u64.c
41.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
/*
* u64.c
*
* device driver for Ultra64 development system.
*
* Copyright 1995, Silicon Graphics, Inc.
* All Rights Reserved.
*
* This is UNPUBLISHED PROPRIETARY SOURCE CODE of Silicon Graphics, Inc.;
* the contents of this file may not be disclosed to third parties, copied or
* duplicated in any form, in whole or in part, without the prior written
* permission of Silicon Graphics, Inc.
*
* RESTRICTED RIGHTS LEGEND:
* Use, duplication or disclosure by the Government is subject to restrictions
* as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data
* and Computer Software clause at DFARS 252.227-7013, and/or in similar or
* successor clauses in the FAR, DOD or NASA FAR Supplement. Unpublished -
* rights reserved under the Copyright Laws of the United States.
*/
#ident "$Revision: 1.1.1.1 $"
#include "stdio.h"
#include "sys/types.h"
#include "sys/ddi.h"
#include "sys/proc.h"
#include "sys/region.h"
#include "sys/poll.h"
#include "sys/edt.h"
#include "sys/invent.h"
#include "sys/param.h"
#include "sys/cmn_err.h"
#include "sys/immu.h"
#include "sys/kmem.h"
#include "sys/ddi.h"
#include "sys/conf.h"
#include "sys/IP22.h"
#include "sys/termios.h"
#include "sys/errno.h"
#include "sys/major.h"
#include "sys/u64gio.h"
#include "sys/u64driver.h"
#include "PR/ramrom.h"
#include "PR/rdb.h"
#include "PR/ultratypes.h"
#ifndef U64_MAJOR
#define U64_MAJOR 255
#endif
/*
* Instruct lboot & kernel to use the new style of device driver interface
* by setting the <prefix>devflag global variable to zero.
*/
int u64_devflag = 0;
/*
* There will be at most one Ultra64 development board per system, so just
* declare these as static globals within this driver module.
*/
static struct u64_data *bdata;
/*
* Forward declarations Should these be extern??? They are in this file, and
* aren't called elsewhere. Shouldn't they be static?
*/
extern int u64_write_ramrom(unsigned int *userbuf, unsigned int *ramrom_offset,
int nbytes);
extern int u64_read_ramrom(unsigned int *ramrom_offset, unsigned int *userbuf,
int nbytes);
static int u64_internal_write(u64_minor *m, int count, int rdbtype);
static int u64_send_message(unsigned int rdbType, int value);
static void handleMinorData(u64_minor *m, unsigned int inData, int minor);
#define ONE_MEG 0x100000
#define ONE_MEG_SHIFT 20
/*
* a table indicating how big the minor's buffers are
*/
int minor_recv_buf_sizes[NUMBER_MINORS] = {
0, /* don't use first minor, so don't need a buffer for it */
U64_MINOR_PRINT_BUF_SIZE,
U64_MINOR_DEBUG_BUF_SIZE,
U64_MINOR_LOGGING_BUF_SIZE,
U64_MINOR_DATA_BUF_SIZE,
U64_MINOR_FAULT_BUF_SIZE,
U64_MINOR_KDEBUG_BUF_SIZE,
U64_MINOR_PROFILE_BUF_SIZE
};
int minor_send_buf_sizes[NUMBER_MINORS] = {
0, /* don't use first minor, so don't need a buffer for it */
0, /* printf doesn't send data */
U64_MINOR_DEBUG_BUF_SIZE,
0, /* logging doesn't send data */
U64_MINOR_DATA_BUF_SIZE,
0, /* fault doesn't send data */
U64_MINOR_KDEBUG_BUF_SIZE,
U64_MINOR_PROFILE_SEND_BUF_SIZE
};
/* Handle_RDB_Incoming Parses out any packets sent by the game to the host.
* Packets are 32 bit long. The high byte is a composed of six bits type, and
* two bits of length. The remaining 3 bytes are available for data.
*
* Currently uses a switch statement, might be made faster by using a jump
* table. Most packets are either messages or data. Messages are handled
* here, but data is sent to handleMinorData() which will copy the data into
* the appropriate buffer.
*
* This routine is only called from within the interrupt handler.
