pi_controller.v
47.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
/************************************************************************\
* *
* Copyright (C) 1994, Silicon Graphics, Inc. *
* *
* These coded instructions, statements, and computer programs contain *
* unpublished proprietary information of Silicon Graphics, Inc., and *
* are protected by Federal copyright law. They may not be disclosed *
* to third parties or copied or duplicated in any form, in whole or *
* in part, without the prior written consent of Silicon Graphics, Inc. *
* *
\************************************************************************/
// $Id: pi_controller.v,v 1.1 2002/03/28 00:26:13 berndt Exp $
// SCCSID: %W% %G%
/************************************************************************
PERIPHERAL INTERFACE CONTROLLER (PI_CONTROLLER) MODULE
Peripheral Interface Controller, manages the transfer of data between
DRAM and peripherals on the AD16 bus. It consist mainly of a 128-byte
buffer and two state-machines. The state-machines coordinates the
transfer as well as generate the appropriate bus signals adhering to
the specified bus protocol.
************************************************************************/
module pi_controller(
/* Rsvd */ clock, reset_l,
/* GENERAL */ osr_pic_intr, osr_io_busy,
/* DMA */ icw_dma_grant, icw_dma_start, icw_dma_last, ocr_dma_req,
ocr_dma_read, ocr_dma_len, oar_dma_addr,
/* CMD REG */ icw_reg_wenb, icw_reg_addr, iaw_ioc_addr, idw_reg_wdata,
odw_reg_rdata,
/* AD BUS */ osr_adb_aleh, osr_adb_alel, osr_adb_rd_l, osr_adb_wr_l,
idw_adb_din, ocr_adb_oenb_l, odr_adb_dout,
/* DX BUF */ ocr_buf_wenb, oaw_buf_addr, odr_buf_din, idw_buf_dout,
/* DBUS */ icw_dbu_oenb, tbw_dbu_data);
`include "pi.vh"
/**********************************************************************
DATA TRANSFER (MASTER) STATE MACHINE
Note: state encoding below are optimized for timing. be careful in
re-assigning state values!
**********************************************************************/
parameter DSM_IDLE = 4'b0000; // idle-wait for req from CPU
parameter DSM_DLEN = 4'b0001; // calc DMA length taking into
// account data xfer length
parameter DSM_PLEN = 4'b0011; // calc DMA length taking into
// account 2K page boundary
// DRAM -> BSD
parameter DSM_RREQ = 4'b0111; // request DMA read from DRAM
parameter DSM_RDMA = 4'b1011; // perform DMA read from DRAM
parameter DSM_RADB = 4'b1111; // write data to BSD
// BSD -> DRAM
parameter DSM_WADB = 4'b1100; // read data from BSD
parameter DSM_WREQ = 4'b0100; // request DMA write to DRAM
parameter DSM_WDMA = 4'b1000; // perform DMA write to DRAM
parameter DSM_IORW = 4'b1110; // perform special IO rd/wr
/**********************************************************************
AD16 BUS PROTOCOL (SLAVE) STATE-MACHINE
Note: state encoding below are chosen to make encoding of AD16 bus
signals straight-forward.
Bits 1 and 0 are ALEH and ALEL, respectively.
Bits (3 & 2) indicate read/write cycle - used in qualifying
RD_ and WR_ signals.
Bit 2 is used to differenciate between RD_WR and RELRW at the
adder input mux.
**********************************************************************/
parameter ASM_STDBY = 4'b01_10; // standby
parameter ASM_HIADR = 4'b01_11; // issue high 16b of address
parameter ASM_LOADR = 4'b01_01; // issue low 16b of address
parameter ASM_LWAIT = 4'b01_00; // gen dev specific latency
parameter ASM_RD_WR = 4'b11_00; // perform read/write
parameter ASM_RELRW = 4'b10_00; // release from read/write
parameter ASM_PGBRK = 4'b10_10; // pause for page break
parameter ASM_PAUSE = 4'b00_00; // pause while we DMA data
/**********************************************************************
INPUT/OUTPUT DECLARATIONS
**********************************************************************/
input clock; // system clock
input reset_l; // system reset asserted low
output osr_pic_intr; // PIC interrupt reg
output osr_io_busy; // IO busy reg
input icw_dma_grant; // grant the DMA operation
input icw_dma_start; // start the DMA operation
input icw_dma_last; // end the DMA operation
output ocr_dma_req; // DMA request signal
output ocr_dma_read; // DMA read/write select
output [DMA_LENGTH_SIZE-1:0] ocr_dma_len; // DMA length in words
output [DRAM_ADDRESS_SIZE-1:0] oar_dma_addr; // DMA slave address
input icw_reg_wenb; // cmd reg write enable
input [PI_REG_ADDRESS_SIZE-1:0] icw_reg_addr;// cmd reg read/write addr
input [CBUS_DATA_SIZE-1:0] iaw_ioc_addr; // CBUS io read addr
input [CBUS_DATA_SIZE-1:0] idw_reg_wdata; // cmd reg write data fr CBUS
output [CBUS_DATA_SIZE-1:0] odw_reg_rdata; // reg read data to CBUS
output osr_adb_aleh; // high addr latch enable
output osr_adb_alel; // low addr latch enable
output osr_adb_rd_l; // read from BSD enable
output osr_adb_wr_l; // write to BSD enabbl
input [`PIC_ADB_WIDTH-1:0] idw_adb_din; // AD16 address/data in
output ocr_adb_oenb_l; // AD16 bus output enable
output [`PIC_ADB_WIDTH-1:0] odr_adb_dout; // AD16 address/data out
output ocr_buf_wenb; // write enable control reg
output [`PIC_BUF_ADRSZ-4:0] oaw_buf_addr; // addr (to buffer)
output [`PIC_BUF_LNWDTH-1:0] odr_buf_din; // input (to buffer) data reg
