matrix.c
13.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
#include <ultra64.h>
#include "matrix.h"
/*
* Function: printMtx
* Description: uses rmonprintf to print out a mtx in integer form
*/
void printMtx(char *name,Mtx *mat)
{
int i,j;
rmonPrintf("\n%s:\n",name);
for (i=0; i<4; i++)
{
for (j=0; j<4; j++)
{
rmonPrintf("0x%08x ",mat->m[i][j]);
}
rmonPrintf("\n");
}
}
/*
* Function: printMat
* Description: uses rmonprintf to print out a float matrix
*/
void printMat(char *name, FMatrix mat)
{
int i,j;
rmonPrintf("\n%s:\n",name);
for (i=0; i<4; i++) {
for (j=0; j<4; j++)
rmonPrintf("%1.2f ",mat[i][j]);
rmonPrintf("\n");
}
}
/*
* Function: printFMtx
* Description: uses rmonprintf to print out an mtx in floating point
*/
void printFMtx(char *name, Mtx *mat)
{
float fmat[4][4];
int i;
guMtxL2F(fmat, mat);
rmonPrintf("\n%s:\n",name);
for (i=0;i<4;i++)
{
rmonPrintf("\t%f %f %f %f\n",
fmat[i][0],fmat[i][1],fmat[i][2],fmat[i][3]);
}
}
/*
* Function: multMtxPos
* Description: Multiplies a matrix and a 3D position.
* Arguments: vec = 3D position
* mat = Mtx
* Result: res = mat * vec
* NOTE: res may be the same as vec
*/
void multMtxPos(float res[3], Mtx *mat, float pos[3])
{
float fmat[4][4];
int i, j;
float tmp4[4];
float pos4[4];
guMtxL2F(fmat, mat);
pos4[0] = pos[0];
pos4[1] = pos[1];
pos4[2] = pos[2];
pos4[3] = 1.0;
for (i=0;i<4;i++)
{
tmp4[i] = 0.0;
for (j=0;j<4;j++)
tmp4[i] += (fmat[j][i] * pos4[j]);
}
res[0] = tmp4[0] / tmp4[3];
res[1] = tmp4[1] / tmp4[3];
res[2] = tmp4[2] / tmp4[3];
}
/*
* Function: multMatVec
* Description: Multiplies a matrix and a 3D vector.
* Arguments: vec = 3D vector
* mat = matrix
* Result: res = mat * vec
* NOTE: res may be the same as vec
*/
void multMtxVec(vec3 res, Mtx *mat, vec3 vec)
{
float fmat[4][4];
int i, j;
float tmp4[4];
float vec4[4];
guMtxL2F(fmat, mat);
vec4[0] = vec[0];
vec4[1] = vec[1];
vec4[2] = vec[2];
vec4[3] = 0.0;
for (i=0;i<4;i++)
{
tmp4[i] = 0.0;
for (j=0;j<4;j++)
tmp4[i] += (fmat[j][i] * vec4[j]);
}
res[0] = tmp4[0];
res[1] = tmp4[1];
res[2] = tmp4[2];
}
/*
* Function: multMatPos
* Description: Multiplies a matrix and a 3D position.
* Arguments: vec = 3D position
* mat = floating-point matrix
* Result: res = mat * vec
* NOTE: res may be the same as vec
*/
void multMatPos(float res[3], FMatrix fmat, float pos[3])
{
int i, j;
float tmp4[4];
float pos4[4];
pos4[0] = pos[0];
pos4[1] = pos[1];
pos4[2] = pos[2];
pos4[3] = 1.0;
for (i=0;i<4;i++)
{
tmp4[i] = 0.0;
for (j=0;j<4;j++)
tmp4[i] += (fmat[j][i] * pos4[j]);
}
res[0] = tmp4[0] / tmp4[3];
res[1] = tmp4[1] / tmp4[3];
res[2] = tmp4[2] / tmp4[3];
}
/*
* Function: multMatVec
* Description: Multiplies a matrix and a 3D vector.