*/
static void Handle_RDB_Incoming(unsigned int inData)
{
rdbPacket *rdbData = (rdbPacket*)&inData;
switch (rdbData->type)
{
case RDB_TYPE_GtoH_PRINT: /* data from an osSyncPrintf */
handleMinorData(&bdata->minors[U64_MINOR_PRINT],inData,U64_MINOR_PRINT);
break;
case RDB_TYPE_GtoH_FAULT: /* data from a fault */
handleMinorData(&bdata->minors[U64_MINOR_FAULT],inData,U64_MINOR_FAULT);
break;
case RDB_TYPE_GtoH_LOG_CT: /* message, saying how much log data is coming */
bdata->minors[U64_MINOR_LOGGING].incoming_ct = inData &0xFFFFFF;
bdata->minors[U64_MINOR_LOGGING].message = RDB_TYPE_HtoG_LOG_DONE;
break;
case RDB_TYPE_GtoH_LOG: /* logging data */
handleMinorData(&bdata->minors[U64_MINOR_LOGGING],inData,U64_MINOR_LOGGING);
break;
case RDB_TYPE_GtoH_READY_FOR_DATA: /* message, letting you know game is ready for data */
/* only allow data_sema to get to a value of one */
if(valusema(&bdata->minors[U64_MINOR_DATA].write_sema) < 1)
vsema(&bdata->minors[U64_MINOR_DATA].write_sema);
break;
case RDB_TYPE_GtoH_DATA_CT: /* message, letting you know how much data is coming */
bdata->minors[U64_MINOR_DATA].incoming_ct = inData &0xFFFFFF;
bdata->minors[U64_MINOR_DATA].message = RDB_TYPE_HtoG_DATA_DONE;
break;
case RDB_TYPE_GtoH_DATA: /* hostio data from game */
handleMinorData(&bdata->minors[U64_MINOR_DATA],inData,U64_MINOR_DATA);
break;
case RDB_TYPE_GtoH_DEBUG:
handleMinorData(&bdata->minors[U64_MINOR_DEBUG],inData,U64_MINOR_DEBUG);
break;
case RDB_TYPE_GtoH_RAMROM: /* message letting you know, host now has ramrom access */
vsema(&bdata->ramrom_sema);
break;
case RDB_TYPE_GtoH_DEBUG_DONE: /* message, letting you know debug data send is done */
/* only allow read_sema to get to a value of one */
if(valusema(&bdata->minors[U64_MINOR_DEBUG].read_sema) < 1)
vsema(&bdata->minors[U64_MINOR_DEBUG].read_sema);
break;
case RDB_TYPE_GtoH_DEBUG_READY: /* message indicating rmon has handled message, ready for next */
/* only allow debug write_sema to get to a value of one */
if(valusema(&bdata->minors[U64_MINOR_DEBUG].write_sema) < 1)
vsema(&bdata->minors[U64_MINOR_DEBUG].write_sema);
break;
case RDB_TYPE_GtoH_KDEBUG:
handleMinorData(&bdata->minors[U64_MINOR_KDEBUG],inData,U64_MINOR_KDEBUG);
break;
case RDB_TYPE_GtoH_PROF_DATA:
handleMinorData(&bdata->minors[U64_MINOR_PROFILE],inData,U64_MINOR_PROFILE);
break;
default:
/* unknown type */
cmn_err(CE_WARN, "u64: RDB_TYPE_UNKNOWN %x", inData);
break;
}
}
/* handleMinorData
* Copy the data from the packet into the kernel buffer and wakeup any sleeping
* process waiting for data. This routine is only called from within the interrupt handler
*/
static void handleMinorData(u64_minor *m, unsigned int inData, int minor)
{
rdbPacket *rdbData = (rdbPacket*)&inData;
int length = rdbData->length;
int count;
if (valusema(&m->minor_sema) < 1) /* if there is a client waiting to read */
{
if(length + m->read_count <= m->read_buf_size)
{
/* buffer is not full yet */
count = 0;
while(length)
{
m->read_buf[m->read_cur_write++] = rdbData->buf[count++];
m->read_count++;
if(m->read_cur_write >= m->read_buf_size)
m->read_cur_write = 0;
length--;
}
}
else
cmn_err(CE_WARN,"u64:Overflow of minor %d buffer, data_count %d, length %d",
minor, m->read_count,length);
pollwakeup(m->phead, POLLIN | POLLRDNORM);
cvsema(&m->read_sema);
}
}
/* send_write_buffer
* Send data to the game. This gets called, whenever the game has read a packet.
* At that time, it is ok to send the next packet, so do so. If there are no more
* packets waiting, release the bdata->write_buf_sema, so the next block of data
* can be copied into the write buffer, and the whole thing started again.
* This routine is only called from within the interrupt handler
*/
static void send_write_buffer(void)
{
unsigned int *pPkt;
if (bdata->write_buf_ct == 0) /* no more data to send */
{
if(valusema(&bdata->write_buf_sema) < 1)
vsema(&bdata->write_buf_sema);
}
else /* send next pkt */
{
pPkt = &bdata->write_buf[bdata->write_buf_cur_read];
*(vu32*)GIO_RDB_BASE_REG = *pPkt;
bdata->write_buf_cur_read++;
if(bdata->write_buf_cur_read >= bdata->write_buf_size)
bdata->write_buf_cur_read = 0;
bdata->write_buf_ct--;
}
}
/*
* GIO interrupt service routine. Read the interrupt register to clear the
* interrupt; Check the GIO_RDB interrupt bits, and if they are set then service
* the rdb interrupt. If it is not an rdb interrupt, it is an error. We don't
* support the old ramrom gio interrupts any more!
*/
void u64_giointr(int unit)
{
int intr_val;
unsigned id_reg;
id_reg = bdata->board->product_id_reg;
if (id_reg & GIO_RDB_READ_INTR_BIT) /* Ultra64 has read the RDB port */
{
*((vu32 *) GIO_RDB_READ_INTR_REG) = 0;
send_write_buffer();
return;
}
if (id_reg & GIO_RDB_WRITE_INTR_BIT) /* Ultra64 has written to the RDB port */
{
*((vu32 *) GIO_RDB_WRITE_INTR_REG) = 0; /* clear the interrupt condition */
Handle_RDB_Incoming(*((unsigned int *)GIO_RDB_BASE_REG));
return;
}
/**** DID NOT USE THE RDB PORT !!! ****/
intr_val = (bdata->board->gio_interrupt & _U64_REGMASK);
cmn_err(CE_WARN,"u64_giointr: None RDB interrupt %d\n",intr_val);
}
/*
* Initialize interrupts and gio configuration
*
* possible gio flags: ('n' in the GIO64 args below is 0 or 1)
*
* GIO64_ARB_EXPn_RT - real-time device (otherwise burst device)
* GIO64_ARB_EXPn_MST - device can become bus master
* GIO64_ARB_EXPn_SIZE_64 - bus transfers are 64 bits (not us!)
* GIO64_ARB_EXPn_PIPED - pipelined bus interface registers (again, not us!)
*/
int
u64_init_interrupts(int controller, caddr_t base)
{
int slot, intr, conf;
if (base == (caddr_t) 0xbf400000) {
slot = GIO_SLOT_0;
intr = GIO_INTERRUPT_0;
} else {
cmn_err(CE_WARN, "u64: only slot 0 addressing is supported.\n");
}
/*
* setgioconfig() always takes params for slot 0
*/
conf = GIO64_ARB_EXP0_RT;
#if defined(IP22)
setgioconfig(slot, conf);
setgiovector(intr, slot, (void(*)())u64_giointr, controller);
#else
cmn_err(CE_WARN, "u64: Not supported on non-Indy systems!\n");
#endif
}
void
u64_edtinit(struct edt *e)
{
int val, i;
/*
* On 5.3, the only non-zero field in the edt struct are the e->e_base,
* e->e_base2 fields, which points to the base of our GIO address space
* and to our megabyte of mapped memory. I don't know why the others are
* zeroed out, but none of the sample GIO drivers I've looked at check for
* or look at any of these other fields, so go figure.
