ifx.v 42.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
// ifx.v v1 Frank Berndt
// ide-flash controller fpga;
// :set tabstop=4

// minimum of xc2s130 is required;
// xc2s50 is pin compatible and can be used as well;

// identify returns HD of 128GB size (lba28);
// with support for pio 0..2, dma 0..2, no udma;
// max dma rate at dma mode 2 is 16MB/sec;
//
// addressing, up to 1GB per flash;
//	lba[27:26] device address;
//	lba[25:23] 0 unused;
//	lba[22] read type 0=data+ecc 1=mfgid;
//	lba[21:0] page address;
//
// reads look only at lba[21:0];
//	read timing in hardware with automatic prefetch of next pages;
//	returned data block is 1k, 0..527 is data bytes, rest 0;
//	no ecc checking, correction or generation;
//
// writes upload microcode;
//	00000000 xxxxxxxx done and interrupt;
//	0111xxxx DDDDDDDD cmd phase
//	0110xxxx DDDDDDDD address phase
//	0101xxxx SSSSSSSS write data phase, followed by S bytes, padded to 16-bit words;
//	0100xxxx SSSSSSSS write data phase, followed by S bytes, padded to 16-bit words;
//	001xxxx0 zzzzzzzz bit 1 check for 0
//	001xxxx1 zzzzzzzz bit 1 check for 1
//	0100xxxx cccccccc config CLE/ALE active time
//	0101xxxx cccccccc config WE active time
//	0110xxxx cccccccc config RE active time
//	0111xxxx pcccxccc config write-protect, read sample time, end cycle time;
//	1ttttttt tttttttt wait for rdy 0->1 in 16 clocks, max 5.2ms @100
//
//	each command polls the MD signal and aborts with error if module is not present;
//	wait ready commands abort when timeout expired;

`timescale 1ns/1ns

module ifx (
	CLK,
	DRST, DD, DA, DCS, DIOR, DIOW, DIORDY, DMARQ, DMACK, DINTR, DIAG, DASP,
	FDB, FCE, FCLE, FALE, FRE, FWE, FWP, FRYBY, FMD,
	LED
);
	// global signals;

	input CLK;				// global clock;

	// ide bus interface;

	input DRST;				// ide bus reset;
	inout [15:0] DD;		// data bus;
	input [2:0] DA;			// addresses;
	input [1:0] DCS;		// chip selects;
	input DIOR;				// read strobe;
	input DIOW;				// write strobe;
	output DIORDY;			// io ready;
	output DMARQ;			// dma request;
	input DMACK;			// dma acknowledge;
	output DINTR;			// interrupt;
	inout DIAG;				// diagnostic signal;
	inout DASP;				// active/present signal;

	// flash interface;

	inout [7:0] FDB;		// data bus;
	output [2:0] FCE;		// chip selects;
	output FCLE;			// command latch enable;
	output FALE;			// address latch enable;
	output FRE;				// read pulse;
	output FWE;				// write pulse;
	output FWP;				// write protect;
	input FRYBY;			// ready/busy;
	input FMD;				// module detect;
	output [1:0] LED;		// one per led;

	// global clock;
	// external oscillator is 50Mhz;
	// double for internal operation;

	wire dll_locked;		// dll locked;
	wire in_clk;			// output of input buffer;
	wire clk2x;				// x2 dll clock output;
	wire gclk;				// global clock tree;

	IBUFG io_clk ( .I(CLK), .O(in_clk) );
	CLKDLL dll (
		.RST(1'b0), .LOCKED(dll_locked),
		.CLKIN(in_clk), .CLKFB(gclk),
		.CLK0(), .CLK90(), .CLK180(), .CLK270(), .CLK2X(clk2x)
	);
	BUFG g_clk ( .I(clk2x), .O(gclk) );

	// ide reset is chip reset;
	// use global buffer;

	wire in_drst;			// reset;
	wire grst;				// global reset;

	IBUF io_drst ( .I(DRST), .O(in_drst) );	// XXX pin and softreset;
	BUFG g_rst ( .I(~in_drst), .O(grst) );

	// ide data bus;
	// use io cells for fast t[su] and t[co];

	wire [15:0] in_dd;		// output of input buffer;
	reg [15:0] r_dd_in;		// input registers;
	wire [15:0] rdata;		// read data;
	reg [15:0] r_dd_out;	// output registers;
	wire roe;				// read output enable;
	reg [15:0] r_ddoe;		// output enable registers;

	IOBUF_F_12
		io_dd15 ( .IO(DD[15]), .I(r_dd_out[15]), .O(in_dd[15]), .T(r_ddoe[15]) ),
		io_dd14 ( .IO(DD[14]), .I(r_dd_out[14]), .O(in_dd[14]), .T(r_ddoe[14]) ),
		io_dd13 ( .IO(DD[13]), .I(r_dd_out[13]), .O(in_dd[13]), .T(r_ddoe[13]) ),
		io_dd12 ( .IO(DD[12]), .I(r_dd_out[12]), .O(in_dd[12]), .T(r_ddoe[12]) ),
		io_dd11 ( .IO(DD[11]), .I(r_dd_out[11]), .O(in_dd[11]), .T(r_ddoe[11]) ),
		io_dd10 ( .IO(DD[10]), .I(r_dd_out[10]), .O(in_dd[10]), .T(r_ddoe[10]) ),
		io_dd9 ( .IO(DD[9]), .I(r_dd_out[9]), .O(in_dd[9]), .T(r_ddoe[9]) ),
		io_dd8 ( .IO(DD[8]), .I(r_dd_out[8]), .O(in_dd[8]), .T(r_ddoe[8]) ),
		io_dd7 ( .IO(DD[7]), .I(r_dd_out[7]), .O(in_dd[7]), .T(r_ddoe[7]) ),
		io_dd6 ( .IO(DD[6]), .I(r_dd_out[6]), .O(in_dd[6]), .T(r_ddoe[6]) ),
		io_dd5 ( .IO(DD[5]), .I(r_dd_out[5]), .O(in_dd[5]), .T(r_ddoe[5]) ),
		io_dd4 ( .IO(DD[4]), .I(r_dd_out[4]), .O(in_dd[4]), .T(r_ddoe[4]) ),
		io_dd3 ( .IO(DD[3]), .I(r_dd_out[3]), .O(in_dd[3]), .T(r_ddoe[3]) ),
		io_dd2 ( .IO(DD[2]), .I(r_dd_out[2]), .O(in_dd[2]), .T(r_ddoe[2]) ),
		io_dd1 ( .IO(DD[1]), .I(r_dd_out[1]), .O(in_dd[1]), .T(r_ddoe[1]) ),
		io_dd0 ( .IO(DD[0]), .I(r_dd_out[0]), .O(in_dd[0]), .T(r_ddoe[0]) );

	always @(posedge gclk)
	begin
		r_dd_in <= in_dd;
		r_dd_out <= rdata;
		r_ddoe <= {16{~roe}};
	end

	// ide control inputs;
	// use io cells for fast t[su];

	wire [2:0] in_da;		// addresses;
	wire [1:0] in_dcs;		// chip selects;
	wire in_dior;			// read strobe;
	wire in_diow;			// write strobe;
	wire in_dmack;			// dma acknowledge;