input [`PIC_BUF_LNWDTH-1:0] idw_buf_dout; // output (fr buffer) data reg
input icw_dbu_oenb; // DBUS output enable
inout [DBUS_DATA_SIZE-1:0] tbw_dbu_data; // DMA DBUS
/**********************************************************************
REGISTER/VARIABLE DEFINITIONS
**********************************************************************/
/**************************************************************
PERIPHERAL INTERFACE
**************************************************************/
reg osr_pic_error; // Error bit reg
reg osr_pic_intr; // PIC busy output reg
reg lsw_pic_busy; // PIC busy reg next
reg lsr_pic_busy; // PIC busy output reg
reg lsw_io_busy; // IO busy reg next
reg osr_io_busy; // IO busy output reg
reg ocr_dma_req; // DMA req output reg
reg icr_dma_last; // end the DMA operation
reg ocr_dma_read; // DMA read output reg
reg [DMA_LENGTH_SIZE-1:0] lcw_dma_len; // DMA length
reg [DMA_LENGTH_SIZE-1:0] ocr_dma_len; // DMA length reg
reg [DRAM_ADDRESS_SIZE-1:0] law_dma_addr; // DMA addr
reg [DRAM_ADDRESS_SIZE-1:0] oar_dma_addr; // DMA addr reg
reg [CBUS_DATA_SIZE-1:0] odw_reg_rdata; // reg read data to CBUS
/**************************************************************
AD16 BUS
**************************************************************/
reg lcw_adb_expire; // adb_len down to zero
reg lcw_adb_done; // done signal
reg lcw_adb_pgbrk; // page break signal
reg lcr_adb_pgbrk; // page break signal reg
reg lcw_adb_cntdn; // delay counter done
reg osr_adb_rd_l; // read from BSD enable
reg osr_adb_wr_l; // write to BSD enabbl
reg [`PIC_ADB_CYCTR_SZ-1:0] lcw_adb_cycs; // delay counter (temp)
reg [`PIC_ADB_CYCTR_SZ-1:0] lcr_adb_cycs; // delay counter
reg [DMA_LENGTH_SIZE-1:0] lcw_adb_len; // length reg input
reg [DMA_LENGTH_SIZE-1:0] lcr_adb_len; // length reg
reg [`PIC_ADB_WIDTH-1:0] ldw_adb_dout; // data output reg
reg ocr_adb_oenb_l; // bus output enable reg
reg [PBUS_ADDRESS_SIZE-1:0] law_adb_addr; // addr reg
reg [PBUS_ADDRESS_SIZE-1:0] oar_adb_addr; // addr reg
reg [`PIC_ADB_WIDTH-1:0] odr_adb_dout; // bus output reg
/**************************************************************
BSD - BLOCK STORAGE DEVICE(S)
**************************************************************/
reg lcw_bsd_dom; // current addr domain
reg [`PIC_ADB_LAREG_SZ-1:0] lcr_bsd_lat1; // latency reg dom 1
reg [`PIC_ADB_LAREG_SZ-1:0] lcr_bsd_lat2; // latency reg dom 2
reg [`PIC_ADB_PWREG_SZ-1:0] lcr_bsd_pwd1; // pulse width reg dom 1
reg [`PIC_ADB_PWREG_SZ-1:0] lcr_bsd_pwd2; // pulse width reg dom 2
reg [`PIC_ADB_PGREG_SZ-1:0] lcw_bsd_pgsz; // page size for cur domain
reg [`PIC_ADB_PGREG_SZ-1:0] lcr_bsd_pgs1; // page size reg dom 1
reg [`PIC_ADB_PGREG_SZ-1:0] lcr_bsd_pgs2; // page size reg dom 2
reg [`PIC_ADB_RLREG_SZ-1:0] lcr_bsd_rls1; // release duration dom 1
reg [`PIC_ADB_RLREG_SZ-1:0] lcr_bsd_rls2; // release duration dom 2
/**************************************************************
STATE-MACHINES
Note: asm_go only need not be latched because we know for sure
that the ASM state-machine has time to return to standby
and remain there for at least three cycles which satisfies
the AD16 Bus spec. Therefore, our cycle counter _adb_cycs
is guaranteed (by spec, not by design) to have expired.
This would change if the required time in standby is
lengthened. We may then have to latch asm_go.
**************************************************************/
reg lcw_dsm_godx; // go service data xfer req
reg lcw_dsm_iorw; // go service special IO r/w
reg [`PIC_DSM_SIZE-1:0] lcr_dsm_st; // data xfer SM current state
reg [`PIC_DSM_SIZE-1:0] lcw_dsm_st_nx; // data xfer SM next state
reg lcr_dsm_expire; // dsm_len down to zero
reg [`PIC_LENGTH_SIZE-1:0] lcw_dsm_len; // data xfer length reg
reg [`PIC_LENGTH_SIZE-1:0] lcr_dsm_len; // data xfer length reg
reg lcw_asm_go; // AD16 bus SM go
reg [`PIC_ASM_SIZE-1:0] lcr_asm_st; // AD16 bus SM current state
reg [`PIC_ASM_SIZE-1:0] lcw_asm_st_nx; // AD16 bus SM next state
reg lcr_dsm_reset; // abort/soft reset
/**************************************************************
ADDER - not generic.
**************************************************************/
reg lsw_inc_co; // carry out (top)
reg [PBUS_ADDRESS_SIZE-1:17] ldw_inc_s; // inc sum
reg lsw_dec_co; // carry out (top)
reg [PBUS_ADDRESS_SIZE-1:17] ldw_dec_s; // inc sum
reg [16: 1] ldw_add_op2i; // input operand 2 sub
reg [PBUS_ADDRESS_SIZE-1:0] ldw_add_op1; // input operand 1
reg [6:0] ldw_add_op2; // input operand 2
reg lcw_add_sub; // subtract control
reg lcw_add_ci; // carry in
reg [15:8] lsw_add_co0; // carry out
reg [15:8] lsw_add_co1; // carry out
reg [16:9] ldw_add_s0; // output
reg [16:9] ldw_add_s1; // output
reg [15:0] lsw_add_co; // carry out (pgs)
reg [PBUS_ADDRESS_SIZE-1:1] ldw_add_s; // output
reg [PBUS_ADDRESS_SIZE-1:0] ldw_add_sum; // output
reg [PBUS_ADDRESS_SIZE-1:0] ldw_add_dif; // output
reg lsw_add_lt; // less than (op1<op2)
reg [CBUS_DATA_SIZE-1:0] odr_ioc_data; // AD IO data reg
/**********************************************************************
128-BYTE DATA TRANSFER BUFFER (BUFFER)
<<< DATAPATH >>>
dbu_data reg_wdata adb_din
