:					
	
	# Now load the user specified scissor 
	# X coordinates. For veritical lines
	# we use these values, for horizontal
	# lines they may be changed
	
	lh	sXH,	RSP_STATE_SCISSOR_XH(rsp_state)
	lh	sXL,	RSP_STATE_SCISSOR_XL(rsp_state)
	
	# now compute Hdy and Hdx
	sub	Hdy,	maxy,	miny
	sub	Hdx,	maxx,	minx
		
	# now compute Hdx/Hdy

	# load scaler registers into vector registers
	# get rid of this later	

	mtc2	Hdy,		vtmp[0]
	mtc2	Hdx,		vHdxi[0]
	vmov	vHdxf[0], 	vconst[0]

	# now compute 1/Hdx

	vrcp	iHdxf[0], vHdxi[0]
	vrcph	iHdxi[0], vconst[0]

 	# jump over all of the below calculations if
	# we have an exactly horizontal line
	
	beq	Hdy,	zero,	Horizontal
	
	# now compute 1/Hdy, Hdy is stored in vtmp

	vrcp	iHdyf[0], vtmp[0]
	vrcph	iHdyi[0], vconst[0]

	# shift Hdx right by 15 so that
	# the multiplication later by 1/Hdy
	# lines up correctly. We don't lose
	# any precision in this shift since
	# Hdx was loaded into the integer
	# portion of the register pair.

	vmudl	vHdxf, vHdxf,  vconst[2]
	vmadm	vHdxi, vHdxi,  vconst[2]
	vmadn	vHdxf, vconst, vconst[0]	

	# now multiply 1/Hdy by Hdx to get slope.

	vmudl	dxyHf,	iHdyf, 	vHdxf[0]
	vmadm	dxyHf,	iHdyi,	vHdxf[0]
	vmadn	dxyHf,	iHdyf,	vHdxi[0]
	vmadh	dxyHi,	iHdyi,	vHdxi[0]

	# now do edge walker clear of low slope bits (ick)

	vand	dxyHf,	dxyHf,	vconst1[1]

	# if we don't need to do any attribute goop then
	# jump around it
	
	blez	attrmask,	dadeDone
	
	# Now we set up dade. This code is common
	# to horizontal and vertical lines, so
	# we do it here
	
	# note that aDelf has been aligned such that
	# we get maximal precision out of this multiply,
	# we don't lose any bits of either operand

	# do an IF x IF on 1/Hdy and aDelf
        vmudl   dadef,	aDelf,	iHdyf[0]
        vmadm   dadef,	aDeli,  iHdyf[0]
        vmadn   dadef,	aDelf,	iHdyi[0]
        vmadh	dadei,	aDeli,  iHdyi[0]
		
	# now we check to see if the slope is going to cause
	# a problem when we do the subpixel adjustment. We
	# compare the absolute value of the integer part of
	# the slope with 1877 and clamp if it is greater

.unname	flatp	
.name	adxyHi,	$4

dadeDone:	
	
	# Absolute value code compliments of alesha@anya.Princeton.EDU 
	# (Alexei Lebedev), wins because it needs one fewer register.
	# computes: temp=x>>31; absx = x^temp + (temp & 1);	

	mfc2	adxyHi,	dxyHi[0]		
	sra 	temp,	adxyHi,	31
	xor 	adxyHi,	temp,	adxyHi
	andi 	temp,	temp,	1
	add 	adxyHi,	adxyHi,	temp

	# at this point adxyHi contains |dxyHi|, now we check it against 
	# the hardcoded maximum value allowed and possibly clamp Hdy
	
	mfc2	temp,	vconst1[12]
	slt	adxyHi,	adxyHi,	temp
	bgtz	adxyHi,	SlopeFine
	nop

	# slope is bad, so we zero out Hdy, everything
	# else afterwards should compute out fine 

	xor	Hdy,	Hdy,	Hdy

.unname	adxyHi

	# Now do the decision as to whether we're doing
	# horizontal or vertical code. For now we're just
	# using Rich Webb's scaler branching algorithm.

