dummy_rdp.v 16 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
 /************************************************************************\
 *                                                                        *
 *               Copyright (C) 1994, Silicon Graphics, Inc.               *
 *                                                                        *
 *  These coded instructions, statements, and computer programs  contain  *
 *  unpublished  proprietary  information of Silicon Graphics, Inc., and  *
 *  are protected by Federal copyright  law.  They  may not be disclosed  *
 *  to  third  parties  or copied or duplicated in any form, in whole or  *
 *  in part, without the prior written consent of Silicon Graphics, Inc.  *
 *                                                                        *
 \************************************************************************/

// $Id: dummy_rdp.v,v 1.1 2002/03/28 00:26:14 berndt Exp $

module rdp(clk, gclk, reset_l, iddq,
   cbus_read_enable,
   cbus_write_enable,
   cbus_select,
   cbus_command, 
   .xbus_cs_data(xbus_data),
   .xbus_cs_valid(cbuf_write),
   vm_in,
   vm_dv,
   flush,
   freeze,
   unfreeze,
   .grant(dma_grant),
   .start(dma_start),
   .finish(dma_last),
   read_grant,
   dma_write_enable,
   dma_read_enable,

   .cs_xbus_req(cbuf_ready),
   vm_out,
   start_gclk,
   .rdramreq(dma_request),
   read_request,
   cmd_busy,
   pipe_busy,
   tmem_busy,
   cbus_data,
   dbus_data,
   ebus_data);

`include "dp.vh"
`include "define.vh"

input clk;
input gclk;
input reset_l;
input iddq;

input cbus_read_enable;
input cbus_write_enable;
input [CBUS_SELECT_SIZE-1:0] cbus_select;
input [CBUS_COMMAND_SIZE-1:0] cbus_command;
input [XBUS_DATA_SIZE-1:0] xbus_data;
input cbuf_write;
input [7:0] vm_in;
input vm_dv;
input flush, freeze, unfreeze;
input dma_grant;
input dma_start;
input dma_last;
input read_grant;
input dma_write_enable;
input dma_read_enable;

output cbuf_ready;
output [15:0] vm_out;
output start_gclk;
output dma_request;
output read_request;
output cmd_busy;
output pipe_busy;
output tmem_busy;

inout [CBUS_DATA_SIZE-1:0] cbus_data;
inout [DBUS_DATA_SIZE-1:0] dbus_data;
inout [EBUS_DATA_SIZE-1:0] ebus_data;


wire dma_read;
wire dma_up;
wire [DRAM_ADDRESS_SIZE-1:0] dma_address;
wire [DMA_LENGTH_SIZE-1:0] dma_length;
wire [CBUS_DATA_SIZE-1:0] reg_read_data;
wire [CBUS_DATA_SIZE-1:0] reg_write_data;
wire [DP_REG_ADDRESS_SIZE-1:0] reg_address;
wire reg_write_enable;

assign cmd_busy = LOW;
assign pipe_busy = HIGH;
assign tmem_busy = LOW;
assign start_gclk = HIGH;

ms_dma ms_dma_0(clk, reset_l, cbus_read_enable, cbus_write_enable,
   cbus_select, cbus_command, read_grant, dma_read, dma_up, dma_address,
   dma_length, reg_read_data, read_request, reg_write_data, reg_address,
   reg_write_enable, cbus_data);

dp_test dp_test_0(clk, reset_l, dma_write_enable, dma_grant, dma_start,
   dma_last, dma_request, dma_read, dma_up, dma_address, dma_length,
   dbus_data);

dp_cbuf dp_cbuf_0(clk, reset_l, cbuf_write, xbus_data, cbuf_ready);

endmodule


module ms_dma(clock, reset_l,
   cbus_read_enable, cbus_write_enable, cbus_select, cbus_command,
   read_grant, dma_read, dma_down, dma_address, dma_length, reg_read_data,
   read_request, reg_write_data, reg_address, reg_write_enable,
   cbus_data);

`include "ms.vh"

parameter READ_DELAY = 8'd2;
parameter WRITE_DELAY = -8'd2;

input clock;
input reset_l;

input cbus_read_enable;
input cbus_write_enable;
input [CBUS_SELECT_SIZE-1:0] cbus_select;
input [CBUS_COMMAND_SIZE-1:0] cbus_command;
input read_grant;
input dma_read;
input dma_down;
input [DRAM_ADDRESS_SIZE-1:0] dma_address;
input [DMA_LENGTH_SIZE-1:0] dma_length;
input [CBUS_DATA_SIZE-1:0] reg_read_data;

output read_request;
output [CBUS_DATA_SIZE-1:0] reg_write_data;
output [DP_REG_ADDRESS_SIZE-1:0] reg_address;
output reg_write_enable;

inout [CBUS_DATA_SIZE-1:0] cbus_data;


