gsetup.s
32.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
/****** NOTE:
******
****** This code is the optimized version for HARDWARE 2!
******
****** It won't run (100%) on hardware 1.
******
******/
##########################################################################
#
# Triangle Setup Routine.
# When entering this code we have a points buffer full of points,
# and registers r1, r2, r3 point to the three vertices of a triangle.
#
##########################################################################
#ifdef SETUP_ALONE
#include <rsp.h>
#include "mbi.h"
.text beginSetup
#include "gdmem.h"
#include "gfx_regs.h"
#endif
# ########################### CLIP TEST #################################
.name minp, $1
.name midp, $2
.name maxp, $3
.name tmp, $8
#cc,name rejectmask, $6
.name tmp2, $9
.name ccor, $11 # OR of all points' clip codes
.name ccand, $12 # AND of all points' clip codes
.ent clipAndSetup
clipAndSetup:
# ########################### CLIP TEST #################################
lh ccor, (RSP_PTS_CC)(maxp) # or Clip Codes together &
lh tmp, (RSP_PTS_CC)(midp) # and Clip Codes together
lh tmp2, (RSP_PTS_CC)(minp) #
and ccand, ccor, tmp #
or ccor, ccor, tmp #
and ccand, ccand, tmp2 #
#ifdef NEAR_CLIP_OFF
andi ccand, ccand, 0x7030 # only see reject + xyz, - xy
#else /* NEAR_CLIP_OFF */
andi ccand, ccand, 0x7070 # only see reject +/- xyz
#endif /* NEAR_CLIP_OFF */
bne ccand, zero, GfxDone # Trivial rejection ?
or ccor, ccor, tmp2 #
### BRANCH OCCURS TO GfxDone: IF TRIVIALLY REJECTED
andi ccor, ccor, 0x4343 # only see clip/accept +/- xyz
bne ccor, zero, startClip # if ccor is 0, no clipping
### JUMP OCCURS to doClip or startClip: IF clipping is neccessary
### NOTE: delay slot is first instruction of beginSetup:
.end clipAndSetup
.unname ccor
.unname ccand
.unname minp
.unname midp
.unname maxp
.unname tmp
.unname tmp2
#cc.unname rejectmask
# ########################### END CLIP TEST #############################
#define one4th vconst[4]
#define LOWX 0 /* used to index elements of edge vectors */
#define LOWY 1
#define MIDX 2
#define MIDY 3
#define HIGHX 4
#define HIGHY 5
/* scalar registers: */
.name minp, $1
.name midp, $2
.name maxp, $3
.name miny, $9
.name tmp, $7
.name flatp, $4
.name rdp_cmd, $5
.name rdp_flg, $6
.name dscratchp, $8
.name midy, $10
.name maxy, $11
.name negR, $12
.name rendState, $13
/* these are "global", used for both edge and attribute setup */
.name DxXDyi, $v0
.name DxXDyf, $v1
.name yf, $v2
.name xHighf, $v3
.name EDel, $v4
.name invri, $v27
.name invrf, $v26
/* these registers are dynamic, allocated and released as they are used */
.name ri, $v29
.name rf, $v28
.name Hd, $v9
.name Md, $v10
.name Ld, $v11
.name td, $v12
.name vmin, $v13
.name vmid, $v14
.name vmax, $v15
.name frontrej, $14
.name backrej, $15
.name doreject, $16
.name bsignr, $17
.name jnk, $v16
.name t1i, $v17
.name t1f, $v18
.name t2i, $v19
.name t2f, $v20
.name allWi, $v5
.name allWf, $v6
.name wscl, $v21
.ent beginSetup
beginSetup:
# load screen coordinates (pre-sort):
llv vmin[0], RSP_PTS_XS(minp)
llv vmid[0], RSP_PTS_XS(midp) # element 1 is y
llv vmax[0], RSP_PTS_XS(maxp) # element 0 is x,
lw rendState, RSP_STATE_RENDER(rsp_state)
addi dscratchp, zero, RSP_SETUP_TMP_OFFSET
# load all the W's and Wscale for texture perspective while
# doing this.
lsv wscl[0], RSP_STATE_PERSPNORM(rsp_state)
lsv allWi[0], RSP_PTS_W_INT(minp)
vsub Md, vmid, vmin
lsv allWf[0], RSP_PTS_W_FRAC(minp)
vsub Hd, vmax, vmin
lsv allWi[2], RSP_PTS_W_INT(midp)
vsub td, vmin, vmid
lsv allWf[2], RSP_PTS_W_FRAC(midp)
lsv allWi[4], RSP_PTS_W_INT(maxp)
lsv allWf[4], RSP_PTS_W_FRAC(maxp)