SlopeFine:

	bgtz	Hdx,	HdxPositive

.unname	vHdxf
.unname	vHdxi

HdxNegative:

	add	temp,	Hdy,	Hdx
	bgez	temp,	Vertical
	nop	
	j	Horizontal

HdxPositive:

	sub	temp,	Hdy,	Hdx
	bltz	temp,   Horizontal
	nop

	# All the code above this point should be
	# shareable between the horizontal and
	# vertical sections...
	
Vertical:

	# stuff away fact that we have a vertical line
	# used later when doing subpixel backups

	addi	temp,	zero,	0
	sb	temp,	(2+RSP_SCRATCH_OFFSET)(zero)
	
	# now we set up the attribute values

	# We are going to eventually use the attribute 
	# values stored in aMin{i,f} and since those are 
	# the ones we want, we don't have to do anything
	# else for setup
	
	# now set up XHigh and XMid
 	
	# do the line thickness +/- in scaler
	# land first, so that don't have to dork with
	# double precision vector operations

	# hack for line width. See comment in ../gimm.s
	lh	$21, CLIP_STATE_TABLE(zero)
	sub	xHigh,	minx,	$21
	add	xMid,	minx,	$21
#if 0
	addi	xHigh,	minx,	0xfffd	
	addi	xMid,	minx,	0x0003
#endif

	mtc2	xHigh, 	xHi[0]
	vmov	xHf[0],	vconst[0]

	mtc2	xMid, 	xMi[0]
	vmov	xMf[0],	vconst[0]

	# now do the shift to the right by 2
	# to get the subpixel part into the 
	# fractional register. 
	# accomplish this by doing an IF x F

	vmudl	xHf, 	xHf,   	vconst[4]
	vmadm	xHi,	xHi,	vconst[4]
	vmadn	xHf,	vconst, vconst[0]	

	vmudl	xMf, 	xMf,   	vconst[4]
	vmadm	xMi,	xMi,	vconst[4]
	vmadn	xMf,	vconst, vconst[0]	

	jal	AttrBackup

	# delay slot
	addi	temp,	miny,	0
	
	# hard coded left major triangle
	
	addi	rdp_flg, zero, 0x80		

	# set up yHigh, yMid, yLow here so that we
	# can have a common output routine later

	addi	yLow,	maxy,	0
	addi	yMid,	maxy,	0
	addi	yHigh,	miny,	0

.name	dadxi,	$v2
.name	dadxf,	$v3

	# check to see if we need to do any attribute setup

	blez	attrmask,	VdadxDone

	# delay slot
	# DxMdy = DxHdy
	vadd 	dxyMi,	vzero,	dxyHi
	# fractional part pushed down to
	# delay slot below..
	
	# set up the other attribute slope registers here

	# in vertical lines, dadx = 0
	vxor	dadxi,	dadxi,	dadxi
	vxor	dadxf,	dadxf,	dadxf

	# in vertical lines, dady = dade

	vadd	dadyi,	vzero,	dadei
	vadd	dadyf,	vzero,	dadef

VdadxDone:	
		
	j 	Exit

	# delay slot
	vadd	dxyMf,	vzero,	dxyHf
		
Horizontal:

	# stuff away fact that we have a horizontal line
	# used later when doing subpixel backups
	
	addi	temp,	zero,	1
	sb	temp,	(2+RSP_SCRATCH_OFFSET)(zero)

	# check to see if we need to do any attribute setup
	
	blez	attrmask,	HdadxDone	
			
	# now we set up the attribute values

	# note that dade has already been setup
	
	# Do it here since code should be the
	# same for both types of Horizontal lines

	# note that aDelf has been aligned such that
	# we get maximal precision out of this multiply,
	# we don't lose any bits of either operand

	# do an IF x IF on 1/Hdx and aDelf
        vmudl   dadxf,	aDelf,	iHdxf[0]
        vmadm   dadxf,	aDeli,  iHdxf[0]
        vmadn   dadxf,	aDelf,	iHdxi[0]
        vmadh	dadxi,	aDeli,  iHdxi[0]