*/
/*
* Check to see if there is a board at our base address with our product ID.
*/
if ( (badaddr_val(e->e_base, sizeof(int), &val)) ||
(val & _U64_PRODUCT_ID_MASK) != _U64_PRODUCT_ID_VALUE) {
printf("u64: not found (addr 0x%x)\n", e->e_base);
return;
}
/*
* set up the info structure
*/
bdata = (struct u64_data *)kern_malloc(sizeof(struct u64_data));
if (bdata == NULL) {
cmn_err(CE_WARN, "u64: can't alloc board data structure\n");
return;
}
bzero((void *)bdata, sizeof(struct u64_data));
/*
* Allocate a megabyte buffer which we can use when reading/writing data
* to or from the board (we can't copyin/copyout directly from the user's
* buffer, because those routines use 64 bit transfers).
*/
bdata->oneMeg = (unsigned int *)kern_malloc(ONE_MEG);
if (bdata->oneMeg == NULL) {
cmn_err(CE_WARN,
"u64: can't alloc megabyte buffer for copyin/copyout\n");
if (bdata) {
kern_free(bdata);
}
return;
}
bdata->board = ((struct u64_board *)e->e_base);
bdata->memaddr = ((unsigned char *)e->e_base2);
/*
* Register our interrupt into the gio interrupt vector table.
*/
u64_init_interrupts(0, e->e_base);
/*
* Initialize semaphores ioctl to available, ramrom to unavailable.
*/
initnsema(&bdata->ioctl_sema, 1, "ioctl");
initnsema(&bdata->ramrom_sema, 0, "ramrom");
/* clear any pending interrupts */
*((vu32 *) GIO_RDB_READ_INTR_REG) = 0;
*((vu32 *) GIO_RDB_WRITE_INTR_REG) = 0;
/*
* Initialize stuff for rdb write buffer
*/
initnsema(&bdata->write_buf_sema, 1, "writebuf");
bdata->write_buf_cur_write = 0;
bdata->write_buf_cur_read = 0;
bdata->write_buf_ct = 0;
bdata->write_buf = (unsigned int*)kern_malloc(
U64_INTERNAL_WRITE_BUF_SIZE * sizeof(rdbPacket));
bdata->write_buf_size = U64_INTERNAL_WRITE_BUF_SIZE;
if(bdata->write_buf == 0)
{
cmn_err(CE_WARN,"Unable to allocate internal write buffer");
bdata->write_buf_size = 0;
}
/*
* Initialize minor's stuff
*/
for(i = 0; i < NUMBER_MINORS; i++)
{
initnsema(&bdata->minors[i].minor_sema, 1, "minor");
initnsema(&bdata->minors[i].read_sema, 0, "read"); /* by default not available */
initnsema(&bdata->minors[i].write_sema, 0, "write"); /* by default not available */
bdata->minors[i].read_count = 0;
bdata->minors[i].write_count = 0;
bdata->minors[i].read_cur_write = 0;
bdata->minors[i].read_cur_read = 0;
bdata->minors[i].write_cur_write = 0;
bdata->minors[i].write_cur_read = 0;
bdata->minors[i].incoming_ct = 0;
bdata->minors[i].message = 0;
bdata->minors[i].phead = phalloc(KM_NOSLEEP);
initpollhead(bdata->minors[i].phead);
bdata->minors[i].read_buf_size = minor_recv_buf_sizes[i];
if(minor_recv_buf_sizes[i])
{
bdata->minors[i].read_buf = (unsigned char *)kern_malloc(minor_recv_buf_sizes[i]);
if(!bdata->minors[i].read_buf)
cmn_err(CE_WARN, "Unable to allocate %d byte buffer for minor %d",
minor_recv_buf_sizes[i],i);
}
bdata->minors[i].write_buf_size = minor_send_buf_sizes[i];
if(minor_send_buf_sizes[i])
{
bdata->minors[i].write_buf = (unsigned char *)kern_malloc(minor_send_buf_sizes[i]);
if(!bdata->minors[i].write_buf)
cmn_err(CE_WARN, "Unable to allocate %d byte buffer for minor %d",
minor_send_buf_sizes[i],i);
}
}
/*
* Complete success! Put out the standard board-found message
*/
#if (RELEASE_MAJOR==6)
printf("u64 (IRIX 6.2): board found at address 0x%x\n", e->e_base);
#else
printf("u64: board found at address 0x%x\n", e->e_base);
#endif
return; /* successful */
}
/* u64_chpoll is used by select and other calls that block waiting
* for data. When the data arrives, (in handleMinorData()) it calls
* pollwakeup, which in turn calls this routine.
*/
u64_chpoll(dev_t dev, short events, int anyyet, short *reventsp,
struct pollhead **phpp)
{
major_t devmajor;
minor_t devminor;
*reventsp = events;
if ( (devmajor = getemajor(dev)) != U64_MAJOR )
{
cmn_err(CE_WARN, "u64_chpoll: unexpected major device number %d\n", devmajor);
return(ENXIO);
}
devminor = geteminor(dev);
if(devminor > 0 && devminor < NUMBER_MINORS)
{
if ((events & (POLLIN | POLLRDNORM)) && (bdata->minors[devminor].read_count > 0))
*reventsp |= POLLIN | POLLRDNORM;
else
{
*reventsp = 0;
if(!anyyet)
*phpp = bdata->minors[devminor].phead;
}
return(0);
}
/**** NOT A MINOR WE RECOGNIZE ****/
cmn_err(CE_WARN,"u64_poll: Did not recognize minor!!");
return(ENXIO);
}
/* u64_read read data available on data port. Does not wait for all data
* to arrive, but returns as soon as it has some of the data. (applications
* are responsible for checking the number of bytes returned, and repeatedly
* calling read if they need a specific number of bytes. Several of our apps
* however handle data on a stream basis, interested in what ever we have,
* and don't have knowledge of how many bytes they need.
