ppmquant.c 16.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
/* ppmquant.c - quantize the colors in a pixmap down to a specified number
**
** Copyright (C) 1989, 1991 by Jef Poskanzer.
**
** Permission to use, copy, modify, and distribute this software and its
** documentation for any purpose and without fee is hereby granted, provided
** that the above copyright notice appear in all copies and that both that
** copyright notice and this permission notice appear in supporting
** documentation.  This software is provided "as is" without express or
** implied warranty.
*/

#include "ppm.h"
#include "ppmcmap.h"

#define MAXCOLORS 32767

/* #define LARGE_NORM */
#define LARGE_LUM

/* #define REP_CENTER_BOX */
/* #define REP_AVERAGE_COLORS */
#define REP_AVERAGE_PIXELS

typedef struct box* box_vector;
struct box
    {
    int ind;
    int colors;
    int sum;
    };

static colorhist_vector mediancut ARGS(( colorhist_vector chv, int colors, int sum, pixval maxval, int newcolors ));
static int redcompare ARGS(( colorhist_vector ch1, colorhist_vector ch2 ));
static int greencompare ARGS(( colorhist_vector ch1, colorhist_vector ch2 ));
static int bluecompare ARGS(( colorhist_vector ch1, colorhist_vector ch2 ));
static int sumcompare ARGS(( box_vector b1, box_vector b2 ));

int
main( argc, argv )
    int argc;
    char* argv[];
    {
    FILE* ifp;
    pixel** pixels;
    pixel** mappixels;
    register pixel* pP;
    int argn, rows, cols, maprows, mapcols, row;
    register int col, limitcol;
    pixval maxval, newmaxval, mapmaxval;
    int newcolors, colors;
    register int ind;
    colorhist_vector chv, colormap;
    colorhash_table cht;
    int floyd;
    int usehash;
    long* thisrerr;
    long* nextrerr;
    long* thisgerr;
    long* nextgerr;
    long* thisberr;
    long* nextberr;
    long* temperr;
    register long sr, sg, sb, err;
#define FS_SCALE 1024
    int fs_direction;
    char* usage = "[-floyd|-fs] <ncolors> [ppmfile]\n                 [-floyd|-fs] -map mapfile [ppmfile]";


    ppm_init( &argc, argv );

    argn = 1;
    floyd = 0;
    mappixels = (pixel**) 0;

    while ( argn < argc && argv[argn][0] == '-' && argv[argn][1] != '\0' )
	{
	if ( pm_keymatch( argv[argn], "-fs", 2 ) ||
	     pm_keymatch( argv[argn], "-floyd", 2 ) )
	    floyd = 1;
	else if ( pm_keymatch( argv[argn], "-nofs", 2 ) ||
	     pm_keymatch( argv[argn], "-nofloyd", 2 ) )
	    floyd = 0;
	else if ( pm_keymatch( argv[argn], "-map", 2 ) )
	    {
	    ++argn;
	    if ( argn == argc )
		pm_usage( usage );
	    ifp = pm_openr( argv[argn] );
	    mappixels = ppm_readppm( ifp, &mapcols, &maprows, &mapmaxval );
	    pm_close( ifp );
	    if ( mapcols == 0 || maprows == 0 )
		pm_error( "null colormap??" );
	    }
	else
	    pm_usage( usage );
	++argn;
	}

    if ( mappixels == (pixel**) 0 )
	{
	if ( argn == argc )
	    pm_usage( usage );
	if ( sscanf( argv[argn], "%d", &newcolors ) != 1 )
	    pm_usage( usage );
	if ( newcolors <= 1 )
	    pm_error( "number of colors must be > 1" );
	++argn;
	}

    if ( argn != argc )
	{
	ifp = pm_openr( argv[argn] );
	++argn;
	}
    else
	ifp = stdin;

    if ( argn != argc )
	pm_usage( usage );

    /*
    ** Step 1: read in the image.
    */
    pixels = ppm_readppm( ifp, &cols, &rows, &maxval );
    pm_close( ifp );


    if ( mappixels == (pixel**) 0 )
	{
	/*
	** Step 2: attempt to make a histogram of the colors, unclustered.
	** If at first we don't succeed, lower maxval to increase color
	** coherence and try again.  This will eventually terminate, with
	** maxval at worst 15, since 32^3 is approximately MAXCOLORS.
	*/
	for ( ; ; )
	    {
	    pm_message( "making histogram..." );
	    chv = ppm_computecolorhist(
		pixels, cols, rows, MAXCOLORS, &colors );
	    if ( chv != (colorhist_vector) 0 )
		break;
	    pm_message( "too many colors!" );
	    newmaxval = maxval / 2;
	    pm_message(
	  "scaling colors from maxval=%d to maxval=%d to improve clustering...",
		    maxval, newmaxval );
	    for ( row = 0; row < rows; ++row )
		for ( col = 0, pP = pixels[row]; col < cols; ++col, ++pP )
		    PPM_DEPTH( *pP, *pP, maxval, newmaxval );
	    maxval = newmaxval;
	    }
	pm_message( "%d colors found", colors );