HdadxDone:	
	
	# Now setup the scissor coordinates
	# For now we've got hard coded scissor coordinates
	# These commands will be repeated in the two sections
	# below with correct values

	slt	temp,	maxx,	minx
	blez	temp,	xSorted

	# store attrmask away since we're going to trash
	# its register. blah! blah! blah!

	# delay slot
	sb	attrmask,	(0+RSP_SCRATCH_OFFSET)(zero)

.unname	attrmask
	
.name	cXH,	$4
.name	cXL,	$18
.name	d,	$19
.name	s,	$20		
	
	
xNotSorted:
	add	cXH,	zero,	maxx
	add	cXL,	zero,	minx
	j	MiniMaxX
	nop

xSorted:

	add	cXH,	zero,	minx
	add	cXL,	zero,	maxx

MiniMaxX:	
	
	# Now we compute the minimax and maximin of
	# what the real scissor box should be
	# Using Rich Webb's min/max algorithm

	# compute max of sXH, cXH
	sub	d,	sXH,	cXH
	sra	s,	d,	31
	and	d,	s,	d
	sub	sXH,	sXH,	d

	# compute min of sXL, cXL
	sub	d,	sXL,	cXL
	sra	s,	d,	31
	and	d,	s,	d
	add	sXL,	cXL,	d
				
	# addi	sXH,	cXH,	0
	# addi	sXL,	cXL,	0	
	
	slt	temp,	maxx, 	minx
	blez	temp,	RightMajor

.unname	cXH
.unname	cXL
.unname	d
.unname	s	

.name	attrmask,	$18
			
			
LeftMajor:	# left major
	addi 	rdp_flg,	zero,	0x80
	j	Done
	nop

RightMajor:	#right major
	addi	rdp_flg,	zero,	0x00

Done:

	# restore stored attrmask to correct register

	lb	attrmask,	(0+RSP_SCRATCH_OFFSET)(zero)

	bgtz	Hdy,	MostlyHorizontal
	nop

ExactlyHorizontal:

	# check to see if we need to do any attribute setup

	blez	attrmask,	ExHattDone
			
	
	# special case setting up initial attribute
	# values.

	vadd	aMini,	vzero,	aMaxi

	# zero out dade for exactly horizontal lines

	vxor	dadef,	dadef,	dadef
	vxor	dadei,	dadei,	dadei

	# for exactly horizontal lines, the high and mid
	# slopes are zero

	vxor	dxyHi,	dxyHi,	dxyHi
	vxor	dxyHf,	dxyHf,	dxyHf
	vxor	dxyMi,	dxyMi,	dxyMi
	vxor	dxyMf,	dxyMf,	dxyMf

ExHattDone:		

	# Now set up xHigh and xMid

	mtc2	maxx, 	xHi[0]
	vmov	xHf[0],	vconst[0]

	mtc2	minx, 	xMi[0]
	vmov	xMf[0],	vconst[0]

	# now do the shift to the right by 2
	# to get the subpixel part into the 
	# fractional register. 
	# accomplish this by doing an IF x F

	vmudl	xHf, 	xHf,   	vconst[4]
	vmadm	xHi,	xHi,	vconst[4]
	vmadn	xHf,	vconst, vconst[0]	

	vmudl	xMf, 	xMf,   	vconst[4]
	vmadm	xMi,	xMi,	vconst[4]
	vmadn	xMf,	vconst, vconst[0]	

	# Note that no subpixel adjustment is needed
	# in the exactly horizontal case		

	# now set up ymax and ymin so that they can be
	# popped into the yHigh->yLow code below. Need
	# to add and subtract the line thickness from each

	# We use maxy because miny==maxy for exactly
	# horizontal lines. This is not true for those
	# lines which have been clamped to being exactly
	# horizontal, but the maximum error in not doing 
	# an average is 1/2 of a quarter pixel, which is 
	# the same error we'd get in doing an average
	
