r4300uni.v
19.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
// vr4300 behavioral bus model;
// unidirectional sysad;
// :set tabstop=4
`timescale 1ns/1ns
module NB4300V01 (
MASTERCLOCK,
DIVMODE2, DIVMODE1, DIVMODE0,
COLDRESETB, RESETB,
PLOCK,
OSYSAD31, OSYSAD30, OSYSAD29, OSYSAD28, OSYSAD27, OSYSAD26, OSYSAD25, OSYSAD24,
OSYSAD23, OSYSAD22, OSYSAD21, OSYSAD20, OSYSAD19, OSYSAD18, OSYSAD17, OSYSAD16,
OSYSAD15, OSYSAD14, OSYSAD13, OSYSAD12, OSYSAD11, OSYSAD10, OSYSAD9, OSYSAD8,
OSYSAD7, OSYSAD6, OSYSAD5, OSYSAD4, OSYSAD3, OSYSAD2, OSYSAD1, OSYSAD0,
ISYSAD31, ISYSAD30, ISYSAD29, ISYSAD28, ISYSAD27, ISYSAD26, ISYSAD25, ISYSAD24,
ISYSAD23, ISYSAD22, ISYSAD21, ISYSAD20, ISYSAD19, ISYSAD18, ISYSAD17, ISYSAD16,
ISYSAD15, ISYSAD14, ISYSAD13, ISYSAD12, ISYSAD11, ISYSAD10, ISYSAD9, ISYSAD8,
ISYSAD7, ISYSAD6, ISYSAD5, ISYSAD4, ISYSAD3, ISYSAD2, ISYSAD1, ISYSAD0,
OSYSCMD4, OSYSCMD3, OSYSCMD2, OSYSCMD1, OSYSCMD0,
ISYSCMD4, ISYSCMD3, ISYSCMD2, ISYSCMD1, ISYSCMD0,
SYSEN, PVALIDB, PREQB, PMASTERB,
EOKB, EVALIDB, EREQB,
NMIB, INTB4, INTB3, INTB2, INTB1, INTB0,
SI7, SI6, SI5, SI4, SI3, SI2, SI1, SI0,
SO7, SO6, SO5, SO4, SO3, SO2, SO1, SO0,
BUNRI, TEST, TEST1, TEST0,
TBI51, TBI50,
TBI49, TBI48, TBI47, TBI46, TBI45, TBI44, TBI43, TBI42, TBI41, TBI40,
TBI39, TBI38, TBI37, TBI36, TBI35, TBI34, TBI33, TBI32, TBI31, TBI30,
TBI29, TBI28, TBI27, TBI26, TBI25, TBI24, TBI23, TBI22, TBI21, TBI20,
TBI19, TBI18, TBI17, TBI16, TBI15, TBI14, TBI13, TBI12, TBI11, TBI10,
TBI9, TBI8, TBI7, TBI6, TBI5, TBI4, TBI3, TBI2, TBI1, TBI0,
TBO39, TBO38, TBO37, TBO36, TBO35, TBO34, TBO33, TBO32, TBO31, TBO30,
TBO29, TBO28, TBO27, TBO26, TBO25, TBO24, TBO23, TBO22, TBO21, TBO20,
TBO19, TBO18, TBO17, TBO16, TBO15, TBO14, TBO13, TBO12, TBO11, TBO10,
TBO9, TBO8, TBO7, TBO6, TBO5, TBO4, TBO3, TBO2, TBO1, TBO0,
SCANSMC, SCANTMC,
BYPASSPLLMODE, BYPASSPLLPCLK, BYPASSPLLSCLK,
AVDD1, AGND1
);
input MASTERCLOCK;
input DIVMODE2, DIVMODE1, DIVMODE0;
input COLDRESETB, RESETB;
output PLOCK;
output OSYSAD31, OSYSAD30, OSYSAD29, OSYSAD28, OSYSAD27, OSYSAD26, OSYSAD25, OSYSAD24;
output OSYSAD23, OSYSAD22, OSYSAD21, OSYSAD20, OSYSAD19, OSYSAD18, OSYSAD17, OSYSAD16;
output OSYSAD15, OSYSAD14, OSYSAD13, OSYSAD12, OSYSAD11, OSYSAD10, OSYSAD9, OSYSAD8;
output OSYSAD7, OSYSAD6, OSYSAD5, OSYSAD4, OSYSAD3, OSYSAD2, OSYSAD1, OSYSAD0;
input ISYSAD31, ISYSAD30, ISYSAD29, ISYSAD28, ISYSAD27, ISYSAD26, ISYSAD25, ISYSAD24;
input ISYSAD23, ISYSAD22, ISYSAD21, ISYSAD20, ISYSAD19, ISYSAD18, ISYSAD17, ISYSAD16;
input ISYSAD15, ISYSAD14, ISYSAD13, ISYSAD12, ISYSAD11, ISYSAD10, ISYSAD9, ISYSAD8;
input ISYSAD7, ISYSAD6, ISYSAD5, ISYSAD4, ISYSAD3, ISYSAD2, ISYSAD1, ISYSAD0;
output OSYSCMD4, OSYSCMD3, OSYSCMD2, OSYSCMD1, OSYSCMD0;
input ISYSCMD4, ISYSCMD3, ISYSCMD2, ISYSCMD1, ISYSCMD0;
output SYSEN, PVALIDB, PREQB, PMASTERB;
input EOKB, EVALIDB, EREQB;
input NMIB, INTB4, INTB3, INTB2, INTB1, INTB0;
input SI7, SI6, SI5, SI4, SI3, SI2, SI1, SI0;
output SO7, SO6, SO5, SO4, SO3, SO2, SO1, SO0;
input BUNRI, TEST, TEST1, TEST0;
input TBI51, TBI50;