*/
u64_read(dev_t dev, uio_t *uiop, cred_t *crp)
{
int retval;
int s;
major_t devmajor;
minor_t devminor;
int count, splitcount = 0;
u64_minor *m;
if ( (devmajor = getemajor(dev)) != U64_MAJOR )
{
cmn_err(CE_WARN, "u64_read: unexpected major device number %d\n", devmajor);
return(ENXIO);
}
devminor = geteminor(dev);
if(devminor > 0 && devminor < NUMBER_MINORS)
{
m = &bdata->minors[devminor]; /* get the minor's data struct */
if (uiop->uio_iov->iov_len > 0)
{
if (m->read_count == 0) /* if there is no data yet */
{ /* block waiting for data */
retval = psema(&m->read_sema, PCATCH | PPIPE);
if (retval == -1)
{
cmn_err(CE_WARN,"u64_read: syscall interrupted before read completed");
return(EINTR);
}
}
s = spl5(); /* turn off interrupts, since we will be mucking with counts */
count = MIN(uiop->uio_iov->iov_len, m->read_count);
m->incoming_ct -= count; /* may not need, but adjust anyway */
m->read_count -= count; /* adjust read count */
/* if the data waiting loops around end of buffer, transfer in two blocks */
if((count + m->read_cur_read) > m->read_buf_size)
{
splitcount = m->read_buf_size - m->read_cur_read;
count -= splitcount;
uiomove(&m->read_buf[m->read_cur_read], splitcount, UIO_READ, uiop);
m->read_cur_read = 0;
}
uiomove(&m->read_buf[m->read_cur_read], count, UIO_READ, uiop);
m->read_cur_read += count;
splx(s); /* turn interrupts back on */
if(m->message && (m->incoming_ct == 0))
{
/* send message to game saying ready for next block of data */
/* this is used by logging and hostio game to host */
u64_send_message(m->message, 0);
}
return (0);
}
}
/**** NOT A MINOR WE RECOGNIZE!!! *****/
cmn_err(CE_WARN, "u64_read: Did not recognize minor %d", devminor);
return(ENXIO);
}
/* u64_write. Currently supports hostio, debug, kdebug writes and
* profile signals.
*
* The main difference, between the way these operate, is that
* the hostio receives a message from the game, indicating that a
* buffer big enough for all data is ready. In the case of the debug
* the assumtion is made that as soon as the game starts it will assign
* a buffer to receive the data, up to RMON_DBG_BUF_SIZE, and after
* a block is sent, you wait for a message indicating that the buffer
* is cleared, before sending again. Also, the debug sends a message
* with the size of its message before sending the actual message.
* The kdebug only sends a few bytes, and they are handled during the
* interrupt, so there is no concern for buffer overflow, just send 'em
* Likewise, the profile is only sending a single byte of signal, so
* just send it, and don't worry.
*
* In the case of hostio, the sequence of events must start with the
* host app opening /dev/u64_data_write. This will set the semaphore
* m->data_sema, unavailable. Then only after the device is open, the
* game can make its first call to osReadGame. This will notify the
* kernel to make the m->data_sema available. (What this means is that
* there is now a buffer ready to store the data on the game side.) The
* host can call uhWriteGame either before or after the game side calls
* osReadGame. In the case of hostio, although the data is split into
* blocks, the buffer on the game side is provided by the application
* and should be big enough for all the data.
*
* In the case of the debug write, the game should already be running,
* and rmon should already have passed a receive data buffer to the
* exception handler. A signal is sent, with a size, and then data is
* transfered. When all data is complete, m->data_sema isn't released,
* meaning that it will block until it gets a message that the data has
* been removed from the buffer, and that it is ok to send the next block.
*/
u64_write(dev_t dev, uio_t *uiop, cred_t *crp)
{
major_t devmajor;
minor_t devminor;
u64_minor *m;
int count;
int rdb_type;
int splitcount;
int retval;
if ( (devmajor = getemajor(dev)) != U64_MAJOR )
{
cmn_err(CE_WARN, "u64_write: unexpected major device number %d\n", devmajor);
return(ENXIO);
}
devminor = geteminor(dev);
switch(devminor)
{
case U64_MINOR_DATA:
m = &bdata->minors[devminor];
rdb_type = RDB_TYPE_HtoG_DATA;
retval = psema(&m->write_sema, PCATCH | PPIPE); /* wait for game to send message */
if(retval == -1)
{
cmn_err(CE_WARN,"u64_write:U64_MINOR_DATA: psema broke by signal");
return(EINTR);
}
break;
case U64_MINOR_DEBUG:
m = &bdata->minors[devminor];
rdb_type = RDB_TYPE_HtoG_DEBUG;
retval = psema(&m->write_sema, PCATCH | PPIPE);
if(retval == -1)
{
cmn_err(CE_WARN,"u64_write:U64_MINOR_DEBUG: psema broke by signal");
return(EINTR);
}
u64_send_message(RDB_TYPE_HtoG_DEBUG_CT,uiop->uio_iov->iov_len);
break;
case U64_MINOR_KDEBUG:
m = &bdata->minors[devminor];
rdb_type = RDB_TYPE_HtoG_KDEBUG;
retval = psema(&m->write_sema, PCATCH | PPIPE);
if(retval == -1)
{
cmn_err(CE_WARN,"u64_write:U64_MINOR_KDEBUG: psema broke by signal");
return(EINTR);
}
break;
case U64_MINOR_PROFILE:
m = &bdata->minors[devminor];
rdb_type = RDB_TYPE_HtoG_PROF_SIGNAL;
retval = psema(&m->write_sema, PCATCH | PPIPE);
if(retval == -1)
{
cmn_err(CE_WARN,"u64_write:U64_MINOR_PROFILE: psema broke by signal");
return(EINTR);
}
break;
default:
cmn_err(CE_WARN,"u64_write: Did not recognize minor, %d",devminor);
return(EROFS);
break;
}
/* You must first move data from user buffer to kern buffer with
* uiomove. Once you've done that, you call u64_internal_write repeatedly,
* until all data is sent. u64_internal_write converts to packets, and
* puts the packets in a buffer to go out, sending them when it can.
