g711.h 3.51 KB
/*
 * This source code is a product of Sun Microsystems, Inc. and is provided
 * for unrestricted use.  Users may copy or modify this source code without
 * charge.
 *
 * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
 * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
 *
 * Sun source code is provided with no support and without any obligation on
 * the part of Sun Microsystems, Inc. to assist in its use, correction,
 * modification or enhancement.
 *
 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
 * OR ANY PART THEREOF.
 *
 * In no event will Sun Microsystems, Inc. be liable for any lost revenue
 * or profits or other special, indirect and consequential damages, even if
 * Sun has been advised of the possibility of such damages.
 *
 * Sun Microsystems, Inc.
 * 2550 Garcia Avenue
 * Mountain View, California  94043
 */

/*
 * g711.h
 *
 * u-law, A-law and linear PCM conversions.
 */

#ifndef G711_H
#define G711_H

/*
 * linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law
 *
 * linear2alaw() accepts an 16-bit integer and encodes it as A-law data.
 *
 *		Linear Input Code	Compressed Code
 *	------------------------	---------------
 *	0000000wxyza			000wxyz
 *	0000001wxyza			001wxyz
 *	000001wxyzab			010wxyz
 *	00001wxyzabc			011wxyz
 *	0001wxyzabcd			100wxyz
 *	001wxyzabcde			101wxyz
 *	01wxyzabcdef			110wxyz
 *	1wxyzabcdefg			111wxyz
 *
 * For further information see John C. Bellamy's Digital Telephony, 1982,
 * John Wiley & Sons, pps 98-111 and 472-476.
 */

/* pcm_val is 2's complement (16-bit range) */
unsigned char _af_linear2alaw (int pcm_val);

/*
 * alaw2linear() - Convert an A-law value to 16-bit linear PCM
 *
 */

int _af_alaw2linear (unsigned char a_val);

/*
 * linear2ulaw() - Convert a linear PCM value to u-law
 *
 * In order to simplify the encoding process, the original linear magnitude
 * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
 * (33 - 8191). The result can be seen in the following encoding table:
 *
 *	Biased Linear Input Code	Compressed Code
 *	------------------------	---------------
 *	00000001wxyza			000wxyz
 *	0000001wxyzab			001wxyz
 *	000001wxyzabc			010wxyz
 *	00001wxyzabcd			011wxyz
 *	0001wxyzabcde			100wxyz
 *	001wxyzabcdef			101wxyz
 *	01wxyzabcdefg			110wxyz
 *	1wxyzabcdefgh			111wxyz
 *
 * Each biased linear code has a leading 1 which identifies the segment
 * number. The value of the segment number is equal to 7 minus the number
 * of leading 0's. The quantization interval is directly available as the
 * four bits wxyz.  * The trailing bits (a - h) are ignored.
 *
 * Ordinarily the complement of the resulting code word is used for
 * transmission, and so the code word is complemented before it is returned.
 *
 * For further information see John C. Bellamy's Digital Telephony, 1982,
 * John Wiley & Sons, pps 98-111 and 472-476.
 */

/* pcm_val is 2's complement (16-bit range) */
unsigned char _af_linear2ulaw (int pcm_val);

/*
 * ulaw2linear() - Convert a u-law value to 16-bit linear PCM
 *
 * First, a biased linear code is derived from the code word. An unbiased
 * output can then be obtained by subtracting 33 from the biased code.
 *
 * Note that this function expects to be passed the complement of the
 * original code word. This is in keeping with ISDN conventions.
 */

int _af_ulaw2linear (unsigned char u_val);

#endif /* G711_H */