input TBI49, TBI48, TBI47, TBI46, TBI45, TBI44, TBI43, TBI42, TBI41, TBI40;
input TBI39, TBI38, TBI37, TBI36, TBI35, TBI34, TBI33, TBI32, TBI31, TBI30;
input TBI29, TBI28, TBI27, TBI26, TBI25, TBI24, TBI23, TBI22, TBI21, TBI20;
input TBI19, TBI18, TBI17, TBI16, TBI15, TBI14, TBI13, TBI12, TBI11, TBI10;
input TBI9, TBI8, TBI7, TBI6, TBI5, TBI4, TBI3, TBI2, TBI1, TBI0;
output TBO39, TBO38, TBO37, TBO36, TBO35, TBO34, TBO33, TBO32, TBO31, TBO30;
output TBO29, TBO28, TBO27, TBO26, TBO25, TBO24, TBO23, TBO22, TBO21, TBO20;
output TBO19, TBO18, TBO17, TBO16, TBO15, TBO14, TBO13, TBO12, TBO11, TBO10;
output TBO9, TBO8, TBO7, TBO6, TBO5, TBO4, TBO3, TBO2, TBO1, TBO0;
input SCANSMC, SCANTMC;
input BYPASSPLLMODE, BYPASSPLLPCLK, BYPASSPLLSCLK;
input AVDD1, AGND1;
`include "rcp.vh"
`include "cpu.vh"
`include "define.vh"
`include "jctrl.vh"
// set below defines to actual values of r4300 core;
`define CPU_TCO #2
`define CPU_TSU #2
// cpu bus signals;
// no sysad arbitration is used in the design;
wire sysclk; // sysad clock;
wire [2:0] divmode; // divider mode;
wire coldrst_l; // cold reset;
wire warmrst_l; // warm reset;
wire [31:0] `CPU_TCO sysad_out; // system addr/data bus;
wire [31:0] sysad_in; // system addr/data bus;
wire [4:0] `CPU_TCO syscmd_out; // system command bus;
wire [4:0] syscmd_in; // system command bus;
wire `CPU_TCO pvalid_l; // processor data valid;
wire eok_l; // external agent ready;
wire evalid_l; // external data valid;
wire ereq_l; // external request for bus interface;
wire [4:0] int_l; // cpu interrupts;
wire nmi_l; // non-maskable interrupt;
assign sysclk = BYPASSPLLMODE? BYPASSPLLSCLK : MASTERCLOCK;
assign divmode = { DIVMODE2, DIVMODE1, DIVMODE0 };
assign coldrst_l = COLDRESETB;
assign warmrst_l = RESETB;
assign PLOCK = coldrst_l;
assign {
OSYSAD31, OSYSAD30, OSYSAD29, OSYSAD28, OSYSAD27, OSYSAD26, OSYSAD25, OSYSAD24,
OSYSAD23, OSYSAD22, OSYSAD21, OSYSAD20, OSYSAD19, OSYSAD18, OSYSAD17, OSYSAD16,
OSYSAD15, OSYSAD14, OSYSAD13, OSYSAD12, OSYSAD11, OSYSAD10, OSYSAD9, OSYSAD8,
OSYSAD7, OSYSAD6, OSYSAD5, OSYSAD4, OSYSAD3, OSYSAD2, OSYSAD1, OSYSAD0 } = sysad_out;
assign sysad_in = {
ISYSAD31, ISYSAD30, ISYSAD29, ISYSAD28, ISYSAD27, ISYSAD26, ISYSAD25, ISYSAD24,
ISYSAD23, ISYSAD22, ISYSAD21, ISYSAD20, ISYSAD19, ISYSAD18, ISYSAD17, ISYSAD16,
ISYSAD15, ISYSAD14, ISYSAD13, ISYSAD12, ISYSAD11, ISYSAD10, ISYSAD9, ISYSAD8,
ISYSAD7, ISYSAD6, ISYSAD5, ISYSAD4, ISYSAD3, ISYSAD2, ISYSAD1, ISYSAD0 };
assign { OSYSCMD4, OSYSCMD3, OSYSCMD2, OSYSCMD1, OSYSCMD0 } = syscmd_out;
assign syscmd_in = { ISYSCMD4, ISYSCMD3, ISYSCMD2, ISYSCMD1, ISYSCMD0 };
assign SYSEN = 1'bx; // not used;
assign PVALIDB = pvalid_l;
assign PREQB = 1'bx; // not used;
assign PMASTERB = 1'bx; // not used;
assign eok_l = EOKB;
assign evalid_l = EVALIDB;
assign ereq_l = EREQB;
assign int_l = { INTB4, INTB3, INTB2, INTB1, INTB0 };
assign nmi_l = NMIB;
// declare wires with delays;
// simulates t[co] and t[su];
wire `CPU_TSU eok;
wire [31:0] `CPU_TSU sysad;
wire [4:0] `CPU_TSU syscmd;