* If the amount of data you wish to send, exceeds your minor's
* write_buf_size you need to break it into blocks.
*/
while(uiop->uio_iov->iov_len > 0)
{
count = MIN(m->write_buf_size,uiop->uio_iov->iov_len);
if((count + m->write_cur_write) > m->write_buf_size)
{
splitcount = m->write_buf_size - m->write_cur_write;
count -= splitcount;
uiomove(&m->write_buf[m->write_cur_write], splitcount, UIO_WRITE, uiop);
m->write_cur_write = 0;
}
else
splitcount = 0; /* no wrap */
/* if wrapped buffer, count will be less than total */
uiomove(&m->write_buf[m->write_cur_write], count, UIO_WRITE, uiop);
m->write_cur_write += count;
count += splitcount; /* add splitcount back in to get total */
while(count)
{
count -= u64_internal_write(m,count,rdb_type);
}
}
if(devminor == U64_MINOR_KDEBUG || devminor == U64_MINOR_PROFILE)
vsema(&m->write_sema);
return(0);
}
/* open a device for reading or writing. Only one open for any minor. The
* general device, /dev/u64 which responds to ioctl's can be opened multiple times.
* #### Currently we don't check the read/write, just assume that it is ok.
* When opening a minor we reset it's read and write semaphores, and all counters
*/
u64_open(dev_t *devp, int flag, int otyp, struct cred *crp)
{
major_t devmajor;
minor_t devminor;
if ( (devmajor = getemajor(*devp)) != U64_MAJOR )
{
cmn_err(CE_WARN, "u64_open: unexpected major device number %d\n", devmajor);
return(ENXIO);
}
/*
* If u64_edtinit() failed to find the board for whatever reason, bdata
* will be NULL.
*/
if (bdata == NULL)
return(ENXIO);
devminor = geteminor(*devp);
if(devminor > 0 && devminor < NUMBER_MINORS)
{
u64_minor *m = &bdata->minors[devminor];
if (cpsema(&m->minor_sema)) /* you can aquire the semaphore */
{
cpsema(&m->read_sema); /* if data semaphore is available, was 1,
lower it to zero, the default */
cpsema(&m->write_sema); /* if data semaphore is available, was 1,
lower it to zero, the default */
if(devminor == U64_MINOR_DEBUG || devminor == U64_MINOR_KDEBUG ||
devminor == U64_MINOR_PROFILE)
vsema(&m->write_sema); /* debug & kdebug write are different,
default to available, semaphore value of 1 */
m->read_count = 0; /* set the read_count to zero */
m->write_count = 0;
m->read_cur_read = 0;
m->write_cur_read = 0;
m->read_cur_write = 0;
m->write_cur_write = 0;
m->incoming_ct = 0;
m->message = 0;
return(0); /* opened file successfully */
}
else
return(EBUSY); /* somebody else has already signed into the minor */
}
/***** NOT A MINOR THAT WE RECOGNIZE *******/
/*
* this is ok if the device is /dev/u64 which has a minor of zero.
* /dev/u64 has nothing to init. We also allow multiple opens for
* /dev/u64. The only drawback is that /dev/u64 isn't pollable, but
* that's ok, since no data comes over /dev/u64
*/
if(devminor != 0)
{
cmn_err(CE_WARN,"u64_open: Did not recognize minor %d",devminor);
return(ENXIO);
}
return(0);
}
/*
* Close the device. Just release the semaphore if it is a minor you recognize.
*/
u64_close(dev_t dev, int flag, int otyp, cred_t *crp)
{
major_t devmajor;
minor_t devminor;
if ( (devmajor = getemajor(dev)) != U64_MAJOR )
{
cmn_err(CE_WARN, "u64_close: unexpected major device number %d\n", devmajor);
return(ENXIO);
}
devminor = geteminor(dev);
if(devminor > 0 && devminor < NUMBER_MINORS)
{
vsema(&bdata->minors[devminor].minor_sema);
return(0);
}
else if(devminor == 0) /* /u64/dev */
return(0);
else /**** NOT A MINOR WE RECOGNIZE ****/
return(ENXIO);
}
#define IOCTL_SUCCESS 0
/*
* ioctl only responds to /dev/u64, and not to the various minors.
* We support
* U64_RESET cause the u64 to reset.
* U64_READ read from the ramrom, without getting access from the game.
* (probably no game running) Used by gload.
* U64_WRITE write to the ramrom, without getting access from the game.
* (probably no game running) Used by gload.
* U64_SAFE_READ Read from the ramrom, but only after getting access from
* the game. Used by uhReadRamrom().
* U64_SAFE_WRITE Write to the ramrom, bug only after getting access from
* the game. Used by uhWriteRamrom().
*/
u64_ioctl(dev_t dev, int cmd, void *arg, int mode,
struct cred *crp, int *rvalp)
{
major_t devmajor;
minor_t devminor;
int retval;
int s;
proc_t *proc;
if ( (devmajor = getemajor(dev)) != U64_MAJOR )
{
cmn_err(CE_WARN, "u64_ioctl: unexpected major device number %d\n", devmajor);
return(ENXIO);
}
/*
* Only one client at a time is allowed in for ioctl services.