	/*
	** Step 3: apply median-cut to histogram, making the new colormap.
	*/
	pm_message( "choosing %d colors...", newcolors );
	colormap = mediancut( chv, colors, rows * cols, maxval, newcolors );
	ppm_freecolorhist( chv );
	}
    else
	{
	/*
	** Alternate steps 2 & 3 : Turn mappixels into a colormap.
	*/
	if ( mapmaxval != maxval )
	    {
	    if ( mapmaxval > maxval )
		pm_message( "rescaling colormap colors" );
	    for ( row = 0; row < maprows; ++row )
		for ( col = 0, pP = mappixels[row]; col < mapcols; ++col, ++pP )
		    PPM_DEPTH( *pP, *pP, mapmaxval, maxval );
	    mapmaxval = maxval;
	    }
	colormap = ppm_computecolorhist(
	    mappixels, mapcols, maprows, MAXCOLORS, &newcolors );
	if ( colormap == (colorhist_vector) 0 )
	    pm_error( "too many colors in colormap!" );
	ppm_freearray( mappixels, maprows );
	pm_message( "%d colors found in colormap", newcolors );
	}

    /*
    ** Step 4: map the colors in the image to their closest match in the
    ** new colormap, and write 'em out.
    */
    pm_message( "mapping image to new colors..." );
    cht = ppm_alloccolorhash( );
    usehash = 1;
    ppm_writeppminit( stdout, cols, rows, maxval, 0 );
    if ( floyd )
	{
	/* Initialize Floyd-Steinberg error vectors. */
	thisrerr = (long*) pm_allocrow( cols + 2, sizeof(long) );
	nextrerr = (long*) pm_allocrow( cols + 2, sizeof(long) );
	thisgerr = (long*) pm_allocrow( cols + 2, sizeof(long) );
	nextgerr = (long*) pm_allocrow( cols + 2, sizeof(long) );
	thisberr = (long*) pm_allocrow( cols + 2, sizeof(long) );
	nextberr = (long*) pm_allocrow( cols + 2, sizeof(long) );
	srandom( (int) ( time( 0 ) ^ getpid( ) ) );
	for ( col = 0; col < cols + 2; ++col )
	    {
	    thisrerr[col] = random( ) % ( FS_SCALE * 2 ) - FS_SCALE;
	    thisgerr[col] = random( ) % ( FS_SCALE * 2 ) - FS_SCALE;
	    thisberr[col] = random( ) % ( FS_SCALE * 2 ) - FS_SCALE;
	    /* (random errors in [-1 .. 1]) */
	    }
	fs_direction = 1;
	}
    for ( row = 0; row < rows; ++row )
	{
	if ( floyd )
	    for ( col = 0; col < cols + 2; ++col )
		nextrerr[col] = nextgerr[col] = nextberr[col] = 0;
	if ( ( ! floyd ) || fs_direction )
	    {
	    col = 0;
	    limitcol = cols;
	    pP = pixels[row];
	    }
	else
	    {
	    col = cols - 1;
	    limitcol = -1;
	    pP = &(pixels[row][col]);
	    }
	do
	    {
	    if ( floyd )
		{
		/* Use Floyd-Steinberg errors to adjust actual color. */
		sr = PPM_GETR(*pP) + thisrerr[col + 1] / FS_SCALE;
		sg = PPM_GETG(*pP) + thisgerr[col + 1] / FS_SCALE;
		sb = PPM_GETB(*pP) + thisberr[col + 1] / FS_SCALE;
		if ( sr < 0 ) sr = 0;
		else if ( sr > maxval ) sr = maxval;
		if ( sg < 0 ) sg = 0;
		else if ( sg > maxval ) sg = maxval;
		if ( sb < 0 ) sb = 0;
		else if ( sb > maxval ) sb = maxval;
		PPM_ASSIGN( *pP, sr, sg, sb );
		}