| | |
/64 /32 /16
+=========+===|=====+=========+ |
| +=======|=+=|=====|=+=======|=+
_____ | | +=====|=|=+ | | | |
buf_wdbu--->| | | | | +-+ | | | +-+ | | +-+-+ | | +-+-+
buf_wadb--->| COMB| 8 _V_V_V_V_|_V_V_V_V_|_V_V_V_V_|_V_V_V_V_|
buf_wiod--->|LOGIC|--/--->\__4:1__/|\__4:1__/|\__4:1__/|\__4:1__/|
+====>|_____| | | | | | | | |
| ____V____|____V____|____V____|____V____|
|[2:1] |>________|>________|>________|>_buf_din|
| +====+ +====+ +====+ +====+
| +=========+=========|=======+ |
_ | ____V_________V_________V_______|_V____
| | | | DI0 DI1 DI2 |DI3 |
| |===+=buf_addr[6:3]===>|A | |
|>| | | | |
_ +=========+ | 64b x 16 REGISTER FILE | |
| | | | | |
| |--buf_wenb--|------->|WEN | |
|>| | |___DO0_______DO1_______DO2______|DO3___|
| |[63:48] |[47:32] |[31:16]| |[15:0]
| +=+ +=+ +=+ | +=+
| ____V_|__ ____V_|__ ____V_|__ __|_V_|__
| always@|>_____|__|>_____|__|>_____|__|>_|___|__|
| | | | | | | | | |
| +=|=======+=|=======+=|=====|=+ | buf_dout
| ___|_V_________V_________V_____|___V_____
[2:1] +=========>\__|_______________4:1_________|________/
| | |
/[63:0] /16 /32
| ____V____ ____V____
| |>________||>________|
| | |
V V V
dbu_data adb_dout ioc_data
**********************************************************************/
reg lcw_buf_wdbu; // DBUS buffer write select
reg lcw_buf_wadb; // bus buffer write select
reg lcw_buf_wiod; // buffer write select
reg lcw_buf_wenb; // write enable control
reg ocr_wenb_unbuf; // write enable control reg
reg [`PIC_BUF_LNWDTH-1:0] idr_buf_dout; // data buffer output reg
reg [`PIC_BUF_ADRSZ-1:0] law_buf_addr; // addr (to buffer)
reg [`PIC_BUF_ADRSZ-1:0] oar_buf_addr; // addr (to buffer) reg
reg [`PIC_BUF_LNWDTH-1:0] ldw_buf_din; // data buffer input reg
reg [`PIC_BUF_LNWDTH-1:0] odr_buf_din; // data buffer input reg
wire ocr_buf_wenb; // buffer to remove hold problem
ni01d2 uocr_buf_wenb (.i(ocr_wenb_unbuf), .z(ocr_buf_wenb));
/**********************************************************************
< < S E R I O U S S T U F F > > (START)
**********************************************************************/
/**********************************************************************
BCADD8 -
**********************************************************************/
function [15:0] bcadd8; // 8b adder that gen sum and all carries
input [7:0] a; // input operand 1
input [7:0] b; // input operand 2
input ci; // carry in
reg [7:0] p0z;
reg [7:0] p1;
reg [7:0] p2z;
reg [7:0] p3;
reg [7:0] g0z;
reg [7:0] g1;
reg [7:0] g2z;
reg [7:0] g3;
reg [7:0] x;
begin
// LEVEL 0-: initial p, g generation
p0z = ~(a | b); // nr02d2's
g0z = ~(a & b); // nd02d2's
x = (a ^ b); // xo02d2's
// LEVEL 1+: binary p, g propagation
p1 = ~(p0z | { p0z[6:0], 1'b0 }); // nr02d2's
g1 = ~((p0z | { g0z[6:0], 1'b1 }) & g0z); // oa04d2's
// LEVEL 2-: binary p, g propagation
p2z = ~(p1 & { p1[5:0], 2'b11 }); // nd02d2's
g2z = ~((p1 & { g1[5:0], 2'b0 }) | g1); // ao04d1's
// LEVEL 3+: binary p, g propagation
p3 = ~(p2z | { p2z[3:0], 4'b0 }); // nr02d2's
g3 = ~((p2z | { g2z[3:0], 4'hF }) & g2z); // oa04d2's
// Sum and Carry generation
bcadd8[15:8] = ( {8{ci}} & p3) | g3; // ao04d1's
bcadd8[7:0] = { bcadd8[14:8], ci } ^ x; // xo02d2's
end
endfunction // bcadd8
/**************************************************************
COMMAND REGISTER READ MUX
Note: might remove osr_pic_intr later. only for chn's debug.
**************************************************************/
always @(icw_reg_addr or
oar_dma_addr or
oar_adb_addr or
ocr_dma_len or
lcr_bsd_lat1 or
lcr_bsd_pwd1 or
lcr_bsd_pgs1 or
lcr_bsd_rls1 or
lcr_bsd_lat2 or
lcr_bsd_pwd2 or
lcr_bsd_pgs2 or
lcr_bsd_rls2 or
osr_pic_intr or
lsr_pic_busy or
osr_io_busy or
osr_pic_error or
odr_ioc_data ) begin
case (icw_reg_addr)
PI_DRAM_ADDRESS_REG : odw_reg_rdata = oar_dma_addr;
PI_PBUS_ADDRESS_REG : odw_reg_rdata = oar_adb_addr;
PI_READ_LENGTH_REG,
PI_WRITE_LENGTH_REG : odw_reg_rdata = ocr_dma_len;
PI_STATUS_REG : odw_reg_rdata =
{ osr_pic_intr, osr_pic_error,
osr_io_busy, lsr_pic_busy };
PI_BSD_DOM1_LAT_REG : odw_reg_rdata = lcr_bsd_lat1;
PI_BSD_DOM1_PWD_REG : odw_reg_rdata = lcr_bsd_pwd1;
PI_BSD_DOM1_PGS_REG : odw_reg_rdata = lcr_bsd_pgs1;
PI_BSD_DOM1_RLS_REG : odw_reg_rdata = lcr_bsd_rls1;
PI_BSD_DOM2_LAT_REG : odw_reg_rdata = lcr_bsd_lat2;
PI_BSD_DOM2_PWD_REG : odw_reg_rdata = lcr_bsd_pwd2;
PI_BSD_DOM2_PGS_REG : odw_reg_rdata = lcr_bsd_pgs2;
PI_BSD_DOM2_RLS_REG : odw_reg_rdata = lcr_bsd_rls2;
PI_IO_READ_REG : odw_reg_rdata = odr_ioc_data;
PI_IO_WRITE_REG : odw_reg_rdata = odr_ioc_data;
default : odw_reg_rdata = 'bx;
endcase
end /* always */
/**************************************************************
DMA BUS OUTPUT, AD16 BUS SIGNALS, IO BUFFER ADDRESS
**************************************************************/
dbus_driver dbus_driver_0(idr_buf_dout, icw_dbu_oenb, tbw_dbu_data);
assign osr_adb_aleh = lcr_asm_st[1];
assign osr_adb_alel = lcr_asm_st[0];
assign oaw_buf_addr = oar_buf_addr[6:3];
/**********************************************************************
ON RISING CLOCK EDGE OR RESET
**********************************************************************/
always @(posedge clock or negedge reset_l) begin