	# hack for line width. See comment in ../gimm.s
	lh	$21, CLIP_STATE_TABLE(zero)
	add	yLow,	maxy,	$21
	add	yMid,	maxy,	$21
	sub	yHigh,	maxy,	$21
#if 0
	addi	yLow,	maxy,	0x0003
	addi	yMid,	maxy,	0x0003
	addi	yHigh,	maxy,	0xfffd
#endif

	j 	AdjustAlpha
	nop		

MostlyHorizontal:	

	# initial attributes are already in aMin{i,f} so we
	# don't have to do anything special to set them up

	# Now set up xHigh

	mtc2	minx, 	xHi[0]
	vmov	xHf[0],	vconst[0]

	# now do the shift to the right by 2
	# to get the subpixel part into the 
	# fractional register. 
	# accomplish this by doing an IF x F

	vmudl	xHf, 	xHf,   	vconst[4]
	vmadm	xHi,	xHi,	vconst[4]
	vmadn	xHf,	vconst, vconst[0]	

	# now copy over the xHigh values into
	# the xLow values. The xHigh values
	# are modified below when we do the
	# sub pixel adjustment

	vmov	xMi[0],	xHi[0]
	vmov	xMf[0],	xHf[0]

	# now set up ymax and ymin so that they can be
	# popped into the yHigh->yLow code below. Need
	# to add and subtract the line thickness from each
	
	# hack for line width. See comment in ../gimm.s
	lh	$21, CLIP_STATE_TABLE(zero)
	sub	yHigh,	miny,	$21
	add	yMid,	miny,	$21
	add	yLow,	maxy,	$21
#if 0
	addi	yHigh,	miny,	0xfffd
	addi	yMid,	miny,	0x0003
	addi	yLow,	maxy,	0x0003
#endif

	jal	AttrBackup

	# delay slot
	addi	temp,	yHigh,	0

	# for mostly horizontal lines, mid slope is zero
	vxor	dxyMi,	dxyMi,	dxyMi
	vxor	dxyMf,	dxyMf,	dxyMf

	# now do specific output routine

	addi 	outp, outp, 8		# increment output pointer

	# need to write out XLow values for nearly horizontal lines
	
	ssv	xMi[0],		 8(outp)	# XL = XM
	ssv	xMf[0],		10(outp)	# XL, frac = XM, frac
	ssv	dxyHi[0],	12(outp)	# DxLDy	      = DxHDy
	ssv	dxyHf[0],	14(outp)	# DxLDy, frac = DxHDy, frac
	
	addi	outp,	outp,	0xfff8

AdjustAlpha:
	nop

	# set up the other attribute slope registers here

	# in horizontal lines, dady = 0
	vxor	dadyi,	dadyi,	dadyi
	vxor	dadyf,	dadyf,	dadyf

.unname	miny
.unname	maxy

.unname	minx
.unname	maxx

.unname	Hdx
.unname	Hdy	

.unname xHigh
.unname	xMid
	
				
Exit:

	# now do output routine, dump out
	# the calculated values above. everybody
	# should already be happy with their location

	addi	temp, 	zero, G_SETSCISSOR
	sb	temp, 	0(outp)	# output rdp command

	# now merge together user Y values with computed
	# X values

	lh	temp,	RSP_STATE_SCISSOR_YH(rsp_state)
	sll	sXH,	sXH,	20
	sll	temp,	temp,	 8
	or	sXH,	sXH,	temp

	lh	temp,	RSP_STATE_SCISSOR_YL(rsp_state)
	sll	sXL,	sXL,	12
	or	sXL,	sXL,	temp
	
	# I'm writing out 4 bytes below instead of 3 in each
	# command, so I'm making them overlap and have the
	# second write contain the real data for the overlapped
	# byte

	sw	sXH,	1(outp)		# XH and YH
	sw 	sXL,	4(outp)		# flags, XL and YL	

	# now increment outp pointer so that next batch of output
	# is with respect to beginning of the edge structure

	addi 	outp, outp, 8		# increment output pointer
	
	# addi	rdp_cmd, zero, G_TRI_SHADE_ZBUFF
	sb	rdp_cmd, 0(outp)	# output rdp command

	sb	rdp_flg, 1(outp)	# output poly flag
			
	sh	yLow,	2(outp)		# YL
	sh	yMid, 	4(outp)		# YM
	sh	yHigh,	6(outp)		# YH

	# now squat out xhigh values

	ssv	xHi[0],		16(outp)	# XH
	ssv	xHf[0],		18(outp)	# XH, frac
	ssv	dxyHi[0],	20(outp)	# DxHDy
	ssv	dxyHf[0],	22(outp)	# DxHDy, frac	
	