*/
retval = psema( &(bdata->ioctl_sema), (PPIPE | PCATCH) );
if (retval == -1)
{
cmn_err(CE_WARN, "u64_ioctl: syscall interrupted before ioctl was serviced.");
return(EINTR);
}
devminor = geteminor(dev);
#if 0 /* stuff for Gnu debugger */
/* debug port */
else if (devminor == U64_MINOR_DEBUG_READ) {
switch (cmd) {
case (TCGETS):
{
struct termios *term = (struct termios *)arg;
int i;
term->c_iflag = 0; /* input modes */
term->c_oflag = 0; /* output modes */
term->c_cflag = CLOCAL | CS8; /* control modes */
term->c_lflag = 0; /* line discipline modes */
for (i = 0; i < NCCS; i += 1)
term->c_cc[i] = 0;
vsema( &(bdata->ioctl_sema) );
return(IOCTL_SUCCESS);
}
break;
case (TCSETS):
/* don't care what it is, just keep gdb happy */
vsema( &(bdata->ioctl_sema) );
return(IOCTL_SUCCESS);
break;
case (TCFLSH):
/* ### hack. what do we do here??? */
vsema( &(bdata->ioctl_sema) );
return(IOCTL_SUCCESS);
break;
default:
cmn_err(CE_WARN,"u64_ioctl: bogus ioctl %x, returning %d\n",
cmd, EINVAL);
vsema( &(bdata->ioctl_sema) );
return(EINVAL);
break;
}
}
#endif
switch(cmd)
{
case U64_RESET:
/*
* arg = 0: de-assert reset.
* arg = 1: assert reset.
*/
if ( ((int)arg) == 0 )
bdata->board->reset_control = 0;
else if ( ((int)arg) == 1 )
bdata->board->reset_control = _U64_RESET_CONTROL_RESET;
else
{
cmn_err(CE_WARN,
"U64_RESET: illegal reset state %d.\n", ((int)arg));
vsema( &(bdata->ioctl_sema) );
return(EINVAL);
}
s = spl5();
bdata->write_buf_cur_write = 0;
bdata->write_buf_cur_read = 0;
bdata->write_buf_ct = 0;
if(valusema(&bdata->write_buf_sema) < 1)
vsema(&bdata->write_buf_sema);
splx(s);
vsema( &(bdata->ioctl_sema) );
return(IOCTL_SUCCESS);
break;
/*
* U64_WRITE now means, write to the ramrom with no ack, for boot
*/
case U64_WRITE:
if (copyin(arg, &bdata->args.u64_write, sizeof(u64_write_arg_t)) != 0)
{
cmn_err(CE_WARN, "u64: U64_WRITE ioctl copyin error\n");
vsema( &(bdata->ioctl_sema) );
return(EFAULT);
}
/*
* copy the user's buffer into ramrom.
*/
retval = u64_write_ramrom(
( (unsigned int *)bdata->args.u64_write.buffer),
( (unsigned int *)bdata->args.u64_write.ramrom_addr),
bdata->args.u64_write.nbytes);
vsema( &(bdata->ioctl_sema) );
return(retval);
break;
/*
* U64_READ now means, read from the ramrom with no ack, for boot
*/
case U64_READ:
if (copyin(arg, &bdata->args.u64_read, sizeof(u64_read_arg_t)) != 0) {
cmn_err(CE_WARN, "u64: U64_READ ioctl copyin error\n");
vsema( &(bdata->ioctl_sema) );
return(EFAULT);
}
/*
* copy into user's buffer from ramrom.
*/
retval = u64_read_ramrom(
( (unsigned int *)bdata->args.u64_read.ramrom_addr),
( (unsigned int *)bdata->args.u64_read.buffer),
bdata->args.u64_read.nbytes);
vsema( &(bdata->ioctl_sema) );
return(retval);
break;
/*
* U64_SAFE_WRITE, obtain access to the ramrom from the game, and
* then write to ramrom. Release ramrom access after done.
*/
case U64_SAFE_WRITE:
if (copyin(arg, &bdata->args.u64_write, sizeof(u64_write_arg_t)) != 0) {
cmn_err(CE_WARN, "u64: U64_SAFE_WRITE ioctl copyin error (args)\n");
vsema( &(bdata->ioctl_sema) );
return(EFAULT);
}
/*
* Arbitrate for control of ramrom by sending a message to
* the game, and waiting for an acknowledging response.
*/
u64_send_message(RDB_TYPE_HtoG_REQ_RAMROM, 0);
retval = psema( &(bdata->ramrom_sema), (PPIPE | PCATCH) );
if (retval == -1) {
cmn_err(CE_WARN, "u64_ioctl(U64_SAFE_WRITE): syscall interrupted.\n");
vsema( &(bdata->ioctl_sema) );
return(EINTR);
}
/*
* Got access to ramrom, copy the user's buffer into ramrom.
*/
retval = u64_write_ramrom(
( (unsigned int *)bdata->args.u64_write.buffer),
( (unsigned int *)bdata->args.u64_write.ramrom_addr),
bdata->args.u64_write.nbytes);
/* signal game that you're done with ramrom */
u64_send_message(RDB_TYPE_HtoG_FREE_RAMROM, 0);
vsema( &(bdata->ioctl_sema) );
return(retval);
break;
/*
* U64_SAFE_READ: obtain access to the ramrom from the game, and
* then read from the ramrom. Release ramrom access after done.
*/
case U64_SAFE_READ:
if (copyin(arg, &bdata->args.u64_read, sizeof(u64_read_arg_t)) != 0) {
cmn_err(CE_WARN, "u64: U64_WRITE ioctl copyin error\n");
vsema( &(bdata->ioctl_sema) );
return(EFAULT);
}
/*
* Arbitrate for control of ramrom by sending a message to
* the game, and waiting for an acknowledging response.