/************************************************************
RESET CODE
************************************************************/
if (!reset_l) begin
// resetable state registers
osr_pic_error <= LOW; // reset error bit
osr_pic_intr <= LOW; // start idle
lsr_pic_busy <= LOW; // start idle
osr_io_busy <= LOW; // start idle
ocr_dma_req <= LOW; // don't request DMA
osr_adb_rd_l <= HIGH; // disable AD16 read
osr_adb_wr_l <= HIGH; // disable AD16 write
ocr_adb_oenb_l <= HIGH; // don't drive AD16 bus
lcr_adb_cycs <= 8'h0x; // don't get stuck in IDLE too long
lcr_dsm_st <= DSM_IDLE; // start DX SM from idle
lcr_asm_st <= ASM_STDBY; // start AD16 SM from standby
ocr_wenb_unbuf <= LOW; // inhibit write to buffer
lcr_dsm_len <= 'b1; // reset for gate-level simulation
// ROM device configuration registers
lcr_bsd_lat1 <= ~(8'b0); // 0xFF, See AD16 Spec
lcr_bsd_pwd1 <= ~(8'b0); // 0xFF, See AD16 Spec
lcr_bsd_pgs1 <= 4'b0; // 0x0, See AD16 Spec
lcr_bsd_rls1 <= ~(2'b0); // 0x3, See AD16 Spec
lcr_bsd_lat2 <= ~(8'b0); // 0xFF, See AD16 Spec
lcr_bsd_pwd2 <= ~(8'b0); // 0xFF, See AD16 Spec
lcr_bsd_pgs2 <= 4'b0; // 0x0, See AD16 Spec
lcr_bsd_rls2 <= ~(2'b0); // 0x3, See AD16 Spec
// non-resetable registers
lcr_dsm_reset <= 'bx; // DSM==IDLE will reset this
lcr_dsm_expire <= 'bx; // irrelevant till CPU requests
icr_dma_last <= 'bx; // irrelevant till CPU requests
ocr_dma_read <= 'bx; // irrelevant till CPU requests
ocr_dma_len <= 'bx; // irrelevant till CPU requests
oar_dma_addr <= 'bx; // irrelevant till CPU requests
lcr_adb_pgbrk <= 'bx; // irrelevant till CPU requests
odr_buf_din <= 'bx; // write disabled
idr_buf_dout <= 'bx; // irrelevant till CPU requests
oar_buf_addr <= 'bx; // irrelevant till CPU requests
odr_adb_dout <= 'bx; // irrelevant till CPU requests
oar_adb_addr <= 'bx; // irrelevant till CPU requests
lcr_adb_len <= 'bx; // irrelevant till CPU requests
odr_ioc_data <= 'bx; // irrelevant till CPU requests
end /* !reset_l */
/************************************************************
EXECUTION CODE
************************************************************/
else begin
/**************************************************************
SIGNALS BASED ON REGISTER OUTPUT
**************************************************************/
// AD16 BUS OUTPUTS
case (oar_buf_addr[2:1]) // AD16 BUS DATA OUT MUX (AT BUFFER OUTPUT)
2'b00 : ldw_adb_dout = idw_buf_dout[63:48];
2'b01 : ldw_adb_dout = idw_buf_dout[47:32];
2'b10 : ldw_adb_dout = idw_buf_dout[31:16];
2'b11 : ldw_adb_dout = idw_buf_dout[15: 0];
default : ldw_adb_dout = 'bx; // never happens
endcase
/**********************************************************
DEFAULT CONTROL VALUES AND STATUS SIGNALS
**********************************************************/
lsw_pic_busy = lsr_pic_busy;
lsw_io_busy = osr_io_busy;
lcw_buf_wenb = LOW;
lcw_buf_wdbu = LOW;
lcw_buf_wadb = LOW;
lcw_buf_wiod = LOW;
lcw_dsm_godx = LOW;
lcw_dsm_iorw = LOW;
lcw_asm_go = LOW;
lcw_adb_expire = lcr_adb_len[DMA_LENGTH_SIZE-1:1] == 0;
lcw_adb_cntdn = lcr_adb_cycs == 0; // artificial delay
lcw_adb_done = lcr_asm_st == ASM_RELRW & lcw_adb_cntdn &
(lcw_adb_expire | lcr_dsm_reset);
lcw_dma_len = ocr_dma_len;
law_dma_addr = oar_dma_addr;
lcw_dsm_len = lcr_dsm_len;
law_buf_addr = oar_buf_addr;
lcw_adb_len = lcr_adb_len;
law_adb_addr = oar_adb_addr;
/**********************************************************
AD16 DEVICE DOMAIN DETERMINATION:
The following table shows the AD16 bus memory map. DMA
controller filters out non-AD16 requests. We only need
to differenciate between domain 1 and domain 2. In our
design, we perform this differenciation continually.
By doing so we are guaranteed to be using the appropriate
configuration registers even when the data in a CPU request
crosses the domain boundary.
Address
starting ending designation
--------- --------- ----------------------------------
1FC0_4000 FFFF_FFFF Domain 1 (ROM)
1FC0_0000 1FC0_3FFF **PIF*** (not pos. elim by DMA ctlr)
1000_0000 1FBF_FFFF Domain 1 (ROM)
0800_0000 0FFF_FFFF Domain 2 (RAM)
0600_0000 07FF_FFFF Domain 1
0500_0000 05FF_FFFF Domain 2
0400_0000 04FF_FFFF **GrE*** (not pos. elim by DMA ctlr)
0000_0000 03FF_FFFF **DRAM** (not pos. elim by DMA ctlr)
**********************************************************/
lcw_bsd_dom = (oar_adb_addr[31:28] == 4'b0 &&
(oar_adb_addr[27] == 1'b1
|| oar_adb_addr[26:24] == 3'b101));
/**********************************************************
COMMAND REGISTER WRITE BY CPU (REG)
* Writes to READ_LENGTH, WRITE_LENGTH, IO_READ, and
IO_WRITE will start the respective operations.
* Writes to STATUS will cause the error bit to be reset.
If the pic is busy at the time of writing to STATUS, the
on-going operation will be aborted (elegantly) and the
the state-machines returned to idle.
* While the pic is busy, writes any register other than
STATUS are ignored and will cause the error bit to be set.
* The error bit does not affect the operation during which
it is set and will not affect any future operations. It
is purely for debugging/diagnostic purposes. It indicates
that a request was made to pic while it was busy and was
thus dropped.