	# now do xmid

	ssv	xMi[0],		24(outp)	# XM
	ssv	xMf[0],		26(outp)	# XM, frac
	ssv	dxyMi[0],	28(outp)	# DxMDy
	ssv	dxyMf[0],	30(outp)	# DxMDy, frac


	# check if we need to write out shade values and slopes

	andi	temp,	rdp_cmd,	G_RDP_TRI_SHADE_MASK
	blez	temp,	SHADEBEDONE
	

	# now increment outp pointer to point after edge structure

	# delay slot
	addi 	outp, 	outp, 	32

	
	# write out attribute slopes and initial values
	
	sdv	aMini[0],	 0(outp)	# {rgba}
	sdv	dadxi[0],	 8(outp)	# D{r,g,b,a}Dx
	sdv	vzero[0],	16(outp)	# {rgba}, frac
	sdv	dadxf[0],	24(outp)	# D{r,g,b,a}Dx, frac
	sdv	dadyi[0],	40(outp)	# D{r,g,b,a}Dy
	sdv	dadyf[0],	56(outp)	# D{r,g,b,a}Dy, frac
	sdv	dadei[0],	32(outp)	# D{r,g,b,a}De
	sdv	dadef[0],	48(outp)	# D{r,g,b,a}De, frac

	# now increment outp pointer to point after shade structure

 	addi	outp,	outp,	64


SHADEBEDONE:	
		
	# Check if we need to write out texture values and slopes

	andi	temp,	rdp_cmd,	G_RDP_TRI_TXTR_MASK
	blez	temp,	TEXBEDONE
	nop	# delay slot
	
	slv	aMini[10],	 0(outp)	# {s,t}
	ssv	vconst[1],	 4(outp)	# w = 1
	ssv	vconst[0],	 6(outp)	# l = 0
	slv	dadxi[10],	 8(outp)	# D{s,t}Dx
	slv	vzero[0],	12(outp)	# D{w,l}Dx = 0
	slv	aMinf[10],	16(outp)	# {s,t}, frac
	slv	vzero[0],	20(outp)	# {w,l}, frac = 0
	slv	dadxf[10],	24(outp)	# D{s,t}Dx, frac
	slv	vzero[0],	28(outp)	# D{w,l}Dx, frac = 0
	slv	dadei[10],	32(outp)	# D{s,t}De
	slv	vzero[0],	36(outp)	# D{w,l}De = 0
	slv	dadyi[10],	40(outp)	# D{s,t}Dy
	slv	vzero[0],	44(outp)	# D{w,l}Dy = 0
	slv	dadef[10],	48(outp)	# D{s,t}De, frac
	slv	vzero[0],	52(outp)	# D{w,l}De, frac = 0
	slv	dadyf[10],	56(outp)	# D{s,t}Dy, frac
	slv	vzero[0],	60(outp)	# D{w,l}Dy, frac = 0
	

	# now increment outp pointer to point after texture structure

	addi 	outp,	outp,	64

					
TEXBEDONE:			
		
