gline.s
20.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
##########################################################################
#
# Line Setup Routine.
# When entering this code we have a points buffer full of points,
# and registers r1, r2 point to the two vertices of a line.
# r4 points to the vertex with the normal for flat-shaded case.
#
# Kevin Luster, kluster@sgi.com
#
##########################################################################
# pointers to vertices
.name minp, $1
.name maxp, $2
.name flatp, $4
# point y coordinates
.name miny, $3
.name maxy, $17
.name rdp_cmd, $5
.name rdp_flg, $6
.name temp, $7
.name minx, $8
.name maxx, $9
.name Hdx, $10
.name Hdy, $11
.name xHigh, $12
.name xMid, $13
.name yHigh, $14
.name yMid, $15
.name yLow, $16
.name attrmask, $18
# vector registers
.name vzero, $v0
.name vtmp, $v1
.name vHdxi, $v2
.name vHdxf, $v3
.name aMini, $v4
.name aMinf, $v5
.name aDeli, $v6
.name iHdyi, $v8
.name iHdyf, $v9
.name dxyHi, $v10
.name dxyHf, $v11
.name dxyMi, $v12
.name dxyMf, $v13
.name xHi, $v14
.name xHf, $v15
.name xMi, $v16
.name xMf, $v17
.name iHdxi, $v20
.name iHdxf, $v21
.name aMaxi, $v22
.name aMaxf, $v23
.name aDelf, $v24
.name dadei, $v26
.name dadef, $v27
.name dadyi, $v28
.name dadyf, $v29
.ent lineSetup
lineSetup:
# Store what's in RSP_STATE_TRI off into rdp_cmd
lb rdp_cmd, RSP_STATE_TRI(rsp_state)
ori rdp_cmd, rdp_cmd, G_TRI_FILL
# set up a zero register for use in various places
vxor vzero, vzero, vzero
# open for output, do this here before register 18
# gets used for output values
#if !(defined(OUTPUT_DRAM)||defined(OUTPUT_FIFO))
jal OutputOpen
addi $18, zero, 184 # worst case guess (delay slot)
#endif /* !(OUTPUT_DRAM || OUTPUT_FIFO) */
sort: # Sort input points along the y direction
lh miny, RSP_PTS_YS(minp)
lh maxy, RSP_PTS_YS(maxp)
slt temp, maxy, miny
# jump to done if points already sorted
blez temp, sortDone
# swap y values
addi temp, miny, 0
addi miny, maxy, 0
addi maxy, temp, 0
# swap point buffer pointers
addi temp, minp, 0
addi minp, maxp, 0
addi maxp, temp, 0
.unname temp
.name rendState, $7
sortDone:
# load in point x values
lh minx, RSP_PTS_XS(minp)
lh maxx, RSP_PTS_XS(maxp)
# check to see if we need to do any attribute setup
andi attrmask, rdp_cmd, (G_RDP_TRI_ZBUFF_MASK | G_RDP_TRI_TXTR_MASK | G_RDP_TRI_SHADE_MASK)
blez attrmask, SetupDone
# do some preliminary setup for the attribute
# calculation. Code is here since we rename the
# minp and maxp registers later
# load in rgba values, will get trashed if branch
# not taken..
luv aMini[0], RSP_PTS_R_NX(minp)
#
lw rendState, RSP_STATE_RENDER(rsp_state)