// input/output registers
reg read_request;
reg reg_write_enable;
reg [DP_REG_ADDRESS_SIZE-1:0] reg_address;
reg [CBUS_COMMAND_SIZE-1:0] cbus_command_reg;
reg [CBUS_DATA_SIZE-1:0] cbus_data_reg;


// cbus tristate drivers
cbus_driver cbus_driver_0(cbus_data_reg, cbus_write_enable, cbus_data);

assign reg_write_data = cbus_data_reg;


always @(posedge clock) begin : cbus_block
   reg [CBUS_DATA_SIZE-1:0] cbus_data_out;

   case (cbus_select)
      CBUS_ADDRESS_SELECT : cbus_data_out = dma_address;
      CBUS_LENGTH_SELECT : case ({dma_down, dma_read})
         2'b00 : cbus_data_out = {DMA_BLOCK, DMA_MASKED, DMA_UP,
           DMA_NSEQ, BUS_DEVICE_DP_SPAN, WRITE_DELAY, DMA_WRITE, dma_length};

         2'b01 : cbus_data_out = {DMA_BLOCK, DMA_NON_MASKED, DMA_UP,
           DMA_SEQ, BUS_DEVICE_DP_SPAN, READ_DELAY, DMA_READ, dma_length};

         2'b10 : cbus_data_out = {DMA_BLOCK, DMA_MASKED, DMA_DOWN,
           DMA_NSEQ, BUS_DEVICE_DP_SPAN, WRITE_DELAY, DMA_WRITE, dma_length};

         2'b11 : cbus_data_out = {DMA_BLOCK, DMA_NON_MASKED, DMA_DOWN,
           DMA_NSEQ, BUS_DEVICE_DP_SPAN, READ_DELAY, DMA_READ, dma_length};
         endcase
      CBUS_DATA_SELECT : cbus_data_out = reg_read_data;
      default : cbus_data_out = 'bx;
      endcase

   cbus_command_reg <= cbus_command;
   cbus_data_reg <= cbus_read_enable ? cbus_data : cbus_data_out;
   end


always @(posedge clock or negedge reset_l) begin
   if (!reset_l) begin
      // resetable registers
      read_request <= LOW;
      reg_write_enable <= LOW;
      end
   else begin : main_block
      reg next_read_request;
      reg next_reg_write_enable;
      reg [BUS_ID_SIZE-1:0] next_id;
      reg next_select;
      reg next_write_command;
      reg next_read_command;

      next_read_request = read_request;
      next_reg_write_enable = LOW;

      next_id = cbus_data_reg >> BUS_ID_OFFSET;
      next_select = next_id == BUS_ID_SPAN;
      next_write_command = cbus_command_reg == CBUS_WRITE_COMMAND;
      next_read_command = cbus_command_reg == CBUS_READ_COMMAND;

      if (next_select) begin
         if (next_write_command) begin
            next_reg_write_enable = HIGH;
            reg_address <= cbus_data_reg >> 2;
            end
         else if (next_read_command) begin
            next_read_request = HIGH;
            reg_address <= cbus_data_reg >> 2;
            end
         end

      if (read_request && read_grant) begin
         next_read_request = LOW;
         end

      read_request <= next_read_request;
      reg_write_enable <= next_reg_write_enable;
      end
   end
endmodule


module dp_test(clock, reset_l,
   dbus_enable, dma_grant, dma_start, dma_last,
   dma_request, dma_read, dma_up, dma_address, dma_length,
   dbus_data);

`include "dp.vh"

parameter UP   = LOW;
parameter DOWN   = HIGH;

input clock;
input reset_l;

input dbus_enable;
input dma_grant;
input dma_start;
input dma_last;

output dma_request;
output dma_read;
output dma_up;
output [DRAM_ADDRESS_SIZE-1:0] dma_address;
output [DMA_LENGTH_SIZE-1:0] dma_length;

inout [DBUS_DATA_SIZE-1:0] dbus_data;

// input/output registers
reg dma_request;
reg dma_read;
reg dma_up;
reg [DRAM_ADDRESS_SIZE-1:0] dma_address;
reg [DMA_LENGTH_SIZE-1:0] dma_length;
reg [DBUS_DATA_SIZE-1:0] dbus_data_in;
reg [DBUS_DATA_SIZE-1:0] dbus_data_out;


// internal registers
reg [3:0] span_address;
reg busy;
reg test_selected;

// memory buffer
reg [DBUS_DATA_SIZE-1:0] memory[0:'hf];