	# Check if we need to write out z buffer values and slopes

	andi	temp,	rdp_cmd,	G_RDP_TRI_ZBUFF_MASK
	blez	temp, 	ZBEDONE
	nop	# delay slot

	
	# Scale all the Z related values up to match what's being done
	# in the poly microcode

	# Scale up Z
	vmudn	aMinf, aMinf, vconst1[4]
	vmadh	aMini, aMini, vconst1[4]
	vmadn	aMinf, vconst, vconst[0]

	# Scale up DzDx
	vmudn	dadxf, dadxf, vconst1[4]
	vmadh	dadxi, dadxi, vconst1[4]
	vmadn	dadxf, vconst, vconst[0]

	# Scale up DzDe
	vmudn	dadef, dadef, vconst1[4]
	vmadh	dadei, dadei, vconst1[4]
	vmadn	dadef, vconst, vconst[0]

	# Scale up DzDy
	vmudn	dadyf, dadyf, vconst1[4]
	vmadh	dadyi, dadyi, vconst1[4]
	vmadn	dadyf, vconst, vconst[0]
		
	ssv	aMini[8],	 0(outp)	# Z
	ssv	aMinf[8],	 2(outp)	# Z, frac
	ssv	dadxi[8],	 4(outp)	# DzDx
	ssv	dadxf[8],	 6(outp)	# DzDx, frac
	ssv	dadei[8],	 8(outp)	# DzDe
	ssv	dadef[8],	10(outp)	# DzDe, frac
	ssv	dadyi[8],	12(outp)	# DzDy
	ssv	dadyf[8],	14(outp)	# DzDy, frac	

	# now increment outp pointer so that next triangle output starts
	# at the correct place. 

	addi 	outp, 	outp, 	16		# increment output pointer


ZBEDONE:		
		
	# now clean up the output buffers

	jal	OutputClose

	# reload the return address that got hosed by the output close

	# delay slot
	lw	return,	RSP_L_0(zero) 	

	# go back to the processing loop

	jr	return
	nop	# delay slot
		
.end 	lineSetup
	
.unname	rdp_cmd
.unname	rdp_flg
.unname	temp

.name	temp,		$7	
.name 	miny,		$3

.name	Adjf,		$v18
.name	Adji,		$v19


AttrBackup:	
	
	# Back up the starting X and attribute values
	
	# now do the subpixel adjustment to the
	# xMid and xHigh values

	# the operation being effected is:
	# xH = xH - dx/dy [(yHigh & 0x03) << 14]
	# xM = xM - dx/dy [(yHigh & 0x03) << 14]
	
	# first we load in yHigh and then shift
	# left by 14 bits to get the fractional part
	# then we load it into a fractional vector
	# register

	# note that temp has already been loaded with
	# the correct value in the delay slot of the
	# jump that got us here
	
	sll	temp,	temp,	14
	mtc2	temp,	vtmp

	# now we do an IF x F on this fractional 
	# y shift with the high slope

	vmudl	Adjf,	dxyHf, 	vtmp[0]
	vmadm	Adji,	dxyHi,	vtmp[0]
	vmadn	Adjf,	vconst, vconst[0]	

	# now we do a 32 bit subtract to adjust
	# xHigh and xMid to their pixel values
	
	vsubc	xHf,	xHf,	Adjf
	# rest of subtraction is shoved down to
	# delay slot below. doh.
	
	# now check if we're doing a horizontal or
	# vertical line. If Horizontal, then jump
	# to end
	
	lb	temp,	(2+RSP_SCRATCH_OFFSET)(zero)
	bgtz	temp,	XBackupDone	

	# delay slot
	vsub	xHi,	xHi,	Adji
	
	# This is not done for horizontal lines
	vsubc	xMf,	xMf,	Adjf
	vsub	xMi,	xMi,	Adji

XBackupDone:	

	blez	attrmask,	AttrBackupDone
	nop

	# do the actual attribute backup in here.
	
	# now we do an IF x F on this fractional 
	# y shift with the starting attribute values

	vmudl	Adjf,	dadef, 	vtmp[0]
	vmadm	Adji,	dadei,	vtmp[0]
	vmadn	Adjf,	vconst, vconst[0]	

	# now we do a 32 bit subtract to adjust
	# xHigh and xMid to their pixel values
	
	vsubc	aMinf,	aMinf,	Adjf
	vsub	aMini,	aMini,	Adji
		
AttrBackupDone:		
			
	jr return
	nop

.unname	temp
.unname	miny
	
.unname	Adjf
.unname Adji