	IBUF
		io_da0 ( .I(DA[0]), .O(in_da[0]) ),
		io_da1 ( .I(DA[1]), .O(in_da[1]) ),
		io_da2 ( .I(DA[2]), .O(in_da[2]) ),
		io_dcs0 ( .I(DCS[0]), .O(in_dcs[0]) ),
		io_dcs1 ( .I(DCS[1]), .O(in_dcs[1]) ),
		io_dior ( .I(DIOR), .O(in_dior) ),
		io_diow ( .I(DIOW), .O(in_diow) ),
		io_dmack ( .I(DMACK), .O(in_dmack) );

	reg [2:0] r_da;			// addresses;
	reg [1:0] r_dcs;		// chip selects;
	reg r_dior;				// read strobe;
	reg r_diow;				// write strobe;
	reg r_dmack;			// dma acknowledge;

	always @(posedge gclk)
	begin
		r_da <= in_da;
		r_dcs <= in_dcs;
		r_dior <= in_dior;
		r_diow <= in_diow;
		r_dmack <= in_dmack;
	end

	// ide control outputs;
	// use io cells for fast t[co];
	// IORDY is not used;

	wire ide_iordy;			// io ready;
	wire ide_dmarq;			// dma request;
	wire intr;				// interrupt output;
	reg r_iordy;			// io ready;
	reg r_intr;				// interrupt;

	assign ide_iordy = 1'b1;

	always @(posedge gclk)
	begin
		r_iordy <= ide_iordy;
		r_intr <= intr;
	end

	OBUFT_F_12 io_diordy ( .I(1'b0), .O(DIORDY), .T(r_iordy) );
	OBUF_F_12  io_dmarq ( .I(ide_dmarq), .O(DMARQ) );
	OBUF_F_12 io_dintr ( .I(r_intr), .O(DINTR) );

	// diag signals;
	// use io cells for fast t[su] and t[co];

	wire in_diag;			// output of input buffer;
	wire in_dasp;			// output of input buffer;
	reg r_diag_in;			// input registers;
	reg r_dasp_in;			// input registers;
	wire diag_out;			// DIAG output;
	wire dasp_out;			// DASP output;
	reg r_diag_out;			// output registers;
	reg r_dasp_out;			// output registers;
	wire diag_oe;			// DIAG output enable;
	wire dasp_oe;			// DASP output enable;

	IOBUF_F_12
		io_diag ( .IO(DIAG), .I(r_diag_out), .O(in_diag), .T(diag_oe) ),
		io_dasp ( .IO(DASP), .I(r_dasp_out), .O(in_dasp), .T(dasp_oe) );

	// XXX unused for usb ide bridge;

	assign diag_out = 1'b0;
	assign dasp_out = 1'b0;
	assign diag_oe = 1'b1;
	assign dasp_oe = 1'b1;

	always @(posedge gclk)
	begin
		r_diag_in <= in_diag;
		r_dasp_in <= in_dasp;
		r_diag_out <= diag_out;
		r_dasp_out <= dasp_out;
	end

	// global ide ctrl signals;

	wire dev_sel;				// device is selected;
	wire srst;					// soft reset;
	wire ie;					// interrupt enable;
	reg bsy;					// drive busy status;
	reg drq;					// data request status;
	wire busy;					// ide controller is busy;
	reg bdel;					// delayed busy;

	assign busy = bsy | drq;

	always @(posedge gclk)
	begin
		bdel <= busy;
	end

	// enable data output to ide bus;
	// only when device is selected;
	// pio: DIOR and one of DCS are asserted;
	// dma: DIOR and DMACK are asserted;

	assign roe = dev_sel & ~r_dior & ((r_dcs != 2'b11) | ~r_dmack);

	// synchronize input path;
	// all control signals and write data;

	reg [15:0] dd_in;		// delayed input data;
	reg [2:0] da;			// delayed address;
	reg [1:0] dcs;			// delayed chip selects;
	reg diow;				// delayed iow;
	reg dior;				// delayed ior;
	reg dmack;				// delayed dma ack;
	wire io_rd;				// io read pules, pio and dma;
	wire io_wr;				// io write pulse, pio and dma;
	wire io_rwx;			// io r/w pulse at ior/iow assertion;
	reg [15:0] din;			// latched input data;
	reg [2:0] adr;			// latched address;
	reg [1:0] cs;			// latched chip selects;
	reg ack;				// latched dma ack;
	reg io_wval;			// io write pulse;

	assign io_rd = r_dior & dior;
	assign io_wr = r_diow & diow;
	assign io_rwx = (~r_dior & ~dior) | (~r_diow & ~diow);

	always @(posedge gclk)
	begin
		dd_in <= r_dd_in;
		da <= r_da;
		dcs <= ~r_dcs;
		diow <= ~r_diow;
		dior <= ~r_dior;
		dmack <= ~r_dmack;
		if(io_wr) begin
			din <= dd_in;
			adr <= da;
			cs <= dcs;
			ack <= dmack;
		end
		if(grst)
			io_wval <= 1'b0;
		else
			io_wval <= io_wr;
	end

	// decode accesses to 16-bit port;
	// for all DMA read/write cycles and accesses to the data register;

	wire port16;			// access 16-bit data port;
	reg wr16;				// write to 16-bit port;
	reg rd16;				// read from 16-bit port;
	reg rw16;				// read or write access;

	assign port16 = ~r_dmack | (r_da == 3'd0);

	always @(posedge gclk)
	begin
		wr16 <= io_wr & port16;
		rd16 <= io_rd & port16;
		rw16 <= (io_wr | io_rd) & port16;
	end

	// decode register writes;
	// registers are written in both master and slave;
	// no action is taken when device is not selected,
	// except for the EXEC DEVICE DIAGNOSTICS command;
	// writes to CS[0]=0 are dropped if BSY=1;
	// writes to CS[1]=0 do not look at BSY;

	wire [7:0] reg_adec;		// register address decodes;
	wire [1:0] reg_write;		// write to registers, CS1 or CS0;
	reg [7:0] reg_wdata;		// register write data;
	reg [7:0] reg_we;			// register write enables;
	reg cdr_we;					// ctrl/diag register write enable;

	assign reg_adec[0] = (adr == 3'd0);
	assign reg_adec[1] = (adr == 3'd1);
	assign reg_adec[2] = (adr == 3'd2);
	assign reg_adec[3] = (adr == 3'd3);
	assign reg_adec[4] = (adr == 3'd4);
	assign reg_adec[5] = (adr == 3'd5);
	assign reg_adec[6] = (adr == 3'd6);
	assign reg_adec[7] = (adr == 3'd7);

	assign reg_write[0] = ~ack & io_wval & (cs == 2'b01) & ~bsy;
	assign reg_write[1] = ~ack & io_wval & (cs == 2'b10);

	always @(posedge gclk)
	begin
		reg_wdata <= din[7:0];
		reg_we[0] <= reg_write[0] & reg_adec[0];
		reg_we[1] <= reg_write[0] & reg_adec[1];
		reg_we[2] <= reg_write[0] & reg_adec[2];
		reg_we[3] <= reg_write[0] & reg_adec[3];
		reg_we[4] <= reg_write[0] & reg_adec[4];
		reg_we[5] <= reg_write[0] & reg_adec[5];
		reg_we[6] <= reg_write[0] & reg_adec[6];
		reg_we[7] <= reg_write[0] & reg_adec[7];
		cdr_we <= reg_write[1] & reg_adec[6];
	end