andi rendState, rendState, G_SHADING_SMOOTH
bgtz rendState, smoothShade
# delay slot, value will get trashed if branch
# not taken..
luv aMaxi[0], RSP_PTS_R_NX(maxp)
# ok, we're doing flat shading, so load in
# the flat vertex rgba values instead
luv aMini[0], RSP_PTS_R_NX(flatp)
luv aMaxi[0], RSP_PTS_R_NX(flatp)
.unname rendState
.name temp, $7
smoothShade:
# zero out the fractional registers since we need to
# do some massaging on the rgba values before loading
# in the Z values
vadd aMinf, vzero, vzero
vadd aMaxf, vzero, vzero
# Now multiply the rgba attribute values by 1/128 to
# get their real values I x F
vmudm aMini, aMini, vconst[7]
vmudm aMaxi, aMaxi, vconst[7]
# at this point the rgba values are loaded and ready to
# go. Now need to load in the Z values into the integer
# and fractional locations
lsv aMini[8], RSP_PTS_ZS(minp)
lsv aMaxi[8], RSP_PTS_ZS(maxp)
lsv aMinf[8], RSP_PTS_ZSF(minp)
lsv aMaxf[8], RSP_PTS_ZSF(maxp)
# load in S and T values for both points
# there are no fractional values to load
llv aMini[10], RSP_PTS_S(minp)
llv aMaxi[10], RSP_PTS_S(maxp)
# Now that all values are loaded, we do an IF subtract
# to get what the attribute delta values are
vsubc aDelf, aMaxf, aMinf
vsub aDeli, aMaxi, aMini
# now multiply aDel down so that we get maximal precision
# later when computing the attribute slopes IF X F
vmudl aDelf, aDelf, vconst1[2]
vmadm aDeli, aDeli, vconst1[2]
vmadn aDelf, vconst, vconst[0]
.unname minp
.unname maxp
.name sXH, $1
.name sXL, $2
SetupDone:
# Now load the user specified scissor
# X coordinates. For veritical lines
# we use these values, for horizontal
# lines they may be changed
lh sXH, RSP_STATE_SCISSOR_XH(rsp_state)
lh sXL, RSP_STATE_SCISSOR_XL(rsp_state)
# now compute Hdy and Hdx
sub Hdy, maxy, miny
sub Hdx, maxx, minx
# now compute Hdx/Hdy
# load scaler registers into vector registers
# get rid of this later
mtc2 Hdy, vtmp[0]
mtc2 Hdx, vHdxi[0]
vmov vHdxf[0], vconst[0]
# now compute 1/Hdx
vrcp iHdxf[0], vHdxi[0]
vrcph iHdxi[0], vconst[0]
# jump over all of the below calculations if
# we have an exactly horizontal line
beq Hdy, zero, Horizontal
# now compute 1/Hdy, Hdy is stored in vtmp
vrcp iHdyf[0], vtmp[0]
vrcph iHdyi[0], vconst[0]
# shift Hdx right by 15 so that
# the multiplication later by 1/Hdy
# lines up correctly. We don't lose
# any precision in this shift since
# Hdx was loaded into the integer
# portion of the register pair.
vmudl vHdxf, vHdxf, vconst[2]
vmadm vHdxi, vHdxi, vconst[2]
vmadn vHdxf, vconst, vconst[0]
# now multiply 1/Hdy by Hdx to get slope.
vmudl dxyHf, iHdyf, vHdxf[0]
vmadm dxyHf, iHdyi, vHdxf[0]
vmadn dxyHf, iHdyf, vHdxi[0]
vmadh dxyHi, iHdyi, vHdxi[0]
# now do edge walker clear of low slope bits (ick)
vand dxyHf, dxyHf, vconst1[1]
# if we don't need to do any attribute goop then
# jump around it
blez attrmask, dadeDone
# Now we set up dade. This code is common
# to horizontal and vertical lines, so
# we do it here
# note that aDelf has been aligned such that
# we get maximal precision out of this multiply,
# we don't lose any bits of either operand
# do an IF x IF on 1/Hdy and aDelf
vmudl dadef, aDelf, iHdyf[0]
vmadm dadef, aDeli, iHdyf[0]
vmadn dadef, aDelf, iHdyi[0]
vmadh dadei, aDeli, iHdyi[0]
# now we check to see if the slope is going to cause
# a problem when we do the subpixel adjustment. We
# compare the absolute value of the integer part of
# the slope with 1877 and clamp if it is greater
.unname flatp
.name adxyHi, $4
dadeDone:
# Absolute value code compliments of alesha@anya.Princeton.EDU
# (Alexei Lebedev), wins because it needs one fewer register.
# computes: temp=x>>31; absx = x^temp + (temp & 1);
mfc2 adxyHi, dxyHi[0]
sra temp, adxyHi, 31
xor adxyHi, temp, adxyHi
andi temp, temp, 1
add adxyHi, adxyHi, temp
# at this point adxyHi contains |dxyHi|, now we check it against
# the hardcoded maximum value allowed and possibly clamp Hdy
mfc2 temp, vconst1[12]