wire `CPU_TSU evalid;
assign eok = eok_l;
assign sysad = sysad_in;
assign syscmd = syscmd_in;
assign evalid = evalid_l;
// internal variables;
reg test_selected;
// global cpu state;
wire reset_l; // cpu reset;
reg ready; // cpu is ready;
reg slave; // bus interface in slave mode;
integer word; // nth read word;
integer nwords; // # of words expected;
integer rsp_timeout; // repsonse timeout;
assign reset_l = coldrst_l & warmrst_l;
initial
begin
ready = 0;
slave = 0;
word = 0;
nwords = 0;
rsp_timeout = `CPU_RSP_TIMEOUT;
end
// register all cpu inputs;
reg [31:0] r_sysad_out;
reg [4:0] r_syscmd_out;
reg r_pvalid_l;
reg r_eok;
reg rsp;
assign sysad_out = r_sysad_out;
assign syscmd_out = r_syscmd_out;
assign pvalid_l = r_pvalid_l;
always @(posedge sysclk)
begin
r_eok <= ~eok;
rsp <= ~evalid & ~syscmd[3];
if(rsp)
slave <= 0;
end
// slave state machine;
reg [31:0] data [0:7]; // read/write data buffer;
reg data_err; // response error bit was set;
integer rsp_timer; // read response timer;
always @(posedge sysclk)
begin
if(evalid == 1'b0) begin
if(slave !== 1'b1)
$display("ERROR: %t: %M: evalid when not in slave state", $time);
casex(syscmd)
// read response;
5'b1000x,
5'b1100x,
5'b1001x,
5'b1101x: begin
if(word >= nwords)
$display("ERROR: %t: %M: excessive read response data", $time);
if(word == 0)
data_err = syscmd[1];
data[word] = sysad;
word = word + 1;
end
// all others are illegal;
default:
$display("ERROR: %t: %M: illegal syscmd %b", $time, syscmd);
endcase
end
// timeout out read response;
if(slave) begin
rsp_timer = rsp_timer + 1;
if(rsp_timer > rsp_timeout) begin
$display("ERROR: %t: %M: read response timeout", $time);
$finish;
end
end else begin
rsp_timer = 0;
word = 0;
end
end
// cpu ready flag and assertions;
always @(posedge sysclk)
begin
if((reset_l === 0) | (reset_l === 1))
ready = reset_l;
if(ready) begin
if((r_pvalid_l === 'bx) | (r_pvalid_l === 'bz))
$display("ERROR: %t: %M: pvalid_l is %b", $time, r_pvalid_l);
if((ereq_l === 'bx) | (ereq_l === 'bz))
$display("ERROR: %t: %M: ereq_l is %b", $time, ereq_l);
if((eok === 'bx) | (eok === 'bz))
$display("ERROR: %t: %M: eok_l is %b", $time, eok);
if((evalid === 'bx) | (evalid === 'bz))
$display("ERROR: %t: %M: evalid_l is %b", $time, evalid);
end
end
// reset is asynchronous;
always @(reset_l)
begin
if(reset_l === 1'b0) begin
assign r_pvalid_l = 1;
slave = 0;
word = 0;
nwords = 0;
end else if(reset_l === 1'b1)
deassign r_pvalid_l;
else
$display("ERROR: %t: %M: reset_l %b", $time, reset_l);
end
// wait for cpu to come out of reset;
task wait_out_of_reset;
begin
@(posedge ready);
@(posedge sysclk);
end
endtask
// cpu bus interface tasks;
task wait_eok;
integer rdycnt;
begin
rdycnt = 0;
while(r_eok !== 1) begin
@(posedge sysclk);
if(rdycnt >= `CPU_RDY_TIMEOUT) begin
$display("ERROR: %t: %M: timeout", $time);
$finish;
end
rdycnt = rdycnt + 1;
end
// XXX pmaster
end
endtask
// single write request;
// req[1:0] is write size;
task swrite;
input [31:0] addr; // physical address;
input [1:0] size; // request size;