	// device registers;
	// writes to the data register go straight to the buffer;

	reg [7:0] feature;			// feature register;
	reg [7:0] sec_cnt;			// sector count;
	reg [7:0] sec_nbr;			// sector number;
	reg [7:0] cyl_low;			// cylinder low;
	reg [7:0] cyl_high;			// cylinder high;
	reg [7:0] sdh;				// drive/head;
	reg [7:0] cmd;				// command register;
	reg [2:1] dev_ctrl;			// device ctrl register;

	always @(posedge gclk)
	begin
		if(reg_we[1])
			feature <= reg_wdata;
		if(grst) begin
			sec_cnt <= 'd1;
			sec_nbr <= 'd1;
			cyl_low <= 'd0;
			cyl_high <= 'd0;
			sdh <= 'd0;
			dev_ctrl <= 2'b00;		// SRST=0, IEN=0 (enabled);
		end else begin
			if(reg_we[2])
				sec_cnt <= reg_wdata;
			if(reg_we[3])
				sec_nbr <= reg_wdata;
			if(reg_we[4])
				cyl_low <= reg_wdata;
			if(reg_we[5])
				cyl_high <= reg_wdata;
			if(reg_we[6])
				sdh <= reg_wdata;
			if(cdr_we)
				dev_ctrl <= reg_wdata[2:1];
		end
		if(reg_we[7])
			cmd <= reg_wdata;
	end

	assign dev_sel = ~sdh[4];
	assign srst = dev_ctrl[2];
	assign ie = ~dev_ctrl[1];

	// commit to ide command;
	// on write to cmd register when selected and BSY=0;
	// on write of EXEC DEVICE DIAGNOSTICS cmd;

	wire cmd_edd;				// cmd EXEC DEVICE DIAGNSTICS;
	reg [4:0] start;			// start ide command;

	assign cmd_edd = (cmd[7:0] == 8'b1001_0000);

	always @(posedge gclk)
	begin
		start[0] <= reg_we[7];
		start[1] <= start[0] & (dev_sel | cmd_edd);
		start[3:2] <= start[2:1];
	end

	// ide command decode;
	// cmd				code		F SC SN C SDH	operation
	// RECALIBRATE		0001_xxxx	- -  -  -  D	no-op
	// READ SECTOR		0010_00Lx	- v  v  v  v	read pio
	// READ LONG		0010_001x	- v  v  v  v	ERROR
	// READ DMA			1100_100x	- v  v  v  v	read dma
	// WRITE SECTOR		0011_00Lx	- v  v  v  v	write pio
	// WRITE LONG		0011_001x	- v  v  v  v	ERROR
	// WRITE DMA		1100_101x	- v  v  v  v	write dma
	// WRITE VERIFY		0011_1100	- v  v  v  v	ERROR
	// READ VERIFY		0100_000x	- v  v  v  v	ERROR
	// FORMAT TRACK		0101_0000	- -  -  v  v	ERROR
	// SEEK				0111_xxxx	- -  v  v  v	no-op
	// EXEC DIAG		1001_0000	- -  -  -  D	no-op
	// INIT PARAMS		1001_0001	- v  -  -  v	no-op
	// READ BUFFER		1110_0100	- -  -  -  D	ERROR
	// WRITE BUFFER		1110_1000	- -  -  -  D	ERROR
	// IDENTIFY			1110_1100	- -  -  -  D	read identify data
	// SET FEATURE		1110_1111	v -  -  -  D	no-op for unsupported
	// READ MULTIPLE	1100_0100	- v  v  v  v	read pio
	// WRITE MULTIPLE	1100_0101	- v  v  v  v	write pio
	// SET MULTIPLE		1100_0110	- v  -  -  D	set multiple size
	// POWER MODE		94,95,96,97,98,99			ERROR
	// POWER MODE		e0,e1,e2,e3,e5,e6			ERROR
	// SMART			b0							ERROR

	reg cmd_recalibrate;
	reg cmd_read_sec, cmd_read_dma, cmd_read_mult;
	reg cmd_write_sec, cmd_write_dma, cmd_write_mult;
	reg cmd_identify;
	reg cmd_seek;
	reg cmd_exec_diag;
	reg cmd_init_parm;
	reg cmd_set_feature;
	wire cmd_all;				// all supported cmds;
	reg cmd_nop;				// all no-op cmds;
	wire cmd_read;				// all read commands;
	wire cmd_write;				// all write commands;
	reg cmd_rd;					// all read commands;
	reg cmd_wr;					// all write commands;
	reg cmd_dma;				// all dma commands;
	reg cmd_illegal;			// illegal cmd, abort;
	wire abort_cmd;				// abort command;
	wire done_nop;				// done with no-op cmd;

	assign cmd_read = cmd_read_sec | cmd_read_dma | cmd_read_mult;
	assign cmd_write = cmd_write_sec | cmd_write_dma | cmd_write_mult;
	assign cmd_all = cmd_read | cmd_write
		| cmd_recalibrate | cmd_identify | cmd_seek
		| cmd_exec_diag | cmd_init_parm | cmd_set_feature;

	always @(posedge gclk)
	begin
		if(start[1]) begin
			cmd_recalibrate <= (cmd[7:4] == 4'b0001);
			cmd_read_sec <= (cmd[7:1] == 7'b0010_000);
			cmd_read_dma <= (cmd[7:1] == 7'b1100_100);
			cmd_read_mult <= (cmd[7:0] == 8'b1100_0100);
			cmd_write_sec <= (cmd[7:1] == 7'b0011_000);
			cmd_write_dma <= (cmd[7:1] == 7'b1100_101);
			cmd_write_mult <= (cmd[7:0] == 8'b1100_0101);
			cmd_identify <= (cmd[7:0] == 8'b1110_1100);
			cmd_seek <= (cmd[7:4] == 4'b0111);
			cmd_exec_diag <= cmd_edd;
			cmd_init_parm <= (cmd[7:0] == 8'b1001_0001);
			cmd_set_feature <= (cmd[7:0] == 8'b1110_1111);
		end
		cmd_rd <= cmd_read;
		cmd_wr <= cmd_write;
		cmd_dma <= cmd_read_dma | cmd_write_dma;
		cmd_nop <= cmd_recalibrate | cmd_seek
			| cmd_exec_diag | cmd_init_parm | cmd_set_feature;
		if(grst | start[1])
			cmd_illegal <= 1'b0;
		else if(start[2])
			cmd_illegal <= ~cmd_all;
		start[4] <= start[3] & ~(cmd_illegal | cmd_nop | cmd_identify);
	end

	assign abort_cmd = start[3] & cmd_illegal;
	assign done_nop = start[3] & cmd_nop;

	// sectors left;
	// counts in 512 byte sectors;
	// 0 in sec_cnt register means 256 sectors;

	reg [7:0] scnt;				// # of sectors left;
	reg scnt_dec;				// decrement scnt;
	reg scnt_rlast;				// last read sector;
	reg scnt_wlast;				// last write sector;

	always @(posedge gclk)
	begin
		if(start[2]) begin
			scnt <= sec_cnt;
			scnt_wlast <= 1'b0;
		end else if(scnt_dec) begin
			scnt <= scnt - 1;
			scnt_wlast <= scnt_rlast;
		end
		scnt_rlast <= cmd_identify | (scnt == 8'd1);
	end