**********************************************************/
if (icw_reg_wenb) begin
if (icw_reg_addr == PI_STATUS_REG) begin
osr_pic_intr <= !idw_reg_wdata[1] & osr_pic_intr; // clr intr
osr_pic_error <= !idw_reg_wdata[0] & osr_pic_error; // clr error
lcr_dsm_reset <= idw_reg_wdata[0] & (lsr_pic_busy | osr_io_busy);
// turn on soft reset flag
end
else if (!lsr_pic_busy // not performing DMA
&& !osr_io_busy) begin // not performing IO op
case (icw_reg_addr)
PI_DRAM_ADDRESS_REG: begin // write DRAM addr reg
law_dma_addr = { idw_reg_wdata[CBUS_DATA_SIZE-1:1], 1'b0 };
end
PI_PBUS_ADDRESS_REG: begin // write BSD addr reg
law_adb_addr = { idw_reg_wdata[CBUS_DATA_SIZE-1:1], 1'b0 };
end
PI_READ_LENGTH_REG: begin // DRAM -> BSD
lsw_pic_busy = HIGH; // raise busy signal
ocr_dma_read <= HIGH; // mark as read from DRAM
lcr_dsm_expire <= LOW; // reset expire flag
lcw_dsm_godx = HIGH; // kick off DSM
lcw_dsm_len = idw_reg_wdata; // write dsm_len reg
lcw_dma_len = {4'hF,~oar_dma_addr[2:0]}; // max DMA len
end
PI_WRITE_LENGTH_REG: begin // BSD -> DRAM
lsw_pic_busy = HIGH; // raise busy signal
ocr_dma_read <= LOW; // mark as write to DRAM
lcr_dsm_expire <= LOW; // reset expire flag
lcw_dsm_godx = HIGH; // kick off DSM
lcw_dsm_len = idw_reg_wdata; // write dsm_len reg
lcw_dma_len = {4'hF,~oar_dma_addr[2:0]}; // max DMA len
end
PI_IO_READ_REG: begin // BSD -> CPU
lsw_io_busy = HIGH; // raise ioc busy signal
ocr_dma_read <= LOW; // mark as read from BSD
lcr_dsm_expire <= HIGH; // set expire flag
lcw_dsm_iorw = HIGH; // kick off DSM
law_buf_addr = 0; // reset buffer address
law_dma_addr[2:0] = 0; // force buffer alignment
law_adb_addr = iaw_ioc_addr; // load read address
lcw_adb_len = 'h3; // simulate a 4-byte data xfer
end
PI_IO_WRITE_REG: begin // CPU -> BSD
lsw_io_busy = HIGH; // raise ioc busy signal
ocr_dma_read <= HIGH; // mark as write to BSD
lcr_dsm_expire <= HIGH; // set expire flag
lcw_dsm_iorw = HIGH; // kick off DSM
lcw_buf_wiod = HIGH; // load data into buf din reg
lcw_buf_wenb = HIGH; // write data into buffer
law_buf_addr = 0; // reset buffer address
law_dma_addr[2:0] = 0; // force buffer alignment
law_adb_addr = iaw_ioc_addr; // load write address
lcw_adb_len = 'h3; // simulate a 4-byte data xfer
end
PI_BSD_DOM1_LAT_REG: begin
lcr_bsd_lat1 <= idw_reg_wdata[`PIC_ADB_LAREG_SZ-1:0];
end
PI_BSD_DOM2_LAT_REG: begin
lcr_bsd_lat2 <= idw_reg_wdata[`PIC_ADB_LAREG_SZ-1:0];
end
PI_BSD_DOM1_PWD_REG: begin
lcr_bsd_pwd1 <= idw_reg_wdata[`PIC_ADB_PWREG_SZ-1:0];
end
PI_BSD_DOM2_PWD_REG: begin
lcr_bsd_pwd2 <= idw_reg_wdata[`PIC_ADB_PWREG_SZ-1:0];
end
PI_BSD_DOM1_PGS_REG: begin
lcr_bsd_pgs1 <= idw_reg_wdata[`PIC_ADB_PGREG_SZ-1:0];
end
PI_BSD_DOM2_PGS_REG: begin
lcr_bsd_pgs2 <= idw_reg_wdata[`PIC_ADB_PGREG_SZ-1:0];
end
PI_BSD_DOM1_RLS_REG: begin
lcr_bsd_rls1 <= idw_reg_wdata[`PIC_ADB_RLREG_SZ-1:0];
end
PI_BSD_DOM2_RLS_REG: begin
lcr_bsd_rls2 <= idw_reg_wdata[`PIC_ADB_RLREG_SZ-1:0];
end
default: begin
$display("Panic! Illegal PI register write - <%h>.",
icw_reg_addr);
$finish;
end
endcase /* reg_addr */
end /* !busy */
else
osr_pic_error <= HIGH; // set error bit!
end /* reg_wenb */
/******************************************************************
ADDER (ADD):
Performs op1+op2 (op1-op2) and generates the sum (difference)
and all carry outs. This adder is used to compute DMA length,
ROM data transfer length, remaining data transfer length, and
to update DMA address and ROM address.
This adder has evolved from a generic 32-bit adder to a highly
specialized block. It now consists of an incrementor/decrementor
for the most significant 15 bits, two 8-bit adders for the next
16 bits, and a forced least significant bit. All of this is
done for timing reasons. These changes had been anticipated
as possible optimizations in previous check'ins. Now they are
actually implemented here in verilog.
******************************************************************/
ldw_add_op1 = 'bx; // default to dontcares
ldw_add_op2 = 'bx; // default to dontcares
lcw_add_sub = 'bx; // default to dontcares
lcw_add_ci = 'bx; // default to dontcares
case (lcr_dsm_st[3:2])
2'b00: begin // DSM_DLEN: dma_len = min(dsm_len,dma_len);
// DSM_PLEN: dma_len = min(rem_page_len,dma_len);
ldw_add_op1 = lcr_dsm_st[1] ? { 21'b0,~oar_dma_addr[10:0] } : lcr_dsm_len;
ldw_add_op2 = ocr_dma_len;
lcw_add_sub = HIGH;
lcw_add_ci = HIGH;
end /* PLEN, DLEN */
2'b01: begin // DSM_RREQ,
// DSM_WREQ: dsm_len = dsm_len - dma_len;
ldw_add_op1 = lcr_dsm_len;
ldw_add_op2 = ocr_dma_len;
lcw_add_sub = HIGH; // special subtraction
lcw_add_ci = LOW;
end /* RREQ, WREQ */
2'b10: begin // DSM_RDMA,
// DSM_WDMA: dma_addr = (dma_addr + 8) & ~7;
ldw_add_op1 = oar_dma_addr;
ldw_add_op2 = 'h8;
lcw_add_sub = LOW;
lcw_add_ci = LOW;
end /* RDMA, WDMA */
2'b11: begin // DSM_RADB,
// DSM_WADB,
// DSM_IORW:
// ASM_RD_WR: adb_addr = (adb_addr + 2) & ~1;
ldw_add_op1 = oar_adb_addr;
ldw_add_op2 = 'h2;
lcw_add_sub = LOW;
lcw_add_ci = LOW;
end /* RADB, WADB, IORW */
endcase /* ADDER INPUT MUXING */
// INCREMENTOR/DECREMENTOR
{ lsw_inc_co,ldw_inc_s[31:17] } = { 1'b0,ldw_add_op1[31:17] } + 1'b1;
{ lsw_dec_co,ldw_dec_s[31:17] } = { 1'b0,ldw_add_op1[31:17] } - 1'b1;
// ADDER
ldw_add_op2i[16:1] =
lcw_add_sub ? {10'h3FF,~ldw_add_op2[6:1]} : {10'h0,ldw_add_op2[6:1]};
{ lsw_add_co[ 7:0], ldw_add_s[ 8:1] } =
bcadd8(ldw_add_op1[ 8:1],ldw_add_op2i[ 8:1],lcw_add_ci);
{ lsw_add_co0[15:8], ldw_add_s0[16:9] } =
bcadd8(ldw_add_op1[16:9],ldw_add_op2i[16:9],1'b0);
{ lsw_add_co1[15:8], ldw_add_s1[16:9] } =
bcadd8(ldw_add_op1[16:9],ldw_add_op2i[16:9],1'b1);
{ lsw_add_co[15:8], ldw_add_s[16:9] } =
lsw_add_co[7] ? { lsw_add_co1[15:8], ldw_add_s1[16:9] }
: { lsw_add_co0[15:8], ldw_add_s0[16:9] };
// COMBINE RESULTS
ldw_add_sum[31:17] = lsw_add_co[15] ? ldw_inc_s[31:17] : ldw_add_op1[31:17];
ldw_add_sum[16: 1] = ldw_add_s[16:1];
ldw_add_sum[ 0] = lcw_add_sub;
ldw_add_dif[31:17] = lsw_add_co[15] ? ldw_add_op1[31:17] : ldw_dec_s[31:17];
ldw_add_dif[16: 1] = ldw_add_s[16:1];
ldw_add_dif[ 0] = lcw_add_sub;
// LESS-THAN FLAG
lsw_add_lt = !lsw_add_co[15] & lsw_dec_co;
/******************************************************************
PAGE BOUNDARY DETECTION -
page size = 2*2^(PGS+1) bytes. Therefore, we detect for CO[PGS+1]
which is the carry out of bit PGS+1 of adder.