	    /* Check hash table to see if we have already matched this color. */
	    ind = ppm_lookupcolor( cht, pP );
	    if ( ind == -1 )
		{ /* No; search colormap for closest match. */
		register int i, r1, g1, b1, r2, g2, b2;
		register long dist, newdist;
		r1 = PPM_GETR( *pP );
		g1 = PPM_GETG( *pP );
		b1 = PPM_GETB( *pP );
		dist = 2000000000;
		for ( i = 0; i < newcolors; ++i )
		    {
		    r2 = PPM_GETR( colormap[i].color );
		    g2 = PPM_GETG( colormap[i].color );
		    b2 = PPM_GETB( colormap[i].color );
		    newdist = ( r1 - r2 ) * ( r1 - r2 ) +
			      ( g1 - g2 ) * ( g1 - g2 ) +
			      ( b1 - b2 ) * ( b1 - b2 );
		    if ( newdist < dist )
			{
			ind = i;
			dist = newdist;
			}
		    }
		if ( usehash )
		    {
		    if ( ppm_addtocolorhash( cht, pP, ind ) < 0 )
			{
			pm_message(
		   "out of memory adding to hash table, proceeding without it");
			usehash = 0;
			}
		    }
		}

	    if ( floyd )
		{
		/* Propagate Floyd-Steinberg error terms. */
		if ( fs_direction )
		    {
		    err = ( sr - (long) PPM_GETR( colormap[ind].color ) ) * FS_SCALE;
		    thisrerr[col + 2] += ( err * 7 ) / 16;
		    nextrerr[col    ] += ( err * 3 ) / 16;
		    nextrerr[col + 1] += ( err * 5 ) / 16;
		    nextrerr[col + 2] += ( err     ) / 16;
		    err = ( sg - (long) PPM_GETG( colormap[ind].color ) ) * FS_SCALE;
		    thisgerr[col + 2] += ( err * 7 ) / 16;
		    nextgerr[col    ] += ( err * 3 ) / 16;
		    nextgerr[col + 1] += ( err * 5 ) / 16;
		    nextgerr[col + 2] += ( err     ) / 16;
		    err = ( sb - (long) PPM_GETB( colormap[ind].color ) ) * FS_SCALE;
		    thisberr[col + 2] += ( err * 7 ) / 16;
		    nextberr[col    ] += ( err * 3 ) / 16;
		    nextberr[col + 1] += ( err * 5 ) / 16;
		    nextberr[col + 2] += ( err     ) / 16;
		    }
		else
		    {
		    err = ( sr - (long) PPM_GETR( colormap[ind].color ) ) * FS_SCALE;
		    thisrerr[col    ] += ( err * 7 ) / 16;
		    nextrerr[col + 2] += ( err * 3 ) / 16;
		    nextrerr[col + 1] += ( err * 5 ) / 16;
		    nextrerr[col    ] += ( err     ) / 16;
		    err = ( sg - (long) PPM_GETG( colormap[ind].color ) ) * FS_SCALE;
		    thisgerr[col    ] += ( err * 7 ) / 16;
		    nextgerr[col + 2] += ( err * 3 ) / 16;
		    nextgerr[col + 1] += ( err * 5 ) / 16;
		    nextgerr[col    ] += ( err     ) / 16;
		    err = ( sb - (long) PPM_GETB( colormap[ind].color ) ) * FS_SCALE;
		    thisberr[col    ] += ( err * 7 ) / 16;
		    nextberr[col + 2] += ( err * 3 ) / 16;
		    nextberr[col + 1] += ( err * 5 ) / 16;
		    nextberr[col    ] += ( err     ) / 16;
		    }
		}

	    *pP = colormap[ind].color;

	    if ( ( ! floyd ) || fs_direction )
		{
		++col;
		++pP;
		}
	    else
		{
		--col;
		--pP;
		}
	    }
	while ( col != limitcol );

	if ( floyd )
	    {
	    temperr = thisrerr;
	    thisrerr = nextrerr;
	    nextrerr = temperr;
	    temperr = thisgerr;
	    thisgerr = nextgerr;
	    nextgerr = temperr;
	    temperr = thisberr;
	    thisberr = nextberr;
	    nextberr = temperr;
	    fs_direction = ! fs_direction;
	    }

	ppm_writeppmrow( stdout, pixels[row], cols, maxval, 0 );
	}

    pm_close( stdout );

    exit( 0 );
    }

/*
** Here is the fun part, the median-cut colormap generator.  This is based
** on Paul Heckbert's paper "Color Image Quantization for Frame Buffer
** Display", SIGGRAPH '82 Proceedings, page 297.
*/