*/
u64_send_message(RDB_TYPE_HtoG_REQ_RAMROM, 0);
retval = psema( &(bdata->ramrom_sema), (PPIPE | PCATCH) );
if (retval == -1) {
cmn_err(CE_WARN, "u64_ioctl(U64_SAFE_READ): syscall interrupted.\n");
vsema( &(bdata->ioctl_sema) );
return(EINTR);
}
/*
* got access to ramrom, copy into user's buffer from ramrom.
*/
retval = u64_read_ramrom(
( (unsigned int *)bdata->args.u64_read.ramrom_addr),
( (unsigned int *)bdata->args.u64_read.buffer),
bdata->args.u64_read.nbytes);
/* signal game that you're done with ramrom */
u64_send_message(RDB_TYPE_HtoG_FREE_RAMROM, 0);
vsema( &(bdata->ioctl_sema) );
return(retval);
break;
default:
cmn_err(CE_WARN,
"u64_ioctl: bogus ioctl %d, returning %d\n", cmd, EINVAL);
vsema( &(bdata->ioctl_sema) );
return(EINVAL);
break;
}
}
/*
* For each 1MB bank of memory, set the mapping register, copyin from the
* user's buffer into a kern_malloc'd arena, and then from there copy a word
* at a time into the ramrom. We have to do the one-hop through memory because
* copyin uses 64 bit transfers.
*/
int u64_write_ramrom(unsigned int *userbuf, unsigned int *ramrom_offset,
int nbytes)
{
int page_start;
int bankXferCount;
unsigned char *bankAddr;
int i;
unsigned int *gioAddr;
unsigned int *megAddr;
int ret_val;
/*
* Make sure we are long word aligned.
*/
if (nbytes & 0x3) {
cmn_err(CE_WARN, "u64_write_ramrom: xfer count %d not word aligned.\n",
nbytes);
return(EINVAL);
}
if ( ((int)userbuf) & 0x3 ) {
cmn_err(CE_WARN,
"u64_write_ramrom: user's buffer address 0x%x not word aligned.\n",
userbuf);
return(EINVAL);
}
if ( ((int)ramrom_offset) & 0x3 ) {
cmn_err(CE_WARN,
"u64_write_ramrom: ramrom address 0x%x not word aligned.\n",
ramrom_offset);
return(EINVAL);
}
/*
* Make sure we don't exceed 16 MB rom limit
*/
if ( ((int)ramrom_offset + nbytes) > RAMROM_SIZE ) {
cmn_err(CE_WARN,
"u64_write_ramrom: xfer of %d bytes starting at 0x%x exceeds 16MB.\n",
nbytes, userbuf);
return(EINVAL);
}
/*
* Determine initial offset from start of ramrom.
*/
page_start = ( ((int)ramrom_offset) >> ONE_MEG_SHIFT);
if (page_start > 15) {
cmn_err(CE_WARN,
"u64_write_ramrom: ramrom initial offset 0x%x exceeds 16MB.\n",
ramrom_offset);
return(EINVAL);
}
bdata->board->dram_page_cntrl = (page_start << 20);
bankAddr = (unsigned char *)( ((int)ramrom_offset) & 0xfffff);
bankXferCount = MIN( nbytes, (ONE_MEG - ((int)bankAddr)) );
while (nbytes) {
/*
* We can't copyin directly from the user buffer to the gio memory,
* because the underlying bcopy routine (in the kernel) uses 64 bit
* transfers, which the gio board interprets as 16 bit transfers!
*
* Thus, we have to do a one hop through a kern_malloc'd structure.
*/
if ( (ret_val = copyin(userbuf, bdata->oneMeg, bankXferCount)) != 0 ) {
cmn_err(CE_WARN, "u64_write_ramrom: user address copyin error\n");
printf(
"user address 0x%x, kern_malloc buffer address 0x%x, size %d ret_val %d\n",
userbuf, bdata->oneMeg, bankXferCount, ret_val);
return(EFAULT);
}
/*
* Now copy a 32 bit word at a time from the kern_malloc'd and
* copyin'd buffer into the gio memory.
*/
gioAddr =
(unsigned int *)( ((int)bdata->memaddr) + ((int)bankAddr) );
megAddr = bdata->oneMeg;
for (i = 0; i < bankXferCount; i += (sizeof(unsigned int)) ) {
*gioAddr++ = *megAddr++;
}
nbytes -= bankXferCount;
userbuf = (unsigned int *)( ((int)userbuf) + bankXferCount);
/*
* We should be on a one megabyte boundary now. Set the bankAddr to 0.
*/
bankAddr = 0;
bankXferCount = MIN( nbytes, ONE_MEG );
if (nbytes > 0) {
++page_start;
bdata->board->dram_page_cntrl = (page_start << 20);
}
}
return(IOCTL_SUCCESS);
}
/*
* For each 1MB bank of memory, set the mapping register, copy a word at a time
* from ramrom into a kern_malloc'd arena, and then then copyout() from the
* malloc'd buffer into the user's buffer. We have to do the one-hop through
* memory because copyin uses 64 bit transfers.
*/
int u64_read_ramrom(unsigned int *ramrom_offset, unsigned int *userbuf,
int nbytes)
{
int page_start;
int bankXferCount;
unsigned char *bankAddr;
int i;
unsigned int *gioAddr;
unsigned int *megAddr;
/*
* Make sure we are long word aligned.