	// special handling for illegal and nop commands;

	reg done_identify;			// donw with identify cmd;
	reg done;					// done with simple commands;

	always @(posedge gclk)
	begin
		done_identify <= cmd_identify & start[3];
		done <= abort_cmd | done_nop;
	end

	// LBA register;
	// must transfer from above registers when cmd is issued;
	// increments after each block;
	// points to block of first error;
	// this register is read back for LBA register reads;

	reg [27:0] lba;				// LBA register;
	reg lba_load;				// load new LBA;
	reg lba_inc;				// increment LBA;

	always @(posedge gclk)
	begin
		if(grst)
			lba_load <= 1'b1;
		else
			lba_load <= |reg_we[6:3];
		if(lba_load)
			lba <= { sdh[3:0], cyl_high, cyl_low, sec_nbr };
		else if(lba_inc)
			lba[21:0] <= lba[21:0] + 1;
	end

	// device ready flag, DRDY;
	// cleared on hard reset and soft reset;
	// set as soon as out of reset;

	reg drdy;					// drive ready status;

	always @(posedge gclk)
	begin
		if(grst)
			drdy <= 1'b0;
		else
			drdy <= ~srst;
	end

	// device BSY/DRQ handling;
	// toggle between the two as long as more data is pending;
	// the OR of both is the ctrl busy flag;
	//
	// reads:
	//            _                _
	// set_bsy __/ \______________X_X___
	//              ________         ___
	// bsy     ____/        \_______X___
	//                     _
	// clr_bsy ___________/ \___________
	//                       _______   
	// drq     _____________/       \___
	//
	// writes:
	//                       _______   
	// bsy     _____________/       \___
	//            _                _
	// set_drq __/ \______________X_X___
	//              ________         ___
	// drq     ____/        \_______X___
	//                     _
	// clr_drq ___________/ \___________

	reg bsy_done;				// io side done with sector buffer;
	reg drq_done;				// ide side done with sector buffer;
	reg drq_busy;				// drq still busy on ide bus;
	reg drq_rel;				// drq done with ide bus;

	// device busy flag, BSY;
	// set while device:
	//	- fills the sector/block buffer from medium;
	//	- writes the sector/block buffer to medium;
	//	- on dma command issue;
	// cleared:
	//	- when sector/block buffer is available;
	//	- on command completion;

	wire bsy_set_rd;			// set bsy for read;
	wire bsy_set_wr;			// set bsy for write;
	wire bsy_set;				// set bsy;
	reg bsy_del;				// min of one busy delay is needed for scnt_wlast;
	reg bsy_req;				// request flash op;
	wire bsy_ack;				// ack completion of flash op;
	wire bsy_err;				// flash errors;

	assign bsy_set_rd = cmd_rd & (start[4] | (drq_done & ~scnt_rlast));
	assign bsy_set_wr = cmd_wr & drq_done;
	assign bsy_set = bsy_set_rd | bsy_set_wr;

	always @(posedge gclk)
	begin
		bsy <= ~grst & ~bsy_done & (bsy | bsy_set);
		bsy_del <= bsy_set;
		bsy_req <= bsy & (drq_busy? drq_rel : bsy_del);
		bsy_done <= bsy_ack;
		lba_inc <= bsy_done;
	end

	// device data request status, DRQ;
	// set:
	//	- when sector/block buffer is available for fill/read;
	//	- IDENTIFY data are available;
	// cleared:
	//	- when host emptied/filled the sector/block buffer;

	wire drq_set_rd;			// set drq for read;
	wire drq_set_wr;			// set drq for write;
	wire drq_set;				// set drq;

	assign drq_set_rd = done_identify | (cmd_rd & bsy_done);
	assign drq_set_wr = cmd_wr & (start[4] | (bsy_done & ~scnt_wlast));
	assign drq_set = drq_set_rd | drq_set_wr;

	always @(posedge gclk)
	begin
		drq <= ~grst & ~drq_done & (drq | drq_set);
		drq_busy <= ~grst & ~drq_rel & (drq_busy | drq);
	end

	assign ide_dmarq = drq & cmd_dma;

	// device error status; ERR;

	reg err;					// cmd terminated with error;
	wire err_clr;				// clear error flag;
	wire err_set;				// set error flag;

	assign err_clr = grst | start[1];
	assign err_set = abort_cmd | bsy_err;

	always @(posedge gclk)
	begin
		if(err_clr)
			err <= 1'b0;
		else if(err_set)
			err <= 1'b1;
	end

	// device status register;

	wire [7:0] status;			// status register;

	assign status = { bsy, drdy, 2'b01, drq, 2'b00, err };

	// interrupt handling;
	// set:
	//	- on cmd completion without error;
	//	- on cmd completion with error/abort;
	//	- when ready to send data for pio data-in cmds;
	//	- when ready to acept another block for pio data-out cmds;
	//	- when device 0 completes the EXEC DEVICE DIAGNOSTICS cmd;
	// cleared:
	//	- on DRST=0;
	//	- on SRST=1;
	//	- when device is selected, BSY=0 and STATUS reg is read;
	//	- when device is selected, BSY=0 DRQ=0 and CMD reg is written;
	// the host changing DEV_SEL shall not change the intr pending state;
	// pending intr are output on INTRQ as soon as IEN is enabled;

	reg intr_clr_rsts;			// clear intr on read of status reg;
	wire intr_clr_ncmd;			// clear intr on new command;
	reg intr_clr;				// clear ide intr;
	reg intr_set_pio;			// set intr for pio data block;
	reg intr_set_dma;			// set intr for dma completion;
	reg intr_set;				// set ide intr;
	reg intr_pend;				// interrupt is pending;

	assign intr_clr_ncmd = start[1]; //XXX DRQ??

	always @(posedge gclk)
	begin
		intr_clr_rsts <= dev_sel & dior & ~dmack & (dcs == 2'b01) & (da == 3'd7);
		intr_clr <= srst | intr_clr_rsts | intr_clr_ncmd;
		intr_set_pio <= ~cmd_dma & bsy_done;
		intr_set_dma <= cmd_dma & bdel & ~busy;
		intr_set <= done | done_identify | intr_set_pio | intr_set_dma;
		intr_pend <= ~grst & ~intr_clr & (intr_pend | intr_set);
	end

	assign intr = intr_pend & ie;

	// error register;
	// return abort in case of error, no retries;

	wire [7:0] error;			// error register;

	assign error[7] = 1'b0;		// no interface crc errors, no udma;
	assign error[6] = 1'b0;		// no data crc/ecc error;
	assign error[5] = 1'b0;		// unused;
	assign error[4] = 1'b0;		// unused;
	assign error[3] = 1'b0;		// no id not found errors;
	assign error[2] = err;		// cmd aborted;
	assign error[1] = 1'b0;		// no track 0 errors;
	assign error[0] = 1'b0;		// no address mark not found errors;