#if __STDC__
static colorhist_vector
mediancut( colorhist_vector chv, int colors, int sum, pixval maxval, int newcolors )
#else /*__STDC__*/
static colorhist_vector
mediancut( chv, colors, sum, maxval, newcolors )
    colorhist_vector chv;
    int colors, sum, newcolors;
    pixval maxval;
#endif /*__STDC__*/
    {
    colorhist_vector colormap;
    box_vector bv;
    register int bi, i;
    int boxes;

    bv = (box_vector) malloc( sizeof(struct box) * newcolors );
    colormap =
	(colorhist_vector) malloc( sizeof(struct colorhist_item) * newcolors );
    if ( bv == (box_vector) 0 || colormap == (colorhist_vector) 0 )
	pm_error( "out of memory" );
    for ( i = 0; i < newcolors; ++i )
	PPM_ASSIGN( colormap[i].color, 0, 0, 0 );

    /*
    ** Set up the initial box.
    */
    bv[0].ind = 0;
    bv[0].colors = colors;
    bv[0].sum = sum;
    boxes = 1;

    /*
    ** Main loop: split boxes until we have enough.
    */
    while ( boxes < newcolors )
	{
	register int indx, clrs;
	int sm;
	register int minr, maxr, ming, maxg, minb, maxb, v;
	int halfsum, lowersum;

	/*
	** Find the first splittable box.
	*/
	for ( bi = 0; bi < boxes; ++bi )
	    if ( bv[bi].colors >= 2 )
		break;
	if ( bi == boxes )
	    break;	/* ran out of colors! */
	indx = bv[bi].ind;
	clrs = bv[bi].colors;
	sm = bv[bi].sum;

	/*
	** Go through the box finding the minimum and maximum of each
	** component - the boundaries of the box.
	*/
	minr = maxr = PPM_GETR( chv[indx].color );
	ming = maxg = PPM_GETG( chv[indx].color );
	minb = maxb = PPM_GETB( chv[indx].color );
	for ( i = 1; i < clrs; ++i )
	    {
	    v = PPM_GETR( chv[indx + i].color );
	    if ( v < minr ) minr = v;
	    if ( v > maxr ) maxr = v;
	    v = PPM_GETG( chv[indx + i].color );
	    if ( v < ming ) ming = v;
	    if ( v > maxg ) maxg = v;
	    v = PPM_GETB( chv[indx + i].color );
	    if ( v < minb ) minb = v;
	    if ( v > maxb ) maxb = v;
	    }

	/*
	** Find the largest dimension, and sort by that component.  I have
	** included two methods for determining the "largest" dimension;
	** first by simply comparing the range in RGB space, and second
	** by transforming into luminosities before the comparison.  You
	** can switch which method is used by switching the commenting on
	** the LARGE_ defines at the beginning of this source file.
	*/
#ifdef LARGE_NORM
	if ( maxr - minr >= maxg - ming && maxr - minr >= maxb - minb )
	    qsort(
		(char*) &(chv[indx]), clrs, sizeof(struct colorhist_item),
		redcompare );
	else if ( maxg - ming >= maxb - minb )
	    qsort(
		(char*) &(chv[indx]), clrs, sizeof(struct colorhist_item),
		greencompare );
	else
	    qsort(
		(char*) &(chv[indx]), clrs, sizeof(struct colorhist_item),
		bluecompare );
#endif /*LARGE_NORM*/
#ifdef LARGE_LUM
	{
	pixel p;
	float rl, gl, bl;

	PPM_ASSIGN(p, maxr - minr, 0, 0);
	rl = PPM_LUMIN(p);
	PPM_ASSIGN(p, 0, maxg - ming, 0);
	gl = PPM_LUMIN(p);
	PPM_ASSIGN(p, 0, 0, maxb - minb);
	bl = PPM_LUMIN(p);

	if ( rl >= gl && rl >= bl )
	    qsort(
		(char*) &(chv[indx]), clrs, sizeof(struct colorhist_item),
		redcompare );
	else if ( gl >= bl )
	    qsort(
		(char*) &(chv[indx]), clrs, sizeof(struct colorhist_item),
		greencompare );
	else
	    qsort(
		(char*) &(chv[indx]), clrs, sizeof(struct colorhist_item),
		bluecompare );
	}
#endif /*LARGE_LUM*/
	
	/*
	** Now find the median based on the counts, so that about half the
	** pixels (not colors, pixels) are in each subdivision.
	*/
	lowersum = chv[indx].value;
	halfsum = sm / 2;
	for ( i = 1; i < clrs - 1; ++i )
	    {
	    if ( lowersum >= halfsum )
		break;
	    lowersum += chv[indx + i].value;
	    }