* Arguments: vec = 3D vector
* mat = floating-point matrix
* Result: res = mat * vec
* NOTE: res may be the same as vec
*/
void multMatVec(vec3 res, FMatrix fmat, vec3 vec)
{
int i, j;
float tmp4[4];
float vec4[4];
vec4[0] = vec[0];
vec4[1] = vec[1];
vec4[2] = vec[2];
vec4[3] = 0.0;
for (i=0;i<4;i++)
{
tmp4[i] = 0.0;
for (j=0;j<4;j++)
tmp4[i] += (fmat[j][i] * vec4[j]);
}
res[0] = tmp4[0];
res[1] = tmp4[1];
res[2] = tmp4[2];
}
/*
* Function: multMtx
* Description: Multiplies two Mtx's and puts their product in a third.
* Arguments: dst - the destination matrix
* s1, s2 - the source matrices.
* Result: dst = s1 * s2
* NOTE: dst may be the same as either of the source matrices
*/
void multMtx(Mtx *dst, Mtx *s1, Mtx *s2)
{
int i, j;
float result[4][4], fs1[4][4], fs2[4][4];
guMtxL2F(fs1, s1);
guMtxL2F(fs2, s2);
for (i=0;i<4;i++)
{
for (j=0;j<4;j++)
{
result[i][j] = (fs1[i][0] * fs2[0][j] +
fs1[i][1] * fs2[1][j] +
fs1[i][2] * fs2[2][j] +
fs1[i][3] * fs2[3][j]);
}
}
guMtxF2L(result, dst);
}
/*
* Function: multMat
* Description: Multiplies two matrices and puts their product in a third.
* Arguments: dst - the destination matrix
* s1, s2 - the source matrices.
* Result: dst = s1 * s2
* NOTE: dst may be the same as either of the source matrices
*/
void multMat(FMatrix dst, FMatrix s1, FMatrix s2)
{
int i, j;
float result[4][4];
for (i=0;i<4;i++)
{
for (j=0;j<4;j++)
{
result[i][j] = (s1[i][0] * s2[0][j] +
s1[i][1] * s2[1][j] +
s1[i][2] * s2[2][j] +
s1[i][3] * s2[3][j]);
}
}
copyMat(dst, result);
}
#define SMALL 1e-8 /* Small enough to be considered zero */
#define SWAP(A,B,T) T=B,B=A,A=T
#define ABS(X) (((X)>=0)?(X):-(X))
/*****************************************************************************
Shuffles rows in inverse of 3x3. See comment in matrix_inv3_second_col().
*****************************************************************************/
static void
matrix_inv3_swap(float inv[3][3], int row0, int row1, int row2)
{
int i, tempi;
float temp;
#define SWAP_ROWS(a, b) \
for (i = 0; i < 3; i++) SWAP(inv[a][i], inv[b][i], temp); \
SWAP(a, b, tempi)
if (row0 != 0){
if (row1 == 0) {
SWAP_ROWS(row0, row1);
}
else {
SWAP_ROWS(row0, row2);
}
}
if (row1 != 1) {
SWAP_ROWS(row1, row2);
}
}
/*****************************************************************************
Does Gaussian elimination on second column.