	// register read data mux;
	// register reads returns the STATUS reg when BSY=1;
	// dma reads and data reg reads return 16 bits;

	reg [15:0] data_out;		// data out register, pio and dma;
	reg [2:0] raddr;			// read address;
	reg sel_sts;				// read from status reg if busy;
	reg [7:0] rudata;			// upper read data;
	reg [7:0] rldata;			// lower read data;

	always @(posedge gclk)
	begin
		if(r_dmack == 1'b0)
			raddr <= 3'd0;
		else
			raddr <= r_da;
		sel_sts <= (bsy & ~port16) | ~r_dcs[1];
		rudata <= {8{port16}} & data_out[15:8];
		case(raddr)
			3'd0: rldata <= data_out[7:0];
			3'd1: rldata <= error;
			3'd2: rldata <= sec_cnt;
			3'd3: rldata <= lba[7:0];			// sec_nbr;
			3'd4: rldata <= lba[15:8];			// cyl_low;
			3'd5: rldata <= lba[23:16];			// cyl_high;
			3'd6: rldata <= { sdh[7:4], lba[27:24] };
			3'd7: rldata <= status;
		endcase
	end

	assign rdata[15:8] = rudata;
	assign rdata[7:0] = sel_sts? status : rldata;


	// sram buffer;
	// two 1kbyte dual-port buffers;
	// one in use, the other for prefetch;
	// port A is ide side, port B is flash side;
	// organized as 1kx16, using 4 block rams;

	wire ib_ena;				// ide port enable;
	wire [9:0] ib_addr;			// ide read/write address;
	wire [15:0] ib_wdata;		// ide write data;
	wire ib_we;					// ide write enable;
	wire [15:0] ib_xdata;		// ide read data;
	wire ib_rz;					// ide read 0;

	wire fb_ena;				// flash port enable;
	wire [9:0] fb_addr;			// flash read/write address;
	wire [7:0] fb_wdata;		// flash write data;
	reg [1:0] fb_we;			// flash byte write enables;
	wire [15:0] fb_xdata;		// flash read data;
	wire fb_rz;					// flash read 0;

	assign ib_ena = drq_busy;
	assign ib_wdata = din;
	assign ib_we = wr16;
	assign ib_rz = cmd_identify;

	assign fb_rz = 1'b0;

	RAMB4_S4_S4 b0 (
		.CLKA(gclk), .ENA(ib_ena), .RSTA(ib_rz),
		.ADDRA(ib_addr), .DIA(ib_wdata[3:0]), .WEA(ib_we), .DOA(ib_xdata[3:0]),
		.CLKB(gclk), .ENB(fb_ena), .RSTB(fb_rz),
		.ADDRB(fb_addr), .DIB(fb_wdata[3:0]), .WEB(fb_we[0]), .DOB(fb_xdata[3:0])
	);
	RAMB4_S4_S4 b1 (
		.CLKA(gclk), .ENA(ib_ena), .RSTA(ib_rz),
		.ADDRA(ib_addr), .DIA(ib_wdata[7:4]), .WEA(ib_we), .DOA(ib_xdata[7:4]),
		.CLKB(gclk), .ENB(fb_ena), .RSTB(fb_rz),
		.ADDRB(fb_addr), .DIB(fb_wdata[7:4]), .WEB(fb_we[0]), .DOB(fb_xdata[7:4])
	);
	RAMB4_S4_S4 b2 (
		.CLKA(gclk), .ENA(ib_ena), .RSTA(ib_rz),
		.ADDRA(ib_addr), .DIA(ib_wdata[11:8]), .WEA(ib_we), .DOA(ib_xdata[11:8]),
		.CLKB(gclk), .ENB(fb_ena), .RSTB(fb_rz),
		.ADDRB(fb_addr), .DIB(fb_wdata[3:0]), .WEB(fb_we[1]), .DOB(fb_xdata[11:8])
	);
	RAMB4_S4_S4 b3 (
		.CLKA(gclk), .ENA(ib_ena), .RSTA(ib_rz),
		.ADDRA(ib_addr), .DIA(ib_wdata[15:12]), .WEA(ib_we), .DOA(ib_xdata[15:12]),
		.CLKB(gclk), .ENB(fb_ena), .RSTB(fb_rz),
		.ADDRB(fb_addr), .DIB(fb_wdata[7:4]), .WEB(fb_we[1]), .DOB(fb_xdata[15:12])
	);

	// identify rom;
	// one 512 byte buffer, 256x16;
	// only connected to ide side;

	wire id_ena;				// enable ide rom;
	wire [15:0] id_xdata;		// id read data;
	wire id_rz;					// id read 0;

	assign id_ena = 1'b1;
	assign id_rz = ~cmd_identify;

	RAMB4_S16 idrom (
		.CLK(gclk), .EN(id_ena), .RST(id_rz),
		.ADDR(ib_addr[7:0]), .DI(16'd0), .WE(1'b0), .DO(id_xdata)
	);

`include "idrom.init"

	// buffer ide and flash read data flops;
	// ib_xdata and id_xdata can be ORed because of rz use;

	always @(posedge gclk)
	begin
		data_out <= ib_xdata | id_xdata;
	end

	// ide side buffer address;
	// adresses 16-bit words in buffer;
	// set to 0 at start of new command;
	// increments after each word access;

	reg i_addr_zero;			// zero ide buffer address;
	wire i_addr_inc;			// increment i_addr;
	reg [9:0] i_addr;			// buffer address;
	reg i_addr_last;			// last word in sector;

	assign i_addr_inc = rw16;

	always @(posedge gclk)
	begin
		i_addr_zero <= grst | start[1];
		if(i_addr_zero)
			i_addr <= 10'd0;
		else if(i_addr_inc)
			i_addr <= i_addr + 1;
		i_addr_last <= (i_addr[7:0] == 8'hff);
		drq_done <= i_addr_last & io_rwx & port16;
		drq_rel <= i_addr_last & i_addr_inc;
		scnt_dec <= drq_done;
	end

	assign ib_addr = i_addr;

	// flash interface;

	// flash data bus;
	// use io cells for fast t[su] and t[co];

	wire [7:0] in_fdb;		// output of input buffer;
	reg [7:0] f_in;			// input registers;
	reg [7:0] f_out;		// output data;
	reg [7:0] r_fout;		// output registers;
	wire f_noe;				// output enable;
	reg [7:0] r_foe;		// output enable registers;
	reg f_ien;				// capture input data;
	reg [7:0] f_din;		// data in capture register;

	IOBUF_F_12
		io_fdb7 ( .IO(FDB[7]), .I(r_fout[7]), .O(in_fdb[7]), .T(r_foe[7]) ),
		io_fdb6 ( .IO(FDB[6]), .I(r_fout[6]), .O(in_fdb[6]), .T(r_foe[6]) ),
		io_fdb5 ( .IO(FDB[5]), .I(r_fout[5]), .O(in_fdb[5]), .T(r_foe[5]) ),
		io_fdb4 ( .IO(FDB[4]), .I(r_fout[4]), .O(in_fdb[4]), .T(r_foe[4]) ),
		io_fdb3 ( .IO(FDB[3]), .I(r_fout[3]), .O(in_fdb[3]), .T(r_foe[3]) ),
		io_fdb2 ( .IO(FDB[2]), .I(r_fout[2]), .O(in_fdb[2]), .T(r_foe[2]) ),
		io_fdb1 ( .IO(FDB[1]), .I(r_fout[1]), .O(in_fdb[1]), .T(r_foe[1]) ),
		io_fdb0 ( .IO(FDB[0]), .I(r_fout[0]), .O(in_fdb[0]), .T(r_foe[0]) );

	always @(posedge gclk)
	begin
		f_in <= in_fdb;
		r_fout <= f_out;
		r_foe <= {8{f_noe}};
		if(f_ien)
			f_din <= f_in;
	end

	assign fb_wdata = f_din;