*/
if (nbytes & 0x3) {
cmn_err(CE_WARN, "u64_read_ramrom: xfer count %d not word aligned.\n",
nbytes);
return(EINVAL);
}
if ( ((int)ramrom_offset) & 0x3 ) {
cmn_err(CE_WARN,
"u64_read_ramrom: ramrom address 0x%x not word aligned.\n",
ramrom_offset);
return(EINVAL);
}
if ( ((int)userbuf) & 0x3 ) {
cmn_err(CE_WARN,
"u64_read_ramrom: user's buffer address 0x%x not word aligned.\n",
userbuf);
return(EINVAL);
}
/*
* Make sure we don't exceed 16 MB rom limit
*/
if ( ((int)ramrom_offset + nbytes) > RAMROM_SIZE ) {
cmn_err(CE_WARN,
"u64_read_ramrom: xfer of %d bytes starting at 0x%x exceeds 16MB.\n",
nbytes, ramrom_offset);
return(EINVAL);
}
/*
* Determine initial offset from start of ramrom.
*/
page_start = ( ((int)ramrom_offset) >> ONE_MEG_SHIFT);
if (page_start > 15) {
cmn_err(CE_WARN,
"u64_read_ramrom: ramrom initial offset 0x%x exceeds 16MB.\n",
ramrom_offset);
return(EINVAL);
}
bdata->board->dram_page_cntrl = (page_start << 20);
bankAddr = (unsigned char *)( ((int)ramrom_offset) & 0xfffff);
bankXferCount = MIN( nbytes, (ONE_MEG - ((int)bankAddr)) );
while (nbytes) {
/*
* We can't copyout directly from the gio memory to the user buffer,
* because the underlying bcopy routine (in the kernel) uses 64 bit
* transfers, which the gio board interprets as 16 bit transfers!
*
* Thus, we have to do a one hop through a kern_malloc'd structure.
*/
/*
* Copy a 32 bit word at a time from the gio memory into the
* kern_malloc'd buffer.
*/
gioAddr =
(unsigned int *)( ((int)bdata->memaddr) + ((int)bankAddr) );
megAddr = bdata->oneMeg;
for (i = 0; i < bankXferCount; i += (sizeof(unsigned int)) ) {
*megAddr++ = *gioAddr++;
}
if (copyout(bdata->oneMeg, userbuf, bankXferCount) != 0) {
cmn_err(CE_WARN, "u64_read_ramrom: user address copyout error\n");
cmn_err(CE_WARN,
"user address 0x%x, kern_malloc address 0x%x, size %d\n",
userbuf, bdata->oneMeg, bankXferCount);
return(EFAULT);
}
nbytes -= bankXferCount;
userbuf = (unsigned int *)( ((int)userbuf) + bankXferCount);
/*
* We should be on a one megabyte boundary now. Set the bankAddr to 0.
*/
bankAddr = 0;
bankXferCount = MIN( nbytes, ONE_MEG );
if (nbytes > 0) {
++page_start;
bdata->board->dram_page_cntrl = (page_start << 20);
}
}
return(IOCTL_SUCCESS);
}
/*
* u64_internal_write must block for main write_buf_sema before attempting
* to write to rdb port. The write semaphore only becomes available after
* all the data in the write buffer is sent, so this routine assumes that
* the write buffer is empty. This routine sends the first packet of data,
* but puts the rest into the bdata->write_buf, to be sent by the interrupt
* handler. Return the total number of bytes sent in the first packet plus
* the number put in the bdata->write_buf. The calling routine is responsible
* for repeatedly calling u64_internal_write until all data has successfully
* been sent.
*/
static int u64_internal_write(u64_minor *m, int count, int rdbtype)
{
rdbPacket *pPtr,firstPkt;
int s, len, c, inCt = 0;
int sent = 0;
s = psema(&bdata->write_buf_sema, PCATCH | PPIPE);
if(s == -1)
{
cmn_err(CE_WARN, "u64_internal_write: psema broke on signal");
return(EINTR);
}
s = spl5(); /* disable interrupts since will be altering variables used by interrupts */
/* fill in the first packet structure, */
firstPkt.type = (unsigned int)rdbtype;
len = MIN(count,3);
firstPkt.length = (unsigned int) len;
for(c = 0; c < len; c++ )
{
firstPkt.buf[c] = m->write_buf[m->write_cur_read];
m->write_cur_read++;
if(m->write_cur_read >= m->write_buf_size)
m->write_cur_read = 0;
}
/* adjust variables to account for first packet */
count -= len;
sent += len;
/* put remaining data into bdata->write_buf */
while(count > 0 && (bdata->write_buf_ct < bdata->write_buf_size))
{
len = MIN(count,3);
pPtr = (rdbPacket*)&bdata->write_buf[bdata->write_buf_cur_write];
pPtr->type = (unsigned int)rdbtype;
pPtr->length = (unsigned int)len;
for(c = 0; c < len; c++ )
{
pPtr->buf[c] = m->write_buf[m->write_cur_read];
m->write_cur_read++;
if(m->write_cur_read >= m->write_buf_size)
m->write_cur_read = 0;
}
bdata->write_buf_cur_write++;
if(bdata->write_buf_cur_write >= bdata->write_buf_size)
bdata->write_buf_cur_write = 0;
bdata->write_buf_ct++;
count -= len;
sent += len;
}
/* send the first packet */
*((vu32*) GIO_RDB_BASE_REG) = *((vu32*)&firstPkt);
splx(s); /* turn interrupts back on */
return(sent);
}
/*
* u64_send_message must block for main write_buf_sema before attempting
* to write to rdb port. The write semaphore only becomes available after
* all the data in the write buffer is sent, so this routine assumes that
* the write buffer is empty.
*/
static int u64_send_message(unsigned int rdbType, int value)
{
rdbPacket pkt;
int s;
s = psema(&bdata->write_buf_sema, PCATCH | PPIPE);
if(s == -1)
{
cmn_err(CE_WARN, "u64_send_message: psema broke on signal");
return(EINTR);
}
s = spl5();
pkt.type = rdbType;
pkt.length = 0;
pkt.buf[0] = (value >> 16) & 0xFF;
pkt.buf[1] = (value >> 8) & 0xFF;
pkt.buf[2] = value & 0xFF;
*((vu32*) GIO_RDB_BASE_REG) = *((vu32*)&pkt);
splx(s);
return(1);
}