slt adxyHi, adxyHi, temp
bgtz adxyHi, SlopeFine
nop
# slope is bad, so we zero out Hdy, everything
# else afterwards should compute out fine
xor Hdy, Hdy, Hdy
.unname adxyHi
# Now do the decision as to whether we're doing
# horizontal or vertical code. For now we're just
# using Rich Webb's scaler branching algorithm.
SlopeFine:
bgtz Hdx, HdxPositive
.unname vHdxf
.unname vHdxi
HdxNegative:
add temp, Hdy, Hdx
bgez temp, Vertical
nop
j Horizontal
HdxPositive:
sub temp, Hdy, Hdx
bltz temp, Horizontal
nop
# All the code above this point should be
# shareable between the horizontal and
# vertical sections...
Vertical:
# stuff away fact that we have a vertical line
# used later when doing subpixel backups
addi temp, zero, 0
sb temp, (2+RSP_SCRATCH_OFFSET)(zero)
# now we set up the attribute values
# We are going to eventually use the attribute
# values stored in aMin{i,f} and since those are
# the ones we want, we don't have to do anything
# else for setup
# now set up XHigh and XMid
# do the line thickness +/- in scaler
# land first, so that don't have to dork with
# double precision vector operations
# hack for line width. See comment in ../gimm.s
lh $21, CLIP_STATE_TABLE(zero)
sub xHigh, minx, $21
add xMid, minx, $21
#if 0
addi xHigh, minx, 0xfffd
addi xMid, minx, 0x0003
#endif
mtc2 xHigh, xHi[0]
vmov xHf[0], vconst[0]
mtc2 xMid, xMi[0]
vmov xMf[0], vconst[0]
# now do the shift to the right by 2
# to get the subpixel part into the
# fractional register.
# accomplish this by doing an IF x F
vmudl xHf, xHf, vconst[4]
vmadm xHi, xHi, vconst[4]
vmadn xHf, vconst, vconst[0]
vmudl xMf, xMf, vconst[4]
vmadm xMi, xMi, vconst[4]
vmadn xMf, vconst, vconst[0]
jal AttrBackup
# delay slot
addi temp, miny, 0
# hard coded left major triangle
addi rdp_flg, zero, 0x80
# set up yHigh, yMid, yLow here so that we
# can have a common output routine later
addi yLow, maxy, 0
addi yMid, maxy, 0
addi yHigh, miny, 0
.name dadxi, $v2
.name dadxf, $v3
# check to see if we need to do any attribute setup
blez attrmask, VdadxDone
# delay slot
# DxMdy = DxHdy
vadd dxyMi, vzero, dxyHi
# fractional part pushed down to
# delay slot below..
# set up the other attribute slope registers here
# in vertical lines, dadx = 0
vxor dadxi, dadxi, dadxi
vxor dadxf, dadxf, dadxf
# in vertical lines, dady = dade
vadd dadyi, vzero, dadei
vadd dadyf, vzero, dadef
VdadxDone:
j Exit
# delay slot
vadd dxyMf, vzero, dxyHf
Horizontal:
# stuff away fact that we have a horizontal line
# used later when doing subpixel backups
addi temp, zero, 1
sb temp, (2+RSP_SCRATCH_OFFSET)(zero)
# check to see if we need to do any attribute setup
blez attrmask, HdadxDone
# now we set up the attribute values
# note that dade has already been setup
# Do it here since code should be the
# same for both types of Horizontal lines
# note that aDelf has been aligned such that
# we get maximal precision out of this multiply,
# we don't lose any bits of either operand
# do an IF x IF on 1/Hdx and aDelf
vmudl dadxf, aDelf, iHdxf[0]
vmadm dadxf, aDeli, iHdxf[0]
vmadn dadxf, aDelf, iHdxi[0]
vmadh dadxi, aDeli, iHdxi[0]
HdadxDone:
# Now setup the scissor coordinates
# For now we've got hard coded scissor coordinates
# These commands will be repeated in the two sections
# below with correct values
slt temp, maxx, minx
blez temp, xSorted
# store attrmask away since we're going to trash
# its register. blah! blah! blah!
# delay slot
sb attrmask, (0+RSP_SCRATCH_OFFSET)(zero)
.unname attrmask
.name cXH, $4
.name cXL, $18
.name d, $19
.name s, $20
xNotSorted:
add cXH, zero, maxx
add cXL, zero, minx
j MiniMaxX
nop
xSorted:
add cXH, zero, minx
add cXL, zero, maxx
MiniMaxX:
# Now we compute the minimax and maximin of
# what the real scissor box should be
# Using Rich Webb's min/max algorithm
# compute max of sXH, cXH
sub d, sXH, cXH
sra s, d, 31
and d, s, d
sub sXH, sXH, d
# compute min of sXL, cXL
sub d, sXL, cXL
sra s, d, 31
and d, s, d
add sXL, cXL, d
# addi sXH, cXH, 0
# addi sXL, cXL, 0
slt temp, maxx, minx
blez temp, RightMajor
.unname cXH
.unname cXL
.unname d
.unname s
.name attrmask, $18
LeftMajor: # left major
addi rdp_flg, zero, 0x80
j Done
nop
RightMajor: #right major
addi rdp_flg, zero, 0x00
Done:
# restore stored attrmask to correct register
lb attrmask, (0+RSP_SCRATCH_OFFSET)(zero)
bgtz Hdy, MostlyHorizontal
nop
ExactlyHorizontal:
# check to see if we need to do any attribute setup
blez attrmask, ExHattDone
# special case setting up initial attribute
# values.
vadd aMini, vzero, aMaxi
# zero out dade for exactly horizontal lines
vxor dadef, dadef, dadef
vxor dadei, dadei, dadei
# for exactly horizontal lines, the high and mid
# slopes are zero
vxor dxyHi, dxyHi, dxyHi
vxor dxyHf, dxyHf, dxyHf
vxor dxyMi, dxyMi, dxyMi
vxor dxyMf, dxyMf, dxyMf
ExHattDone:
# Now set up xHigh and xMid
mtc2 maxx, xHi[0]
vmov xHf[0], vconst[0]
mtc2 minx, xMi[0]
vmov xMf[0], vconst[0]
# now do the shift to the right by 2
# to get the subpixel part into the
# fractional register.
# accomplish this by doing an IF x F
vmudl xHf, xHf, vconst[4]
vmadm xHi, xHi, vconst[4]
vmadn xHf, vconst, vconst[0]
vmudl xMf, xMf, vconst[4]
vmadm xMi, xMi, vconst[4]
vmadn xMf, vconst, vconst[0]
# Note that no subpixel adjustment is needed
# in the exactly horizontal case
# now set up ymax and ymin so that they can be
# popped into the yHigh->yLow code below. Need
# to add and subtract the line thickness from each
# We use maxy because miny==maxy for exactly
# horizontal lines. This is not true for those
# lines which have been clamped to being exactly
# horizontal, but the maximum error in not doing
# an average is 1/2 of a quarter pixel, which is
# the same error we'd get in doing an average
# hack for line width. See comment in ../gimm.s
lh $21, CLIP_STATE_TABLE(zero)
add yLow, maxy, $21
add yMid, maxy, $21
sub yHigh, maxy, $21
#if 0
addi yLow, maxy, 0x0003
addi yMid, maxy, 0x0003
addi yHigh, maxy, 0xfffd
#endif
j AdjustAlpha
nop
MostlyHorizontal:
# initial attributes are already in aMin{i,f} so we
# don't have to do anything special to set them up
# Now set up xHigh
mtc2 minx, xHi[0]
vmov xHf[0], vconst[0]