	// flash control outputs;
	// use io cells for fast t[co];

	wire [2:0] f_ce;		// chip enables;
	wire f_cle;				// cmd latch enable;
	wire f_ale;				// address latch enable;
	wire f_we;				// write enable;
	wire f_re;				// read enable;
	reg f_wp;				// flash write protect;
	reg [1:0] led;			// led status;
	reg [2:0] r_ce;			// chip enables;
	reg r_cle;				// cle output flop;
	reg r_ale;				// ale output flop;
	reg r_we;				// we output flop;
	reg r_re;				// re output flop;
	reg r_wp;				// wp output flop;
	reg [1:0] r_led;		// led output flops;

	always @(posedge gclk)
	begin
		r_ce <= ~f_ce;
		r_cle <= f_cle;
		r_ale <= f_ale;
		r_we <= ~f_we;
		r_re <= ~f_re;
		r_wp <= f_wp;
		r_led <= led;
	end

	OBUF_F_12
		io_fce2 ( .I(r_ce[2]), .O(FCE[2]) ),
		io_fce1 ( .I(r_ce[1]), .O(FCE[1]) ),
		io_fce0 ( .I(r_ce[0]), .O(FCE[0]) ),
		io_fcle ( .I(r_cle), .O(FCLE) ),
		io_fale ( .I(r_ale), .O(FALE) ),
		io_fwe ( .I(r_we), .O(FWE) ),
		io_fre ( .I(r_re), .O(FRE) ),
		io_fwp ( .I(r_wp), .O(FWP) );

	OBUF_F_24
		ioled1 ( .I(r_led[1]), .O(LED[1]) ),
		ioled0 ( .I(r_led[0]), .O(LED[0]) );

	// flash control inputs;
	// use io cell for fast t[su];
	// pass through another flop for synchronization;

	wire in_ryby;			// output of input buffer;
	wire in_md;				// output of input buffer;

	IBUF
		io_fryby ( .I(FRYBY), .O(in_ryby) ),
		io_fmd ( .I(FMD), .O(in_md) );

	reg r_ryby;				// 0=busy, 1=ready;
	reg r_md;				// module detect, 0=present;
	reg [2:0] ryby;			// synchronizer and edge-detection flops;
	reg md;					// synchronizer flop;

	always @(posedge gclk)
	begin
		r_ryby <= in_ryby;
		r_md <= in_md;
		ryby[1:0] <= { ryby[0], r_ryby };
		ryby[2] <= (ryby[1:0] == 2'b01);
		md <= r_md;
	end

	// flash controller state machine;

	// flash page read address;
	// address for writes comes out of micro code;
	// loaded from ide registers on first request;
	// read address increments at end of current page;
	// prefetch of next page is done automatically;

	reg [20:0] paddr;			// page address;
	reg paddr_ld;				// load new page address;
	reg paddr_sh;				// shift page address;

	always @(posedge gclk)
	begin
		if(paddr_ld)
			paddr <= lba[21:1];
		else if(paddr_sh)
			paddr <= { 8'd0, paddr[20:8] };
	end

	// read command rom;
	// contains mcode sequence for read commands;
	// 0: read page;
	//	 0 cmd 0x00;
	//	 1 addr 0x00;
	//	 2 addr addr[16:9];
	//	 3 addr addr[24:17];
	//	 4 addr addr[32:25];
	//	 5 wait rdy, 25us;
	//	 6 read block, 528 bytes;
	//	 7 done;
	// 8: read mfg id;
	//	 8 cmd 0x90;
	//	 9 addr 0x00;
	//	10 read block, 512 bytes;
	//	11 done;

	reg [3:0] xrom_addr;		// read address;
	wire [15:0] xrom_xdata;		// micro-code;

	RAM16X1S
		xrom15 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[15]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) ),
		xrom14 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[14]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) ),
		xrom13 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[13]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) ),
		xrom12 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[12]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) ),
		xrom11 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[11]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) ),
		xrom10 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[10]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) ),
		xrom09 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[9]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) ),
		xrom08 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[8]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) ),
		xrom07 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[7]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) ),
		xrom06 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[6]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) ),
		xrom05 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[5]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) ),
		xrom04 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[4]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) ),
		xrom03 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[3]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) ),
		xrom02 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[2]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) ),
		xrom01 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[1]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) ),
		xrom00 ( .WCLK(gclk), .WE(1'b0), .D(1'b0), .O(xrom_xdata[0]),
			.A0(xrom_addr[0]), .A1(xrom_addr[1]), .A2(xrom_addr[2]), .A3(xrom_addr[3]) );

`ifdef	SIM
	defparam xrom15.INIT = 16'b0000_0000_0010_0000;
	defparam xrom14.INIT = 16'b0000_0111_0101_1111;
	defparam xrom13.INIT = 16'b0000_0011_0001_1111;
	defparam xrom12.INIT = 16'b0000_0001_0000_0001;
	defparam xrom11.INIT = 16'b0000_0000_0000_0000;
	defparam xrom10.INIT = 16'b0000_0000_0000_0000;
	defparam xrom09.INIT = 16'b0000_0000_0100_0000;
	defparam xrom08.INIT = 16'b0000_0000_0001_1100;
	defparam xrom07.INIT = 16'b0000_0001_0010_0000;
	defparam xrom06.INIT = 16'b0000_0000_0000_0000;
	defparam xrom05.INIT = 16'b0000_0000_0010_0000;
	defparam xrom04.INIT = 16'b0000_0001_0000_0000;
	defparam xrom03.INIT = 16'b0000_0000_0100_0000;
	defparam xrom02.INIT = 16'b0000_0100_0100_0000;
	defparam xrom01.INIT = 16'b0000_0100_0100_0000;
	defparam xrom00.INIT = 16'b0000_0100_0100_0000;
`endif	// SIM

	// micro code engine;
	// reads are started when lba[0] is 0, aligned to 1k;
	// unaligned reads will return old data from sector buffer;
	// writes are processed per 512-byte blocks;
	// DWR and DRD cannot cross 512-byte boundaries;

	reg mstart;				// start micro-code execution;
	reg mdone;				// done with all micro-code;
	reg mbusy;				// busy with micro-code;
	reg mwrite;				// write command;

	assign bsy_ack = (cmd_rd & lba[0] & bsy_req) | mdone;

	always @(posedge gclk)
	begin
		mstart <= ~(cmd_rd & lba[0]) & bsy_req;
		mbusy <= ~grst & ~mdone & (mbusy | mstart);
		if(mstart)
			mwrite <= cmd_wr;
	end

	assign fb_ena = mbusy;

	// read rom microcode address;
	// set to READ PAGE (0) or READ MFG (8) index;

	reg xrom_inc;			// increment xrom_addr;

	always @(posedge gclk)
	begin
		if(mstart)
			xrom_addr <= lba[22]? 8 : 0;
		else if(xrom_inc)
			xrom_addr <= xrom_addr + 1;
	end