******************************************************************/
lcw_bsd_pgsz = lcw_bsd_dom ? lcr_bsd_pgs2 : lcr_bsd_pgs1;
lcw_adb_pgbrk = lsw_add_co[lcw_bsd_pgsz]; // AD16 bus dev page boundary
/******************************************************************
DATA TRANSFER STATE-MACHINE (DSM)
ALGORITHM:
save BSD starting domain for domain boundary check;
set DMA length = buffer size - starting misalignment;
while not done:
adjust DMA length with regards to size of remaining data;
adjust DMA length with regards to DMA 2K page boundary;
if transfering from DRAM to BSD:
move data from DRAM into buffer via DMA;
move data from buffer to BSD;
endif
else from BSD to DRAM:
move data from BSD into buffer;
move data from buffer into DRAM via DMA;
endelse
endwhile
DMA READ HANDSHAKE PROTOCOL:
_ _ _ _ _ _ _ _ _ _ _ _
Clock _/ :_/ :_/ :_/ :_/ :_/ :_/ :_/ :_/ :_/ :_/ :_/ :_
___________
Req _/ \___________________________________
___
Grant _________/ \___________________________________
___
Start _________________/ \___________________________
___
Last _____________________________/ \_______________
DBUS ------------------<D0><D1><D2><D3>---------------
DMA WRITE HANDSHAKE PROTOCOL:
_ _ _ _ _ _ _ _ _ _ _ _
Clock _/ :_/ :_/ :_/ :_/ :_/ :_/ :_/ :_/ :_/ :_/ :_/ :_
___________
Req _/ \___________________________________
___
Grant _________/ \___________________________________
___
Start _________________/ \___________________________
___
Last _____________________________/ \_______________
DBUS ----------------------<D0><D1><D2><D3>-----------
******************************************************************/
case (lcr_dsm_st)
DSM_IDLE: begin // wait for go to start servicing a request
lcr_dsm_reset <= LOW;
if (!lcw_dsm_godx & !lcw_dsm_iorw) lsw_pic_busy = LOW;
// === next-state logic === (no prioritizing necessary)
lcw_dsm_st_nx = DSM_IDLE;
if (lcw_dsm_godx) lcw_dsm_st_nx = DSM_DLEN;
if (lcw_dsm_iorw) lcw_dsm_st_nx = DSM_IORW;
end /* IDLE */
/********************************************************
PREPARATION STATES
********************************************************/
DSM_DLEN: begin // compute max DMA len considering remaining len
lcw_dma_len = lsw_add_lt ? lcr_dsm_len : ocr_dma_len;
// === next-state logic ===
if (lcr_dsm_reset) lcw_dsm_st_nx = DSM_IDLE;
else lcw_dsm_st_nx = DSM_PLEN;
end /* DLEN */
DSM_PLEN: begin
ocr_dma_req <= ocr_dma_read;
lcw_dma_len =
lsw_add_lt ? ~oar_dma_addr[DMA_LENGTH_SIZE-1:0] : ocr_dma_len;
lcw_adb_len = lcw_dma_len; // copy dma_len into adb_len at input
law_buf_addr = oar_dma_addr[2:0]; // line 0 with starting offset
// === next-state logic ===
if (lcr_dsm_reset) lcw_dsm_st_nx = DSM_IDLE;
else if (ocr_dma_read) lcw_dsm_st_nx = DSM_RREQ;
else lcw_dsm_st_nx = DSM_WADB;
end /* PLEN */
/****************************************************************
READ (DRAM -> AD16) STATES.
****************************************************************/
DSM_RREQ: begin
if (icw_dma_grant) // grant received
ocr_dma_req <= LOW; // - lower req, watch for start
if (icw_dma_start &
(!ocr_dma_req | (ocr_dma_req & icw_dma_grant))) begin
lcr_dsm_expire <= ldw_add_dif[24]; // - set expire flag
lcw_dsm_len = ldw_add_dif; // - update data xfer length
lcw_buf_wdbu = HIGH; // - latch DBUS data
lcw_buf_wenb = HIGH; // - write to buffer next cycle
end
// === next-state logic === (priority intended)
if (lcr_dsm_reset) lcw_dsm_st_nx = DSM_IDLE;
else if (icw_dma_start &
(!ocr_dma_req | (ocr_dma_req & icw_dma_grant)))
lcw_dsm_st_nx = DSM_RDMA;
else lcw_dsm_st_nx = DSM_RREQ;
end /* RREQ */
DSM_RDMA: begin
lcw_buf_wdbu = !icr_dma_last; // latch DBUS data
lcw_buf_wenb = !icr_dma_last; // write to buffer next cycle
law_dma_addr = // update DMA addr using ALU
{ ldw_add_sum[DRAM_ADDRESS_SIZE-1:3], 3'b0 };
law_buf_addr = oar_buf_addr + 8; // continue with RDMA
// === next-state logic ===
if (lcr_dsm_reset) lcw_dsm_st_nx = DSM_IDLE;
else if (icr_dma_last) lcw_dsm_st_nx = DSM_RADB;
else lcw_dsm_st_nx = DSM_RDMA;
end /* RDMA */
DSM_RADB: begin // ASM takes over
lcw_asm_go = HIGH; // AD16 SM kick-off (DRAM->BSD)
if (lcw_adb_done) begin
lcw_dma_len = { 4'hF, ~oar_dma_addr[2:0] }; // reset dma_len
if (lcr_dsm_expire) begin
lsw_pic_busy = LOW; // completely done
osr_pic_intr <= HIGH; // tell CPU we're done
end
end
// === next-state logic === (priority intended)
if (lcw_adb_done) begin
if (lcr_dsm_reset) lcw_dsm_st_nx = DSM_IDLE;
else if (lcr_dsm_expire) lcw_dsm_st_nx = DSM_IDLE;
else lcw_dsm_st_nx = DSM_DLEN; end
else lcw_dsm_st_nx = DSM_RADB;
end /* RADB */
/****************************************************************
WRITE (AD16 -> DRAM) STATES.