input [31:0] wdata; // write data;
begin
// output address, cmd and pvalid;
// wait for eok;
r_pvalid_l = 0;
r_sysad_out = addr;
r_syscmd_out = { 3'b010, size };
@(posedge sysclk);
wait_eok;
// single writes have only one data phase;
r_sysad_out = wdata;
r_syscmd_out = 5'b10000;
@(posedge sysclk);
// eok can cancel bus request;
// spin until successfully issued;
while(r_eok !== 1) begin
r_sysad_out = addr;
r_syscmd_out = { 3'b010, size };
@(posedge sysclk);
wait_eok;
r_sysad_out = wdata;
r_syscmd_out = 5'b10000;
@(posedge sysclk);
end
// deassert pvalid;
// drive Xs on sysad;
r_pvalid_l = 1;
r_sysad_out = 'bx;
r_syscmd_out = 'bx;
end
endtask
// single read request;
task sread;
input [31:0] addr; // phys address;
input [1:0] size; // single size;
output [31:0] rdata; // read data;
begin
// output address, cmd and pvalid;
// wait for eok;
r_pvalid_l = 0;
r_sysad_out = addr;
r_syscmd_out = { 3'b000, size };
@(posedge sysclk);
wait_eok;
// tri-state sysad after address phase;
nwords = 1;
r_pvalid_l = 1;
r_sysad_out = 'bx;
r_syscmd_out = 'bx;
@(posedge sysclk);
slave = 1;
// eok can cancel bus request;
// spin until successfully issued;
while(r_eok !== 1) begin
slave = 0;
r_pvalid_l = 0;
r_sysad_out = addr;
r_syscmd_out = { 3'b000, size };
@(posedge sysclk);
wait_eok;
r_pvalid_l = 1;
r_sysad_out = 'bx;
r_syscmd_out = 'bx;
@(posedge sysclk);
slave = 1;
end
// wait for read response;
// return mastership of sysad to cpu;
@(negedge slave);
rdata = data[0];
end
endtask
// block write request;
// issued for cache line write-back;
// target can only be main memory;
task bwrite;
input [31:0] addr; // physical address;
input [1:0] size; // block size;
integer i;
begin
// output address, cmd and pvalid;
// wait for eok;
r_pvalid_l = 0;
r_sysad_out = addr;
r_syscmd_out = { 3'b011, size };
@(posedge sysclk);
wait_eok;
// block writes have a fixed data size;
// write data pattern is ADD or ADDDDDDDD;
r_sysad_out = data[0];
r_syscmd_out = 5'b11000;
@(posedge sysclk);
// eok can cancel bus request;
// spin until successfully issued;
while(r_eok !== 1) begin
r_sysad_out = addr;
r_syscmd_out = { 3'b011, size };
@(posedge sysclk);
wait_eok;
r_sysad_out = data[0];
r_syscmd_out = 5'b11000;
@(posedge sysclk);
end
// finish sending the data;
for(i = 1; i < (2 << size[1:0]) - 1; i = i + 1) begin
r_sysad_out = data[i];
@(posedge sysclk);
end
// send last data item;
r_sysad_out = data[i];
r_syscmd_out = 5'b10000;
@(posedge sysclk);
r_pvalid_l = 1;
r_sysad_out = 'bx;
r_syscmd_out = 'bx;
end
endtask
// cpu block read;
// issued to fill icache or dcache;
// target can only be main memory, no io devices support block requests;
task bread;
input [31:0] addr; // physical address;
input [1:0] size; // block size;
integer i;
begin
// output address, cmd and pvalid;
// wait for eok;
r_pvalid_l = 0;
r_sysad_out = addr;
r_syscmd_out = { 3'b001, size };
@(posedge sysclk);
wait_eok;
// tri-state sysad after address phase;
case(size)
2'b00: nwords = 2;
2'b01: nwords = 4;
2'b10: nwords = 8;