*****************************************************************************/
static int
matrix_inv3_second_col(float source[3][3], float inv[3][3], int row0)
{
int row1, row2, i1, i2, i;
float temp;
float a, b;
/* Find which row to use */
if (row0 == 0) i1 = 1, i2 = 2;
else if (row0 == 1) i1 = 0, i2 = 2;
else i1 = 0, i2 = 1;
/* Find which is larger in abs. val.:the entry in [i1][1] or [i2][1] */
/* and use that value for pivoting. */
a = source[i1][1]; if (a < 0) a = -a;
b = source[i2][1]; if (b < 0) b = -b;
if (a > b) row1 = i1;
else row1 = i2;
row2 = (row1 == i1 ? i2 : i1);
/* Scale row1 in source */
if ((source[row1][1] < SMALL) && (source[row1][1] > -SMALL)) return(0);
temp = 1.0 / source[row1][1];
source[row1][1] = 1.0;
source[row1][2] *= temp; /* source[row1][0] is zero already */
/* Scale row1 in inv */
inv[row1][row1] = temp; /* it used to be a 1.0 */
inv[row1][row0] *= temp;
/* Clear column one, source, and make corresponding changes in inv */
for (i = 0; i < 3; i++) if (i != row1) { /* for i = all rows but row1 */
temp = -source[i][1];
source[i][1] = 0.0;
source[i][2] += temp * source[row1][2];
inv[i][row1] = temp * inv[row1][row1];
inv[i][row0] += temp * inv[row1][row0];
}
/* Scale row2 in source */
if ((source[row2][2] < SMALL) && (source[row2][2] > -SMALL)) return(0);
temp = 1.0 / source[row2][2];
source[row2][2] = 1.0; /* source[row2][*] is zero already */
/* Scale row2 in inv */
inv[row2][row2] = temp; /* it used to be a 1.0 */
inv[row2][row0] *= temp;
inv[row2][row1] *= temp;
/* Clear column one, source, and make corresponding changes in inv */
for (i = 0; i < 3; i++) if (i != row2) { /* for i = all rows but row2 */
temp = -source[i][2];
source[i][2] = 0.0;
inv[i][row0] += temp * inv[row2][row0];
inv[i][row1] += temp * inv[row2][row1];
inv[i][row2] += temp * inv[row2][row2];
}
/*
* Now all is done except that the inverse needs to have its rows shuffled.
* row0 needs to be moved to inv[0][*], row1 to inv[1][*], etc.
*
* We *didn't* do the swapping before the elimination so that we could more
* easily keep track of what ops are needed to be done in the inverse.
*/
matrix_inv3_swap(inv, row0, row1, row2);
return(1);
}
/*****************************************************************************
Fast inversion routine for 3 x 3 matrices. - Written by jfh.
This takes 30 multiplies/divides, as opposed to 39 for Cramer's Rule.
The algorithm consists of performing fast gaussian elimination, by never
doing any operations where the result is guaranteed to be zero, or where
one operand is guaranteed to be zero. This is done at the cost of clarity,
alas.
Returns 1 if the inverse was successful, 0 if it failed.
*****************************************************************************/
static int
matrix_invert3(float source[3][3], float inv[3][3])
{
int i, row0;
float temp;
float a, b, c;
inv[0][0] = inv[1][1] = inv[2][2] = 1.0;
inv[0][1] = inv[0][2] = inv[1][0] = inv[1][2] = inv[2][0] = inv[2][1] = 0.0;
/* attempt to find the largest entry in first column to use as pivot */
a = source[0][0]; if (a < 0) a = -a;
b = source[1][0]; if (b < 0) b = -b;
c = source[2][0]; if (c < 0) c = -c;
if (a > b) {
if (a > c) row0 = 0;
else row0 = 2;
}
else {
if (b > c) row0 = 1;
else row0 = 2;
}
/* Scale row0 of source */
if ((source[row0][0] < SMALL) && (source[row0][0] > -SMALL)) return(0);
temp = 1.0 / source[row0][0];
source[row0][0] = 1.0;
source[row0][1] *= temp;
source[row0][2] *= temp;
/* Scale row0 of inverse */
inv[row0][row0] = temp; /* other entries are zero -- no effort */
/* Clear column zero of source, and make corresponding changes in inverse */
for (i = 0; i < 3; i++) if (i != row0) { /* for i = all rows but row0 */
temp = -source[i][0];
source[i][0] = 0.0;
source[i][1] += temp * source[row0][1];
source[i][2] += temp * source[row0][2];
inv[i][row0] = temp * inv[row0][row0];
}
/*
* We've now done gaussian elimination so that the source and
* inverse look like this:
*
* 1 * * * 0 0
* 0 * * * 1 0
* 0 * * * 0 1
*
* We now proceed to do elimination on the second column.