****************************************************************/
DSM_WADB: begin // ASM takes over
lcw_asm_go = HIGH; // AD16 SM Kick-off (BSD->DRAM)
if (lcw_adb_done & !lcr_dsm_reset)
ocr_dma_req <= HIGH; // raise req to DMA controller
// === next-state logic ===
if (lcr_dsm_reset) lcw_dsm_st_nx = DSM_IDLE;
else if (lcw_adb_done) lcw_dsm_st_nx = DSM_WREQ;
else lcw_dsm_st_nx = DSM_WADB;
end /* WADB */
DSM_WREQ: begin
law_buf_addr = oar_dma_addr[2:0]; // line 0 with starting offset
if (icw_dma_grant) // grant received
ocr_dma_req <= LOW; // - lower req, watch for start
if (icw_dma_start &
(!ocr_dma_req | (ocr_dma_req & icw_dma_grant))) begin
lcr_dsm_expire <= ldw_add_dif[24]; // - set expire flag
lcw_dsm_len = ldw_add_dif; // - update data xfer length
law_buf_addr = oar_buf_addr + 8; // - update buffer addr
end
// === next-state logic ===
if (lcr_dsm_reset) lcw_dsm_st_nx = DSM_IDLE;
else if (icw_dma_start &
(!ocr_dma_req | (ocr_dma_req & icw_dma_grant)))
lcw_dsm_st_nx = DSM_WDMA;
else lcw_dsm_st_nx = DSM_WREQ;
end /* WREQ */
DSM_WDMA: begin
law_buf_addr = oar_buf_addr + 8; // update DMA buffer addr
law_dma_addr = // update DMA addr using ALU
{ ldw_add_sum[DRAM_ADDRESS_SIZE-1:3], 3'b0 };
if (icr_dma_last)
lcw_dma_len = { 4'hF, ~oar_dma_addr[2:0] };
if (icr_dma_last & lcr_dsm_expire) begin
lsw_pic_busy = LOW;
osr_pic_intr <= HIGH; // tell CPU we're done
end
// === next-state logic ===
if (lcr_dsm_reset) lcw_dsm_st_nx = DSM_IDLE;
else if (icr_dma_last) begin
if (lcr_dsm_expire) lcw_dsm_st_nx = DSM_IDLE;
else lcw_dsm_st_nx = DSM_DLEN; end
else lcw_dsm_st_nx = DSM_WDMA;
end /* WDMA */
DSM_IORW: begin
lcw_asm_go = HIGH; // kick off ASM
if (lcw_adb_done) begin
odr_ioc_data <= odr_buf_din[63:32]; // save in special register
lsw_io_busy = LOW;
end
// === next-state logic ===
if (lcw_adb_done) lcw_dsm_st_nx = DSM_IDLE;
else lcw_dsm_st_nx = DSM_IORW;
end /* IORW */
default: lcw_dsm_st_nx = DSM_IDLE;
endcase /* MEMORY OPERATION STATE-MACHINE */
/******************************************************************
AD16 BUS STATE-MACHINE (ASM)
*****************************************************************
INTERFACE LOGIC:
PIC PI AD16
adb_aleh : :
-|>____|--|>o-o|>---------------------------> ALEH
adb_alel : :
-|>____|--|>o-o|>---------------------------> ALEL
adb_rd_l : :
-|>_|-log-|>o-o|>---------------------------> RD_
adb_wr_l : :
-|>_|-log-|>o-o|>---------------------------> WR_
_ : :
| | adb_oenb : :
--------->| |--------------------+ :
|>| : | :
_ : | :
| | adb_dout : V :
--------->| |-------------------|>---+ :
|>| : | :
: ===:==== AD[15:0]
adb_din : | :
+--+--+--+--------------------<|----+ :
_V__V__V__V_
\_/\_/\_/\_/ 4x(4:1) muxes
_|__|__|__|_
|>___________| buf_din
|
What is shown in the above diagram is that there is a tiny bit of
logic after the register before the signals RD_ (adb_rd_l) and WR_
(adb_wr_l) go out to the bus. Plus, inputs from the bus goes
through one level of 4:1 mux before being latched into the register.
******************************************************************/
case (lcr_asm_st)
ASM_STDBY: begin // standing by. waiting for go signal to kick off SM
ocr_adb_oenb_l <= HIGH; // disable bus driver
odr_adb_dout <= 'bx; // output dontcare to bus
if (lcw_asm_go) law_buf_addr = oar_buf_addr[2:0];
// === next-state logic === // guaranteed 3 cycs by DSM
lcw_asm_st_nx = lcw_asm_go ? ASM_HIADR : ASM_STDBY;
end /* STDBY */
ASM_HIADR: begin // place high order address onto AD bus
ocr_adb_oenb_l <= LOW; // enable bus driver
odr_adb_dout <= oar_adb_addr[31:16]; // output high addr to bus
// === next-state logic ===
lcw_asm_st_nx = lcw_adb_cntdn ? ASM_LOADR : ASM_HIADR;
end /* HIADR */
ASM_LOADR: begin // place low order address onto AD bus
odr_adb_dout <= oar_adb_addr[15:0]; // output low addr to bus
// === next-state logic ===
lcw_asm_st_nx = lcw_adb_cntdn ? ASM_LWAIT : ASM_LOADR;
end /* LOADR */
ASM_LWAIT: begin // create artificial delay per BSD requirement
ocr_adb_oenb_l <= !(lcw_adb_cntdn & ocr_dma_read); // drv iff DRAM->BSD
odr_adb_dout <= ldw_adb_dout; // output data to bus
// === next-state logic ===
lcw_asm_st_nx = lcw_adb_cntdn ? ASM_RD_WR : ASM_LWAIT;
end /* LWAIT */
ASM_RD_WR: begin // place data onto bus or read data off of bus
if (lcw_adb_cntdn) begin
lcw_buf_wadb = !ocr_dma_read; // write data into buf din reg
law_adb_addr = // advance BSD addr
{ ldw_add_sum[PBUS_ADDRESS_SIZE-1:1], 1'b0 };
lcr_adb_pgbrk <= lcw_adb_pgbrk; // save page break info
lcw_buf_wenb = // write to buffer next cycle
!ocr_dma_read && (lcw_adb_expire || (oar_buf_addr[2:1] == 2'b11));
if (ocr_dma_read) // advance buffer address
law_buf_addr = oar_buf_addr+2; // only if ->BSD
end
// === next-state logic ===
if (lcw_adb_cntdn) lcw_asm_st_nx = ASM_RELRW;
else lcw_asm_st_nx = ASM_RD_WR;
end /* RD_WR */
ASM_RELRW: begin // release from read/write
odr_adb_dout <= ldw_adb_dout; // output data to bus
if (lcw_adb_cntdn) begin // do in last cycle
lcw_adb_len = lcr_adb_len-2; // adb_len -= 2
if (!ocr_dma_read) // advance buffer address
law_buf_addr = oar_buf_addr+2; // only if <-BSD
end
// === next-state logic === (priority intended)
if (lcw_adb_cntdn) begin
if (lcr_dsm_reset) lcw_asm_st_nx = ASM_STDBY;
else if (lcw_adb_expire) begin
if (lcr_dsm_expire | ocr_dma_read)