2'b11: $display("ERROR: %t: %M: illegal block size %b", $time, size);
endcase
r_pvalid_l = 1;
r_sysad_out = 'bx;
r_syscmd_out = 'bx;
@(posedge sysclk);
slave = 1;
// eok can cancel bus request;
// spin until successfully issued;
while(r_eok !== 1) begin
slave = 0;
r_pvalid_l = 0;
r_sysad_out = addr;
r_syscmd_out = { 3'b001, size };
@(posedge sysclk);
wait_eok;
r_pvalid_l = 1;
r_sysad_out = 'bx;
r_syscmd_out = 'bx;
@(posedge sysclk);
end
// wait for read response;
// return mastership of sysad to cpu;
@(negedge slave);
end
endtask
// put random delay between bus requests;
task req_spacing;
input [2:0] delay;
begin
repeat(delay) @(posedge sysclk);
end
endtask
// make valid byte address for single size;
function [1:0] sgl_addr;
input [1:0] size; // request size;
reg [1:0] addr; // valid low-order address bits;
begin
case(size)
2'b00: addr = $random; // byte;
2'b01: addr = $random & 2'b10; // 16-bit word;
2'b10: addr = $random & 2'b01; // tri-byte;
2'b11: addr = 2'b00; // 32-bit word;
endcase
sgl_addr = addr;
end
endfunction
// check read data;
task rd_check;
input [2:0] word; // word to check;
input [31:0] exp; // expected data;
input [31:0] mask; // compare mask;
input err; // extected error;
begin
if(mask == 32'h0)
$display("ERROR: %t: %M: mask of 0", $time);
if(((data[word] & mask) !== (exp & mask)) | (err !== data_err)) begin
$display("ERROR: %t: %M: data[%1d] mask 0x%h miscompare 0x%h/%b exp 0x%h/%b",
$time, word, mask, data[word], data_err, exp, err);
end
end
endtask
// check bus error;
task berr_check;
input err; // extected error;
begin
if(data_err !== err)
$display("ERROR: %t: %M: bus error %b exp %b", $time, data_err, err);
end
endtask
// make valid word address for block size;
// block addresses are always double-word aligned;
function [4:2] blk_addr;
input [1:0] size; // request size;
reg [4:2] mask; // valid low-order address bits;
reg [4:2] addr; // valid low-order address bits;
begin
case(size)
2'b00: mask = 3'b110;
2'b01: mask = 3'b100;
2'b10: mask = 3'b000;
2'b11: $display("ERROR: %t: %M: illegal blk size %b", $time, size);
endcase
blk_addr = $random & mask;
end
endfunction
// make valid subblock order address for block size;
function [4:2] sbo_addr;
input [1:0] size; // request size;
reg [4:2] sbo; // sub-block order;
begin
case(size)
2'b00: sbo = 3'b000;
2'b01: sbo = 3'b010;
2'b10: sbo = 3'b110;
2'b11: $display("ERROR: %t: %M: illegal blk size %b", $time, size);
endcase
sbo_addr = $random & sbo;
end
endfunction
// get a random memory address;
// consider memory spaces and existing size;
// make sure requested block does not wrap;
// enforce alignment;
function [31:0] rand_mem_addr;
input [31:24] space; // memory space;
input [23:0] size; // size of block;
input [23:0] align; // alignment;
reg [31:0] mask; // address mask;
reg [31:0] addr; // address;
reg [31:0] base; // base of space;
begin
mask = vsim.MEM_SIZE - 1;
if(space[31:24] == 8'd0) begin
mask = mask >> 1;
mask[31:24] = 8'd0;
base = 32'h0000_0000;
end else if(space[31:24] < 8'd2) begin