// state machine
reg [2:0] state;
parameter
   STATE_IDLE           = 0,
   STATE_WRITE          = 1,
   STATE_WRITE_WAIT     = 2,
   STATE_WRITE_DELAY    = 3,
   STATE_READ           = 4,
   STATE_READ_WAIT      = 5;


reg monitor;
initial monitor = $test$plusargs("span_mon");


assign dbus_data = dbus_enable ? dbus_data_out : 64'bz;


always @(posedge clock) begin
   dbus_data_in <= dbus_data;
   end


initial begin
   test_selected <= LOW;
   @(posedge clock);

   wait(`SYSTEM_READY);

   if ($test$plusargs("test_dp_read")) read;
   if ($test$plusargs("test_dp_write")) write;
   if ($test$plusargs("test_dp_copy_up")) copy_up;
   if ($test$plusargs("test_dp_copy_down")) copy_down;
   end


initial begin
   if ($test$plusargs("help")) begin
      $display("dp test arguments include:");
      $display("  +test_dp_read");
      $display("  +test_dp_write");
      $display("  +test_dp_copy_up");
      $display("  +test_dp_copy_down");
      $display("");
      #1 $finish;
      end
   end


task read;
   begin
      test_selected <= HIGH;
      repeat (10) @(posedge clock);

      read_span(BUS_ADDRESS_DRAM, 'h70, UP);
      repeat (10) @(posedge clock);
      $finish;
      end
   endtask


task write;
   integer i;
   reg [31:0] high_half, low_half;

   begin
      test_selected <= HIGH;
      repeat (10) @(posedge clock);

      for (i = 0; i < 16; i = i + 1) begin
         high_half = i + 1;
         low_half = i * 8;
         memory[i] = {high_half, low_half};
         end

      write_span(BUS_ADDRESS_DRAM, 'h70, UP);
      repeat (10) @(posedge clock);
      $finish;
      end
   endtask


task copy_up;
   begin
      test_selected <= HIGH;
      reality.r4200b_0.config_rdram;

      repeat (10) @(posedge clock);

      read_span(BUS_ADDRESS_DRAM, 'h48, UP);
      write_span(BUS_ADDRESS_DRAM + 'h90, 'h40, UP);
      read_span(BUS_ADDRESS_DRAM + 'h80, 'h80, UP);
      repeat (10) @(posedge clock);
      $finish;
      end
   endtask


task copy_down;
   begin
      test_selected <= HIGH;
      reality.r4200b_0.config_rdram;

      repeat (10) @(posedge clock);

      read_span(BUS_ADDRESS_DRAM + 'h78, 'h48, DOWN);
      write_span(BUS_ADDRESS_DRAM + 'he8, 'h40, DOWN);
      read_span(BUS_ADDRESS_DRAM + 'h80, 'h80, UP);
      repeat (10) @(posedge clock);
      $finish;
      end
   endtask


task write_span;
   input [31:0] address;
   input [31:0] size;
   input up;

   begin
      dma_address <= address;
      dma_length <= size-1;
      dma_read <= LOW;
      dma_up <= up;
      dma_request <= HIGH;
      busy <= HIGH;
      @(posedge clock);
      while (busy) @(posedge clock);
      end
   endtask


task read_span;
   input [31:0] address;
   input [31:0] size;
   input up;

   begin
      dma_address <= address;
      dma_length <= size-1;
      dma_read <= HIGH;
      dma_up <= up;
      dma_request <= HIGH;
      busy <= HIGH;
      @(posedge clock);
      while (busy) @(posedge clock);
      end
   endtask


always @(posedge clock or negedge reset_l) begin
   if (!reset_l) begin
      dma_request <= LOW;
      busy <= LOW;
      state <= STATE_IDLE;
      end
   else begin
      case (state)
         STATE_IDLE : begin
            span_address <= 0;
            if (dma_grant) begin
               // DMA operation has begun
               dma_request <= LOW;
               if (dma_read) begin
                  state <= STATE_READ_WAIT;
                  end
               else begin
                  state <= STATE_WRITE_WAIT;
                  end
               end
            end

         STATE_READ_WAIT : begin
            if (dma_start) begin
               memory[span_address] <= dbus_data_in;
               span_address <= span_address + 1;

               if (monitor) begin
                  $display(`CLOCK_COUNT, " : span write - %h @ %h",
                     dbus_data_in, span_address);
                  end

               if (dma_last) begin
                  busy <= LOW;
                  state <= STATE_IDLE;
                  end
               else begin
                  state <= STATE_READ;
                  end
               end
            else begin
               state <= STATE_READ_WAIT;
               end
            end

         STATE_READ : begin
            memory[span_address] <= dbus_data_in;
            span_address <= span_address + 1;

            if (monitor) begin
               $display(`CLOCK_COUNT, " : span write - %h @ %h",
                  dbus_data_in, span_address);
               end

            if (dma_last) begin
               busy <= LOW;
               state <= STATE_IDLE;
               end
            else begin
               state <= STATE_READ;
               end
            end