	/*
	** Split the box, and sort to bring the biggest boxes to the top.
	*/
	bv[bi].colors = i;
	bv[bi].sum = lowersum;
	bv[boxes].ind = indx + i;
	bv[boxes].colors = clrs - i;
	bv[boxes].sum = sm - lowersum;
	++boxes;
	qsort( (char*) bv, boxes, sizeof(struct box), sumcompare );
	}

    /*
    ** Ok, we've got enough boxes.  Now choose a representative color for
    ** each box.  There are a number of possible ways to make this choice.
    ** One would be to choose the center of the box; this ignores any structure
    ** within the boxes.  Another method would be to average all the colors in
    ** the box - this is the method specified in Heckbert's paper.  A third
    ** method is to average all the pixels in the box.  You can switch which
    ** method is used by switching the commenting on the REP_ defines at
    ** the beginning of this source file.
    */
    for ( bi = 0; bi < boxes; ++bi )
	{
#ifdef REP_CENTER_BOX
	register int indx = bv[bi].ind;
	register int clrs = bv[bi].colors;
	register int minr, maxr, ming, maxg, minb, maxb, v;

	minr = maxr = PPM_GETR( chv[indx].color );
	ming = maxg = PPM_GETG( chv[indx].color );
	minb = maxb = PPM_GETB( chv[indx].color );
	for ( i = 1; i < clrs; ++i )
	    {
	    v = PPM_GETR( chv[indx + i].color );
	    minr = min( minr, v );
	    maxr = max( maxr, v );
	    v = PPM_GETG( chv[indx + i].color );
	    ming = min( ming, v );
	    maxg = max( maxg, v );
	    v = PPM_GETB( chv[indx + i].color );
	    minb = min( minb, v );
	    maxb = max( maxb, v );
	    }
	PPM_ASSIGN(
	    colormap[bi].color, ( minr + maxr ) / 2, ( ming + maxg ) / 2,
	    ( minb + maxb ) / 2 );
#endif /*REP_CENTER_BOX*/
#ifdef REP_AVERAGE_COLORS
	register int indx = bv[bi].ind;
	register int clrs = bv[bi].colors;
	register long r = 0, g = 0, b = 0;

	for ( i = 0; i < clrs; ++i )
	    {
	    r += PPM_GETR( chv[indx + i].color );
	    g += PPM_GETG( chv[indx + i].color );
	    b += PPM_GETB( chv[indx + i].color );
	    }
	r = r / clrs;
	g = g / clrs;
	b = b / clrs;
	PPM_ASSIGN( colormap[bi].color, r, g, b );
#endif /*REP_AVERAGE_COLORS*/
#ifdef REP_AVERAGE_PIXELS
	register int indx = bv[bi].ind;
	register int clrs = bv[bi].colors;
	register long r = 0, g = 0, b = 0, sum = 0;

	for ( i = 0; i < clrs; ++i )
	    {
	    r += PPM_GETR( chv[indx + i].color ) * chv[indx + i].value;
	    g += PPM_GETG( chv[indx + i].color ) * chv[indx + i].value;
	    b += PPM_GETB( chv[indx + i].color ) * chv[indx + i].value;
	    sum += chv[indx + i].value;
	    }
	r = r / sum;
	if ( r > maxval ) r = maxval;	/* avoid math errors */
	g = g / sum;
	if ( g > maxval ) g = maxval;
	b = b / sum;
	if ( b > maxval ) b = maxval;
	PPM_ASSIGN( colormap[bi].color, r, g, b );
#endif /*REP_AVERAGE_PIXELS*/
	}

    /*
    ** All done.
    */
    return colormap;
    }

static int
redcompare( ch1, ch2 )
    colorhist_vector ch1, ch2;
    {
    return (int) PPM_GETR( ch1->color ) - (int) PPM_GETR( ch2->color );
    }

static int
greencompare( ch1, ch2 )
    colorhist_vector ch1, ch2;
    {
    return (int) PPM_GETG( ch1->color ) - (int) PPM_GETG( ch2->color );
    }

static int
bluecompare( ch1, ch2 )
    colorhist_vector ch1, ch2;
    {
    return (int) PPM_GETB( ch1->color ) - (int) PPM_GETB( ch2->color );
    }

static int
sumcompare( b1, b2 )
    box_vector b1, b2;
    {
    return b2->sum - b1->sum;
    }