# now do the shift to the right by 2
# to get the subpixel part into the
# fractional register.
# accomplish this by doing an IF x F
vmudl xHf, xHf, vconst[4]
vmadm xHi, xHi, vconst[4]
vmadn xHf, vconst, vconst[0]
# now copy over the xHigh values into
# the xLow values. The xHigh values
# are modified below when we do the
# sub pixel adjustment
vmov xMi[0], xHi[0]
vmov xMf[0], xHf[0]
# now set up ymax and ymin so that they can be
# popped into the yHigh->yLow code below. Need
# to add and subtract the line thickness from each
# hack for line width. See comment in ../gimm.s
lh $21, CLIP_STATE_TABLE(zero)
sub yHigh, miny, $21
add yMid, miny, $21
add yLow, maxy, $21
#if 0
addi yHigh, miny, 0xfffd
addi yMid, miny, 0x0003
addi yLow, maxy, 0x0003
#endif
jal AttrBackup
# delay slot
addi temp, yHigh, 0
# for mostly horizontal lines, mid slope is zero
vxor dxyMi, dxyMi, dxyMi
vxor dxyMf, dxyMf, dxyMf
# now do specific output routine
addi outp, outp, 8 # increment output pointer
# need to write out XLow values for nearly horizontal lines
ssv xMi[0], 8(outp) # XL = XM
ssv xMf[0], 10(outp) # XL, frac = XM, frac
ssv dxyHi[0], 12(outp) # DxLDy = DxHDy
ssv dxyHf[0], 14(outp) # DxLDy, frac = DxHDy, frac
addi outp, outp, 0xfff8
AdjustAlpha:
nop
# set up the other attribute slope registers here
# in horizontal lines, dady = 0
vxor dadyi, dadyi, dadyi
vxor dadyf, dadyf, dadyf
.unname miny
.unname maxy
.unname minx
.unname maxx
.unname Hdx
.unname Hdy
.unname xHigh
.unname xMid
Exit:
# now do output routine, dump out
# the calculated values above. everybody
# should already be happy with their location
addi temp, zero, G_SETSCISSOR
sb temp, 0(outp) # output rdp command
# now merge together user Y values with computed
# X values
lh temp, RSP_STATE_SCISSOR_YH(rsp_state)
sll sXH, sXH, 20
sll temp, temp, 8
or sXH, sXH, temp
lh temp, RSP_STATE_SCISSOR_YL(rsp_state)
sll sXL, sXL, 12
or sXL, sXL, temp
# I'm writing out 4 bytes below instead of 3 in each
# command, so I'm making them overlap and have the
# second write contain the real data for the overlapped
# byte
sw sXH, 1(outp) # XH and YH
sw sXL, 4(outp) # flags, XL and YL
# now increment outp pointer so that next batch of output
# is with respect to beginning of the edge structure
addi outp, outp, 8 # increment output pointer
# addi rdp_cmd, zero, G_TRI_SHADE_ZBUFF
sb rdp_cmd, 0(outp) # output rdp command
sb rdp_flg, 1(outp) # output poly flag
sh yLow, 2(outp) # YL
sh yMid, 4(outp) # YM
sh yHigh, 6(outp) # YH
# now squat out xhigh values
ssv xHi[0], 16(outp) # XH
ssv xHf[0], 18(outp) # XH, frac
ssv dxyHi[0], 20(outp) # DxHDy
ssv dxyHf[0], 22(outp) # DxHDy, frac
# now do xmid
ssv xMi[0], 24(outp) # XM
ssv xMf[0], 26(outp) # XM, frac
ssv dxyMi[0], 28(outp) # DxMDy
ssv dxyMf[0], 30(outp) # DxMDy, frac
# check if we need to write out shade values and slopes
andi temp, rdp_cmd, G_RDP_TRI_SHADE_MASK
blez temp, SHADEBEDONE
# now increment outp pointer to point after edge structure
# delay slot
addi outp, outp, 32
# write out attribute slopes and initial values
sdv aMini[0], 0(outp) # {rgba}
sdv dadxi[0], 8(outp) # D{r,g,b,a}Dx
sdv vzero[0], 16(outp) # {rgba}, frac
sdv dadxf[0], 24(outp) # D{r,g,b,a}Dx, frac
sdv dadyi[0], 40(outp) # D{r,g,b,a}Dy
sdv dadyf[0], 56(outp) # D{r,g,b,a}Dy, frac
sdv dadei[0], 32(outp) # D{r,g,b,a}De
sdv dadef[0], 48(outp) # D{r,g,b,a}De, frac
# now increment outp pointer to point after shade structure
addi outp, outp, 64
SHADEBEDONE:
# Check if we need to write out texture values and slopes
andi temp, rdp_cmd, G_RDP_TRI_TXTR_MASK
blez temp, TEXBEDONE
nop # delay slot
slv aMini[10], 0(outp) # {s,t}
ssv vconst[1], 4(outp) # w = 1