         STATE_WRITE_WAIT : begin
            if (dma_start) begin
               dbus_data_out <= memory[span_address];
               span_address <= span_address + 1;

               if (monitor) begin
                  $display(`CLOCK_COUNT, " : span read  - %h @ %h",
                     memory[span_address], span_address);
                  end

               if (dma_last) begin
                  state <= STATE_WRITE_DELAY;
                  end
               else begin
                  state <= STATE_WRITE;
                  end
               end
            else begin
               state <= STATE_WRITE_WAIT;
               end
            end

         STATE_WRITE : begin
            dbus_data_out <= memory[span_address];
            span_address <= span_address + 1;

            if (monitor) begin
               $display(`CLOCK_COUNT, " : span read  - %h @ %h",
                  memory[span_address], span_address);
               end

            if (dma_last) begin
               state <= STATE_WRITE_DELAY;
               end
            else begin
               state <= STATE_WRITE;
               end
            end

         STATE_WRITE_DELAY : begin
            dbus_data_out <= memory[span_address];
            span_address <= span_address + 1;

            if (monitor) begin
               $display(`CLOCK_COUNT, " : span read  - %h @ %h",
                  memory[span_address], span_address);
               end

            busy <= LOW;
            state <= STATE_IDLE;
            end
         endcase
      end
   end
endmodule


module dp_cbuf (clock, reset_l,
   cbuf_write, xbus_data,
   cbuf_ready);

`include "dp.vh"

parameter BUFFER_SIZE = 32;
parameter ADDRESS_SIZE = 6;
parameter LOW_WATER = 10;

input clock;
input reset_l;
input cbuf_write;
input [XBUS_DATA_SIZE-1:0] xbus_data;
output cbuf_ready;

// output registers
reg cbuf_ready;

// internal registers
reg [ADDRESS_SIZE-1:0] write_pointer;
reg [ADDRESS_SIZE-1:0] read_pointer;
reg cbuf_read;

wire [XBUS_DATA_SIZE-1:0] read_data;

// pseudo registers
reg [ADDRESS_SIZE-1:0] count;
reg [ADDRESS_SIZE-1:0] next_write_pointer;
reg [ADDRESS_SIZE-1:0] next_read_pointer;

wire [ADDRESS_SIZE-2:0] write_address;
wire [ADDRESS_SIZE-2:0] read_address;
wire write_flag;
wire read_flag;
wire empty;

// memory
reg [XBUS_DATA_SIZE-1:0] buffer [0:BUFFER_SIZE-1];

reg monitor_enable;
initial monitor_enable = $test$plusargs("cbuf_mon");

assign {write_flag, write_address} = write_pointer;
assign {read_flag, read_address} = read_pointer;
assign read_data = buffer[read_address];
assign empty = read_pointer == write_pointer;

always @(posedge clock) begin
   if (!reset_l) begin
      cbuf_ready <= HIGH;
      write_pointer <= 0;
      read_pointer <= 0;
      end
   else begin
      if (cbuf_write) begin
         buffer[write_address] <= xbus_data;
         end

      write_pointer <= cbuf_write
         ? write_pointer + 1
         : write_pointer;

      read_pointer <= (cbuf_read && !empty)
         ? read_pointer + 1
         : read_pointer;

      cbuf_ready <= (write_pointer - read_pointer) <= (BUFFER_SIZE - LOW_WATER);

      if (cbuf_write && !cbuf_read
         && read_address == write_address
         && read_flag != write_flag) begin
         $display("Panic!  Cbuf overflow.");
         $finish;
         end

      if (cbuf_write & monitor_enable) begin
         $display(`CLOCK_COUNT,
            " : cbuf write - %h of %d", xbus_data, write_pointer-read_pointer);
         end

      if (cbuf_read & !empty & monitor_enable) begin
         $display(`CLOCK_COUNT,
            " : cbuf read  - %h of %d", read_data, write_pointer-read_pointer);
         end
      end
   end


// consumer
// parameter THRESHOLD = 'h00;
parameter THRESHOLD = 'h20;
parameter START_DATA = 64'h0000_0000_0000_0000;
reg [7:0] rand;
reg [XBUS_DATA_SIZE-1:0] expect_data;

always @(posedge clock) begin
   rand = $random;
   cbuf_read <= rand < THRESHOLD;
   if (cbuf_read && !empty) begin
      if (read_data == START_DATA) begin
         expect_data = START_DATA;
         end
      else if (read_data !== expect_data) begin
         $display("Panic!  Unexpected cbuf read data - expect %h, actual %h",
            expect_data, read_data);
         $finish;
         end
      expect_data = expect_data + 8;
      end
   end
endmodule