mask[31:23] = 7'd0;
base = 32'h0100_0000;
end else if(space[31:30] == 2'b10)
base = 32'h8000_0000;
else begin
base = 32'bx;
$display("ERROR: %t: %M: space 0x%h", $time, space);
end
addr = $random & mask;
while((addr + size) > mask)
addr = $random & mask;
rand_mem_addr = base | (addr & ~(align - 1));
end
endfunction
// setup block data pattern;
// use inverted, byte and bit swapped initial;
task blk_data;
input [31:0] word;
integer n;
reg [31:0] swap;
begin
for(n = 0; n < 32; n = n + 1)
swap[n] = word[31 - n];
data[0] = word;
data[1] = ~data[0];
data[2] = { word[15:0], word[31:16] };
data[3] = ~data[2];
data[4] = { word[23:16], word[31:24], word[7:0], word[15:8] };
data[5] = ~data[4];
data[6] = swap;
data[7] = ~data[6];
end
endtask
// check block read data;
task blk_check;
input [1:0] size; // request size;
input [31:0] exp; // expected data;
input err; // extected error;
input [2:0] sbo; // subblock order;
reg [31:0] pxe; // exp bits backwards;
reg [31:0] word [0:7]; // expected word of burst;
integer n;
begin
if(size == `CPU_SIZE_RSVD)
$display("ERROR: %t: %M: blk size %b", $time, size);
word[0] = exp;
word[1] = ~word[0];
word[2] = { exp[15:0], exp[31:16] };
word[3] = ~word[2];
if(size == `CPU_SIZE_32) begin
word[4] = { exp[23:16], exp[31:24], exp[7:0], exp[15:8] };
word[5] = ~word[4];
for(n = 0; n < 32; n = n + 1)
pxe[n] = exp[31 - n];
word[6] = pxe;
word[7] = ~pxe;
end
rd_check(0, word[0 ^ sbo], 32'hffffffff, err);
rd_check(1, word[1 ^ sbo], 32'hffffffff, err);
if((size == `CPU_SIZE_16) | (size == `CPU_SIZE_32)) begin
rd_check(2, word[2 ^ sbo], 32'hffffffff, err);
rd_check(3, word[3 ^ sbo], 32'hffffffff, err);
end
if(size == `CPU_SIZE_32) begin
rd_check(4, word[4 ^ sbo], 32'hffffffff, err);
rd_check(5, word[5 ^ sbo], 32'hffffffff, err);
rd_check(6, word[6 ^ sbo], 32'hffffffff, err);
rd_check(7, word[7 ^ sbo], 32'hffffffff, err);
end
end
endtask
// test all r/w bits in a register;
// test asumes no register side effects;
task test_reg;
input [31:0] addr; // register address;
input [31:0] mask; // bits to test;
input [31:0] zero; // 0 and mask;
input [31:0] one; // 1 or mask;
reg [31:0] wdata; // write data;
reg [31:0] rdata; // read data;
integer n;
begin
$display("test: %M: reg 0x%h mask 0x%h", addr, mask);
if(mask & (~zero | one)) begin
$display("ERROR: %t: %M: mask %h zero %h one %h discrepancy",
$time, mask, zero, one);
end
for(n = 0; n < 32; n = n + 1) begin
wdata = (1 << n);
if(mask & wdata) begin
wdata = (wdata & zero) | one;
swrite(addr, `CPU_SIZE_4, wdata);
sread(addr, `CPU_SIZE_4, rdata);
if(rdata[n] !== wdata[n]) begin
$display("ERROR: %t: %M: reg 0x%x bit %0d mismatch, %b exp %b",
$time, addr, n, rdata[n], wdata[n]);
end
end
end
end
endtask
// the simulator is build with either the ipc interface or the verilog tests;
// both should not coexist because there is no synchronization between them;
// include various tasks used by both ipc and verilog tests;
`include "tasks/mem_tasks.v"
`ifdef IPC
`else // IPC
`include "test.v"
`endif // IPC
endmodule