ssv vconst[0], 6(outp) # l = 0
slv dadxi[10], 8(outp) # D{s,t}Dx
slv vzero[0], 12(outp) # D{w,l}Dx = 0
slv aMinf[10], 16(outp) # {s,t}, frac
slv vzero[0], 20(outp) # {w,l}, frac = 0
slv dadxf[10], 24(outp) # D{s,t}Dx, frac
slv vzero[0], 28(outp) # D{w,l}Dx, frac = 0
slv dadei[10], 32(outp) # D{s,t}De
slv vzero[0], 36(outp) # D{w,l}De = 0
slv dadyi[10], 40(outp) # D{s,t}Dy
slv vzero[0], 44(outp) # D{w,l}Dy = 0
slv dadef[10], 48(outp) # D{s,t}De, frac
slv vzero[0], 52(outp) # D{w,l}De, frac = 0
slv dadyf[10], 56(outp) # D{s,t}Dy, frac
slv vzero[0], 60(outp) # D{w,l}Dy, frac = 0
# now increment outp pointer to point after texture structure
addi outp, outp, 64
TEXBEDONE:
# Check if we need to write out z buffer values and slopes
andi temp, rdp_cmd, G_RDP_TRI_ZBUFF_MASK
blez temp, ZBEDONE
nop # delay slot
# Scale all the Z related values up to match what's being done
# in the poly microcode
# Scale up Z
vmudn aMinf, aMinf, vconst1[4]
vmadh aMini, aMini, vconst1[4]
vmadn aMinf, vconst, vconst[0]
# Scale up DzDx
vmudn dadxf, dadxf, vconst1[4]
vmadh dadxi, dadxi, vconst1[4]
vmadn dadxf, vconst, vconst[0]
# Scale up DzDe
vmudn dadef, dadef, vconst1[4]
vmadh dadei, dadei, vconst1[4]
vmadn dadef, vconst, vconst[0]
# Scale up DzDy
vmudn dadyf, dadyf, vconst1[4]
vmadh dadyi, dadyi, vconst1[4]
vmadn dadyf, vconst, vconst[0]
ssv aMini[8], 0(outp) # Z
ssv aMinf[8], 2(outp) # Z, frac
ssv dadxi[8], 4(outp) # DzDx
ssv dadxf[8], 6(outp) # DzDx, frac
ssv dadei[8], 8(outp) # DzDe
ssv dadef[8], 10(outp) # DzDe, frac
ssv dadyi[8], 12(outp) # DzDy
ssv dadyf[8], 14(outp) # DzDy, frac
# now increment outp pointer so that next triangle output starts
# at the correct place.
addi outp, outp, 16 # increment output pointer
ZBEDONE:
# now clean up the output buffers
jal OutputClose
# reload the return address that got hosed by the output close
# delay slot
lw return, RSP_L_0(zero)
# go back to the processing loop
jr return
nop # delay slot
.end lineSetup
.unname rdp_cmd
.unname rdp_flg
.unname temp
.name temp, $7
.name miny, $3
.name Adjf, $v18
.name Adji, $v19
AttrBackup:
# Back up the starting X and attribute values
# now do the subpixel adjustment to the
# xMid and xHigh values
# the operation being effected is:
# xH = xH - dx/dy [(yHigh & 0x03) << 14]
# xM = xM - dx/dy [(yHigh & 0x03) << 14]
# first we load in yHigh and then shift
# left by 14 bits to get the fractional part
# then we load it into a fractional vector
# register
# note that temp has already been loaded with
# the correct value in the delay slot of the
# jump that got us here
sll temp, temp, 14
mtc2 temp, vtmp
# now we do an IF x F on this fractional
# y shift with the high slope
vmudl Adjf, dxyHf, vtmp[0]
vmadm Adji, dxyHi, vtmp[0]
vmadn Adjf, vconst, vconst[0]
# now we do a 32 bit subtract to adjust
# xHigh and xMid to their pixel values
vsubc xHf, xHf, Adjf
# rest of subtraction is shoved down to
# delay slot below. doh.
# now check if we're doing a horizontal or
# vertical line. If Horizontal, then jump
# to end
lb temp, (2+RSP_SCRATCH_OFFSET)(zero)
bgtz temp, XBackupDone
# delay slot
vsub xHi, xHi, Adji
# This is not done for horizontal lines
vsubc xMf, xMf, Adjf
vsub xMi, xMi, Adji
XBackupDone:
blez attrmask, AttrBackupDone
nop
# do the actual attribute backup in here.
# now we do an IF x F on this fractional
# y shift with the starting attribute values
vmudl Adjf, dadef, vtmp[0]
vmadm Adji, dadei, vtmp[0]
vmadn Adjf, vconst, vconst[0]
# now we do a 32 bit subtract to adjust
# xHigh and xMid to their pixel values
vsubc aMinf, aMinf, Adjf
vsub aMini, aMini, Adji
AttrBackupDone:
jr return
nop
.unname temp
.unname miny
.unname Adjf
.unname Adji