	// flash buffer address;

	wire [1:0] mbuf;			// flash side buffer index;
	reg [9:0] maddr;		// buffer word address;
	reg madd0;				// buffer byte address;
	wire maddr_zero;		// zero buf address;
	wire maddr_minc;		// increment maddr for micro-codes;
	wire maddr_bclr;		// clear byte offset;
	wire maddr_binc;		// increment maddr per byte;
	wire f_winc;			// increment maddr for write data;
	reg maddr_inc;			// increment maddr;
	wire mdrd_en;			// enable writing read data to buffer;

	assign maddr_zero = mstart;
	assign mbuf = cmd_wr? { i_addr[9:8] - 1 } : { i_addr[9], 1'b0 };

	always @(posedge gclk)
	begin
		if(maddr_zero)
			maddr <= { mbuf, 8'd0 };
		else if(maddr_inc)
			maddr <= maddr + 1;
		if(maddr_bclr)
			madd0 <= 1'b0;
		else if(maddr_binc)
			madd0 <= ~madd0;
		maddr_inc <= maddr_minc | (madd0 & maddr_binc);
		fb_we[0] <= f_ien & mdrd_en & ~madd0;
		fb_we[1] <= f_ien & mdrd_en & madd0;
	end

	assign maddr_binc = f_ien | f_winc;
	assign fb_addr = maddr;

	// latch micro-code from xrom or buffer;
	// stall until micro-code has been executed;
	// decode micro-code;
	//
	//	1ttttttt tttttttt	WRDY	wait for rdy 0->1, in 16 clocks, max 5.2ms @100
	//	0111xxxx DDDDDDDD	CMD		cmd cycle;
	//	0110xxxx DDDDDDDD	ADDR	address cycle;
	//	0101xxNN NNNNNNNN	DWR		data write cycle, N bytes;
	//	0100xxNN NNNNNNNN	DRD		data read cycle, N bytes;
	//	0011xxNN NNNNNNNN	SCHK	status check;
	//	0010xxxx rRgGxxSC	CTRL	C=1 clr, S=1 set semaphore, rg = led control
	//	0001xxRR cccccccc	CONF	write to config reg rr;
	//	0000xxxx xxxxxxxx	DONE	done;

	reg [3:0] mreq;				// micro pipe;
	reg [15:0] mcode;			// micro-code;
	reg [7:0] mlbyte;			// low byte of mcode;
	reg mstall;					// stall execution;
	reg merr;					// error during execution;
	reg mop_wrdy;				// wait-rdy;
	reg mop_fio;				// flash io;
	reg mop_csel;				// select cmd/addr;
	reg mop_asel;				// select read address;
	reg mop_dsel;				// select read/write data;
	reg mop_wsel;				// select write data;
	reg mop_schk;				// status check;
	reg mop_ctrl;				// write to ctrl register;
	reg mop_conf;				// write to config registers;
	reg mop_done;				// done instruction;
	wire wrdy_cont;				// continue after wrdy event;
	reg wrdy_to;				// wrdy timeout;
	reg flx_cont;				// continue after flx done;
	reg flx_err;				// flash io error;
	reg schk_cont;				// continue after status check;
	reg schk_err;				// status check failed;
	reg mcont;					// unstall and continue;

	always @(posedge gclk)
	begin
		mreq <= { mreq[2:0], mstart | mcont };
		if(mreq[1])
			mcode <= mwrite? fb_xdata : xrom_xdata;
		mlbyte <= mcode[7:0];
		mstall <= mbusy & ~mcont & (mstall | mreq[2]);
		if(mbusy == 1'b0) begin
			mop_wrdy <= 1'b0;
			mop_fio <= 1'b0;
			mop_csel <= 1'b0;
			mop_asel <= 1'b0;
			mop_dsel <= 1'b0;
			mop_wsel <= 1'b0;
		end else if(mreq[2]) begin
			mop_wrdy <= mcode[15];
			mop_fio <= (mcode[15:14] == 2'b01);
			mop_csel <= (mcode[15:13] == 3'b011);
			mop_asel <= (mcode[15:12] == 4'd6) & mcode[8];
			mop_dsel <= (mcode[15:13] == 3'b010);
			mop_wsel <= (mcode[15:12] == 4'd5);
		end
		mop_schk <= mreq[3] & (mcode[15:12] == 4'd3);
		mop_ctrl <= mreq[2] & (mcode[15:12] == 4'd2);
		mop_conf <= mreq[2] & (mcode[15:12] == 4'd1);
		mop_done <= mreq[2] & (mcode[15:12] == 4'd0);
		if(mbusy == 1'b0)
			mcont <= 1'b0;
		else
			mcont <= mop_ctrl | mop_conf | flx_cont | wrdy_cont | schk_cont;
		xrom_inc <= mcont;
		merr <= wrdy_to | flx_err | schk_err;
		mdone <= mop_done | merr;
	end

	assign maddr_minc = mwrite & mreq[0];
	assign maddr_bclr = ~mop_dsel;
	assign mdrd_en = ~mcode[11];
	assign bsy_err = merr;

	// micro-code repeat/size counter;
	// contains size - 1;
	// WRDY: loaded with timeout;
	// DWR/DRD: loaded with byte count;
	// else: loaded with 0;

	wire mcnt_low;				// use lower 10 bits of mcnt;
	wire [15:0] mcnt_val;		// mcnt load value;
	reg [15:0] mcnt;			// delay/byte counter;
	wire mcnt_load;				// load mcnt;
	wire mcnt_dec;				// decrement mcnt;

	assign mcnt_low = mcode[15] | (mcode[15:13] == 3'b010);
	assign mcnt_val[15] = 1'b0;
	assign mcnt_val[14:10] = {5{mcode[15]}} & mcode[14:10];
	assign mcnt_val[9:0] = {10{mcnt_low}} & mcode[9:0];
	assign mcnt_load = mreq[2];

	always @(posedge gclk)
	begin
		if(mcnt_load)
			mcnt <= mcnt_val;
		else if(mcnt_dec)
			mcnt <= mcnt - 1;
	end

	// wait-rdy divider;
	// divide gclk by 16;

	reg [3:0] wrdy_div;			// wrdy divider;
	reg wrdy_tick;				// wrdy :16 tick;

	always @(posedge gclk)
	begin
		if(mop_wrdy == 1'b0)
			wrdy_div <= {4{1'b1}};
		else
			wrdy_div <= wrdy_div - 1;
		wrdy_tick <= (wrdy_div == 4'd0);
		wrdy_to <= mop_wrdy & mcnt[15] & wrdy_tick;
	end

	assign wrdy_cont = mop_wrdy & ryby[2];

	// status check;
	// check for 0s or 1s;
	// lower mcode is bit mask;

	reg schk_xor;				// check 0 or 1 bits;
	reg schk_fail;				// bit check failed;

	always @(posedge gclk)
	begin
		schk_xor <= mcode[8];
		schk_fail <= |((f_din ^ {8{schk_xor}}) & mlbyte);
		schk_cont <= mop_schk & ~schk_fail;
		schk_err <= mop_schk & schk_fail;
	end