lcw_asm_st_nx = ASM_STDBY;
else lcw_asm_st_nx = ASM_PAUSE; end
else if (lcr_adb_pgbrk) begin
if (ocr_dma_read) lcw_asm_st_nx = ASM_PGBRK;
else lcw_asm_st_nx = ASM_HIADR; end
else lcw_asm_st_nx = ASM_RD_WR; end
else lcw_asm_st_nx = ASM_RELRW;
end /* RELRW */
ASM_PAUSE: begin // pause while DMA data (ROM -> RDRAM only)
// === next-state logic ===
if (lcr_dsm_reset | lcr_dsm_expire)
lcw_asm_st_nx = ASM_STDBY;
else if (lcw_asm_go) begin
law_buf_addr = oar_buf_addr[2:0]; // update buffer pointer
if (lcr_adb_pgbrk) lcw_asm_st_nx = ASM_PGBRK;
else lcw_asm_st_nx = ASM_RD_WR;
end
else lcw_asm_st_nx = ASM_PAUSE;
end /* ASM_PAUSE */
ASM_PGBRK: begin // pause for page break before re-starting
ocr_adb_oenb_l <= HIGH; // disable bus driver
odr_adb_dout <= 'bx; // output dontcare to bus
// === next-state logic ===
lcw_asm_st_nx = lcw_adb_cntdn ? ASM_HIADR : ASM_PGBRK;
end /* PGBRK */
default: begin // just in case
ocr_adb_oenb_l <= HIGH; // disable bus driver
odr_adb_dout <= 'bx; // output dontcare to bus
// === next-state logic ===
lcw_asm_st_nx = ASM_STDBY;
end /* default */
endcase /* AD16 BUS STATE-MACHINE */
/******************************************************************
NEXT-CYCLE MISC. REGISTER CONTENT UPDATE
******************************************************************/
/**********************************************************************
CYCLE COUNTER
Based on the AD16 Bus ROM/RAM timing spec and the assumption that
1 clock cycle is equivalent to 16ns, we implement the following
delays. If each clock cycle turns out to be less 15 ns, then the
programmed delay must be updated to meet the delay requirements.
+--------------------------------------------------------------+
| STATES SYMBOL REQUIREMENT IMPLEMENTED |
+ ---------- ------ -------------------------- ------------ +
| STANDBY: -- none 1 cycle |
| HIADDR: tALES tALES > 90ns 7 cycles |
| LOADDR: tALED tALED > 90ns 7 cycles |
| WAIT: tL1/2 tL1/2 = Lat1/2 + 1 Lat+1 cycles |
| RDWR: tP1/2 tP1/2 = Pwd1/2 + 1 Pwd+1 cycles |
| RELEASE: tR1/2 tR1/2 = Rls1/2 + 1 Rls+1 cycles |
| PGBREAK: tWRC tWRC > 20ns 2 cycles |
+--------------------------------------------------------------+
**********************************************************************/
lcw_adb_cycs = lcr_adb_cycs - 1'b1; // decrement
if (lcr_asm_st != lcw_asm_st_nx) begin
case (lcw_asm_st_nx)
ASM_STDBY, // no effect
ASM_HIADR,
ASM_LOADR: lcr_adb_cycs <= 8'h6; // tALES,tALED
ASM_LWAIT: lcr_adb_cycs <= lcw_bsd_dom ? lcr_bsd_lat2 : lcr_bsd_lat1;
ASM_RD_WR: lcr_adb_cycs <= lcw_bsd_dom ? lcr_bsd_pwd2 : lcr_bsd_pwd1;
ASM_RELRW: lcr_adb_cycs <= lcw_bsd_dom ? lcr_bsd_rls2 : lcr_bsd_rls1;
ASM_PAUSE,
ASM_PGBRK: lcr_adb_cycs <= 8'h1; // tWRC
default : lcr_adb_cycs <= 8'h0; // --
endcase
end
else if (!lcw_adb_cntdn)
lcr_adb_cycs <= lcw_adb_cycs; // decrement
/**********************************************************
REGISTER UPDATES
**********************************************************/
// INPUT DATA FROM BUSES
idr_buf_dout <= idw_buf_dout;
// STATE-MACHINE STATE UPDATES
lcr_dsm_st <= lcw_dsm_st_nx;
lcr_asm_st <= lcw_asm_st_nx;
// OTHERS
osr_adb_rd_l <= !((lcw_asm_st_nx == ASM_RD_WR) & !ocr_dma_read);
osr_adb_wr_l <= !((lcw_asm_st_nx == ASM_RD_WR) & ocr_dma_read);
icr_dma_last <= icw_dma_last;
lsr_pic_busy <= lsw_pic_busy;
osr_io_busy <= lsw_io_busy;
ocr_dma_len <= lcw_dma_len;
oar_dma_addr <= law_dma_addr;
lcr_dsm_len <= lcw_dsm_len;
lcr_adb_len <= lcw_adb_len;
oar_adb_addr <= law_adb_addr;
/**********************************************************
BUFFER INTERFACE LOGIC AND SIGNALS
**********************************************************/
ldw_buf_din = odr_buf_din; // default
if (lcw_buf_wdbu) ldw_buf_din = tbw_dbu_data; // from DBUS reg
if (lcw_buf_wadb) // from AD16
case (oar_buf_addr[2:1])
2'b00 : ldw_buf_din[63:48] = idw_adb_din;
2'b01 : ldw_buf_din[47:32] = idw_adb_din;
2'b10 : ldw_buf_din[31:16] = idw_adb_din;
2'b11 : ldw_buf_din[15: 0] = idw_adb_din;
default : ldw_buf_din = 'bx; // should never happen
endcase
if (lcw_buf_wiod) ldw_buf_din[63:32] = idw_reg_wdata;
ocr_wenb_unbuf <= lcw_buf_wenb;
oar_buf_addr <= law_buf_addr;
odr_buf_din <= ldw_buf_din;
end /* reset_l */
end /* always */
endmodule /* pi_controller */
/************************************************************************
TODOs:
1. Hardware to detect and report illegal state combinations.
NOTATION:
ADB/adb = AD16 bus.
ASM/asm = AD16 bus protocol state-machine.
BSD/bsd = Block storage device on AD16 bus.
BUF/buf = 128-byte register file type buffer on PI.
dbu = DBUS. See below.
DMA/dma = Direct memory access.
DSM/dsm = Data transfer state-machine.
ioc = Special IO read/write commands.
PI = Peripheral Interface Module.
PIC/pic = Peripheral Interface Controller (us).
reg = Command register.
The following are defined externally:
CBUS = RAMBUS command bus.
DBUS = RAMBUS data bus.
DMA = Direct Memory Access.
DRAM = CPU DRAM.
REG = Command registers.
PBUS = Peripheral bus (same as ADB).
Prefix Notation:
First Char Second Char Third Char
-------------- -------------- -------------
i = input c = control r = register
o = output s = signal w = wire
l = local d = data m = memory
t = tri-state a = address
b = bus
************************************************************************/