*/
if (!matrix_inv3_second_col(source, inv, row0)) return(0);
return(1);
}
/*****************************************************************************
Finds a new pivot for a non-simple 4x4. See comments in MatInvert().
*****************************************************************************/
static int
matrix_inv4_pivot(float src[4][4], float r[4], float *s, int *swap)
{
int i, j;
float temp, max;
*swap = -1;
if (ABS(src[3][3]) < SMALL) {
/* Look for a different pivot element: one with largest abs value */
max = 0.0;
for (i = 0; i < 4; i++) {
if (src[i][3] > max) max = src[*swap = i][3];
else if (src[i][3] < -max) max = -src[*swap = i][3];
}
/* No pivot element available ! */
if (*swap < 0) return(0);
else for (j = 0; j < 4; j++) SWAP(src[*swap][j], src[3][j], temp);
}
r[0] = -src[0][3];
r[1] = -src[1][3];
r[2] = -src[2][3];
*s = 1.0 / src[3][3];
src[0][3] = src[1][3] = src[2][3] = 0.0;
src[3][3] = 1.0;
src[3][0] *= (*s);
src[3][1] *= (*s);
src[3][2] *= (*s);
for (i = 0; i < 3; i++) {
src[0][i] += r[0] * src[3][i];
src[1][i] += r[1] * src[3][i];
src[2][i] += r[2] * src[3][i];
}
return(1);
}
/*****************************************************************************
This returns the inverse of the given matrix. The result matrix
may be the same as the one to invert.
Fast inversion routine for 4 x 4 matrices, written by jfh.
Returns 1 if the inverse was successful, 0 if it failed.
This routine has been specially tweaked to notice the following:
If the matrix has the form
* * * 0
* * * 0
* * * 0
* * * 1
(as do many matrices in graphics), then we compute the inverse of
the upper left 3x3 matrix and use this to find the general inverse.
In the event that the right column is not 0-0-0-1, we do gaussian
elimination to make it so, then use the 3x3 inverse, and then do
our gaussian elimination.
*****************************************************************************/
int
floatMatInvert(float inv[4][4], float src[4][4])
{
float mat[4][4];
int i, j, simple;
float m[3][3], inv3[3][3], s, temp;
float r[4], t[4];
int swap;
/* invert code is row major */
for (i=0; i<4; i++)
for (j=0; j<4; j++) {
mat[i][j] = src[i][j];
inv[i][j] = 0;
}
inv[0][0] = 1;
inv[1][1] = 1;
inv[2][2] = 1;
inv[3][3] = 1;
/* If last column is not (0,0,0,1), use special code */
simple = (mat[0][3] == 0.0 && mat[1][3] == 0.0 &&
mat[2][3] == 0.0 && mat[3][3] == 1.0);
if (! simple && !matrix_inv4_pivot(mat, r, &s, &swap)) return (0);
t[0] = mat[3][0];
t[1] = mat[3][1];
t[2] = mat[3][2];
/* Copy upper-left 3x3 matrix */
for (i = 0; i < 3; i++) for (j = 0; j < 3; j++) m[i][j] = mat[i][j];
if (! matrix_invert3(m, inv3)) return(0);
for (i = 0; i < 3; i++) for (j = 0; j < 3; j++) inv[i][j] = inv3[i][j];
for (i = 0; i < 3; i++) for (j = 0; j < 3; j++)
inv[3][i] -= t[j] * inv3[j][i];
if (! simple) {
/* We still have to undo our gaussian elimination from earlier on */
/* add r0 * first col to last col */
/* add r1 * 2nd col to last col */
/* add r2 * 3rd col to last col */
for (i = 0; i < 4; i++) {
inv[i][3] += r[0] * inv[i][0] +
r[1] * inv[i][1] +
r[2] * inv[i][2];
inv[i][3] *= s;
}
if (swap >= 0)
for (i = 0; i < 4; i++) SWAP(inv[i][swap], inv[i][3], temp);
}
return (1);
}