	// semaphore/led/wp control;
	// two-bit ops to clear and set;
	// clear had higher priority than set;
	// clear sema and wp when module is not present;

	reg sema;					// semaphore;
	wire [3:0] c_clr;			// clear ops;
	wire [3:0] c_set;			// set ops;

	assign c_clr[0] = (mop_ctrl & mlbyte[0]) | md;
	assign c_set[0] = mop_ctrl & mlbyte[1];
	assign c_clr[1] = (mop_ctrl & mlbyte[2]) | md;
	assign c_set[1] = mop_ctrl & mlbyte[3];
	assign c_clr[2] = mop_ctrl & mlbyte[4];
	assign c_set[2] = mop_ctrl & mlbyte[5];
	assign c_clr[3] = mop_ctrl & mlbyte[6];
	assign c_set[3] = mop_ctrl & mlbyte[7];

	always @(posedge gclk)
	begin
		if(grst) begin
			sema <= 1'b0;
			f_wp <= 1'b0;
			led <= 2'b00;
		end else begin
			sema <= ~c_clr[0] & (sema | c_set[0]);
			f_wp <= ~c_clr[1] & (f_wp | c_set[1]);
			led[0] <= ~c_clr[2] & (led[0] | c_set[2]);
			led[1] <= ~c_clr[3] & (led[1] | c_set[3]);
		end
	end

	// flash interface control;
	// issue requests until mcnt has reached 0;

	reg flx_val;				// start a new flash r/w cycle;
	wire flx_fin;
	reg flx_done;				// done with io cycle;

	assign flx_fin = mop_fio & mcnt[15] & flx_done;

	always @(posedge gclk)
	begin
		flx_val <= mop_fio & (mreq[3] | (~mcnt[15] & flx_done));
		flx_cont <= flx_fin & sema;
		flx_err <= flx_fin & ~sema;
	end

	assign mcnt_dec = flx_val | wrdy_tick;

	// read page address control;
	// load paddr upon mstart;
	// shift right after every ADDR instruction;

	always @(posedge gclk)
	begin
		paddr_ld <= mstart;
		paddr_sh <= mop_asel & flx_cont;
	end

	// flash write data mux;
	// select cmd (1 byte), READ, READ_STATUS or READ_MFG,
	// select page read address (3 bytes) or
	// select byte from buffer (2 bytes);
	// the flash READ cmd is 0x00;
	// page reads always start at begin of page, addr[8:0]=0x00;

	wire [7:0] f_cmd;			// cmd/addr byte;
	wire [7:0] f_dwr;			// write data from buffer;
	wire [7:0] f_dout;			// final output data;

	assign f_cmd = mop_asel? paddr[7:0] : mcode[7:0];
	assign f_dwr = madd0? fb_xdata[15:8] : fb_xdata[7:0];
	assign f_dout = ({8{mop_csel}} & f_cmd) | ({8{mop_wsel}} & f_dwr);

	always @(posedge gclk)
	begin
		f_out <= f_dout;
	end

	// flash timing configuration;
	// written by write data micro code;
	// defaults to slowest timing on reset;
	// reset timing on set of semaphore;

	reg f_conf_rst;			// reset flash configuration;
	wire [3:0] f_conf_wr;		// write to conf regs;
	reg [2:0] f_conf_eoc;		// end of cycle time;
	reg [2:0] f_conf_rs;		// read sample time;
	reg [7:0] f_conf_re;		// read enable active time;
	reg [7:0] f_conf_we;		// read enable active time;
	reg [7:0] f_conf_ac;		// ale/cle active times;

	assign f_conf_wr[0] = mop_conf & (mcode[9:8] == 2'd0);
	assign f_conf_wr[1] = mop_conf & (mcode[9:8] == 2'd1);
	assign f_conf_wr[2] = mop_conf & (mcode[9:8] == 2'd2);
	assign f_conf_wr[3] = mop_conf & (mcode[9:8] == 2'd3);

	always @(posedge gclk)
	begin
		f_conf_rst <= grst | c_set[0];
		if(f_conf_rst) begin
			f_conf_eoc <= 3'd7;			// 8 clock cycle;
			f_conf_rs <= 3'd5;			// read sample time;
			f_conf_re <= 8'b00111110;	// 5 clock read pulse;
			f_conf_we <= 8'b00111110;	// 5 clock write pulse;
			f_conf_ac <= 8'b11111111;	// 8 clock cycle;
		end else begin
			if(f_conf_wr[3]) begin
				f_conf_eoc <= mlbyte[6:4];
				f_conf_rs <= mlbyte[2:0];
			end
			if(f_conf_wr[2])
				f_conf_re <= mlbyte;
			if(f_conf_wr[1])
				f_conf_we <= mlbyte;
			if(f_conf_wr[0])
				f_conf_ac <= mlbyte;
		end
	end

	// decode flash ops;

	wire flc_cle;				// cmd cycle;
	wire flc_ale;				// address cycle;
	wire flc_we;				// write cycle;
	wire flc_re;				// read cycle;

	assign flc_cle = (mcode[13:12] == 2'b11);
	assign flc_ale = (mcode[13:12] == 2'b10);
	assign flc_we = |mcode[13:12];
	assign flc_re = (mcode[13:12] == 2'b00);

	// flash read/write cycle state machine;
	// flx_type determines cycle type;

	reg flx_cle;				// command latch cycle;
	reg flx_ale;				// address latch cycle;
	reg flx_we;					// write cycle;
	reg flx_re;					// read cycle;
	reg flx_busy;				// busy with flash cycle;
	reg [2:0] flx_cnt;			// flash cycle count;
	reg [7:0] flx_pipe;			// flash cycle pipe;
	wire flx_eoc;				// end of cycle;

	assign flx_eoc = (flx_cnt == f_conf_eoc);

	always @(posedge gclk)
	begin
		if(flx_val) begin
			flx_cle <= flc_cle;
			flx_ale <= flc_ale;
			flx_we <= flc_we;
			flx_re <= flc_re;
		end
		if(grst) begin
			flx_busy <= 1'b0;
			flx_pipe <= 8'd0;
		end else begin
			flx_busy <= ~flx_done & (flx_busy | flx_val);
			flx_pipe <= { flx_pipe[6:0], flx_val };
		end
		if(flx_busy == 1'b0)
			flx_cnt <= 3'd0;
		else
			flx_cnt <= flx_cnt + 1;
		flx_done <= flx_eoc;
		f_ien <= flx_re & (flx_cnt == f_conf_rs);
	end

	assign f_winc = mop_wsel & flx_eoc;

	// decode active times of flash control signals;
	// simple and/or with flx_pipe pipe;

	wire flx_xle;				// ale/cle active decode;
	wire flx_xwe;				// we active decode;
	wire flx_xre;				// re active decode;

	assign flx_xle = |(flx_pipe & f_conf_ac);
	assign flx_xwe = |(flx_pipe & f_conf_we);
	assign flx_xre = |(flx_pipe & f_conf_re);

	assign f_cle = flx_cle & flx_xle;
	assign f_ale = flx_ale & flx_xle;
	assign f_we = flx_we & flx_xwe;
	assign f_re = flx_re & flx_xre;
	assign f_noe = flx_re & flx_busy;

	// device chip selects;
	// must be kept active for multi-cycle commands;
	// only one device can be active at a time;

	wire flx_ce;
	wire [1:0] flc_dev;

	assign flx_ce = sema;
	assign flc_dev = lba[27:26];

	assign f_ce[2] = flx_ce & (flc_dev == 2'd2);
	assign f_ce[1] = flx_ce & (flc_dev == 2'd1);
	assign f_ce[0] = flx_ce & (flc_dev == 2'd0);

endmodule