# compute the partial products...
# careful with the math here...
vmudh jnk, Hd, Md[1]
lh miny, RSP_PTS_YS(minp) # get the y's (BEGIN SETUP)
vsar t1f, t1f, t1f[1]
lh midy, RSP_PTS_YS(midp)
vsar t1i, t1i, t1i[0]
lh maxy, RSP_PTS_YS(maxp)
vmudh jnk, td, Hd[1]
andi frontrej, rendState, G_CULL_FRONT
vsar t2f, t2f, t2f[1]
andi backrej, rendState, G_CULL_BACK
vsar t2i, t2i, t2i[0]
addi negR, zero, 0
# begin back-face test:
#
# Back-face test is the sign of the plane equation BEFORE VERTEX
# SORT, tested with the CULL_FRONT or CULL_BACK flags.
# We toggle a bit during the sort and possibly correct the
# pleq sign afterwards...
#
# Actual back-face computation is SU code weaved in among
# the VU code.
# y-sort. Remember, input screen coords are S11.2
#
# This sort code was written by Gudrun Achtenhagen, gudrun@engr.sgi.com
# Contact her if there are any bugs. :-)
#
swap1: slt tmp, midy, miny #if midy>miny, tmp gets 0
blez tmp, swap2 #if tmp>0, branch
add tmp, midy, $0 #put midy in tmp
add midy, miny, $0 #put miny in midy
add miny, tmp, $0 #put tmp in miny
addu tmp, midp, $0 #put midp in tmp
addu midp, minp, $0 #put minp in midp
addu minp, tmp, $0 #put tmp in minp
xori negR, negR, 0x0001
.align 8 # ensure dual-issue of branch target
swap2:
vaddc rf, t1f, t2f
slt tmp, maxy, midy #if maxy>midy, tmp gets 0
vadd ri, t1i, t2i
blez tmp, sortDone #if tmp>0, branch
add tmp, maxy, $0 #put maxy in tmp
add maxy, midy, $0 #put midy in maxy
add midy, tmp, $0 #put midy in tmp
addu tmp, maxp, $0 #put maxp in tmp
addu maxp, midp, $0 #put midp in maxp
addu midp, tmp, $0 #put tmp in midp
j swap1
xori negR, negR, 0x0001
sortDone:
# this branch target is aligned for dual-issue (see above)
# load screen coordinates: (S11.2)
vlt invri, ri, vconst[0]
llv vmax[0], RSP_PTS_XS(maxp) # element 0 is x,
vor invrf, ri, rf
llv vmid[0], RSP_PTS_XS(midp) # element 1 is y
llv vmin[0], RSP_PTS_XS(minp)
# possibly negate R
blez negR, posiR
vsub EDel, vmax, vmid # delay slot, low deltas
vmudn rf, rf, vconst[3] # negate R
vmadh ri, ri, vconst[3]
vmadn rf, vconst, vconst[0]
posiR:
# compute edge deltas: (S11.2)
# (Need to do this again after the sort)
# save out vertex pointers for attribute processing
# while doing this.
vsub Md, vmid, vmin
mfc2 bsignr, invri[0]
vsub Hd, vmax, vmin
mfc2 doreject, invrf[0]
.unname jnk
.unname t1i
.unname t1f
.unname t2i
.unname t2f
.unname td
.unname vmin
.unname vmid
.unname vmax
# if (r < 0) then triangle is a back-face.
# finish back-face processing in the SU.
/* DELAY HERE! (2 clocks) */
# align these for Newton
sra bsignr, bsignr, 31
vmov ri[3], ri[0]
and backrej, backrej, bsignr
vmov rf[3], rf[0]
# If (r == 0), triangle is NULL, we should bail out completely.
vmov EDel[MIDX], Md[0]
beq doreject, zero, SetupReject
# note delay slot
# align these for speed later.
xori bsignr, bsignr, 0xffff
# re-test the sign of r *after* the sort for left/right-ness
vlt invri, ri, vconst[0]
and frontrej, frontrej, bsignr
vmov EDel[MIDY], Md[1]
or doreject, backrej, frontrej
vmov EDel[HIGHX], Hd[0]
bgtz doreject, SetupReject
vmov EDel[HIGHY], Hd[1]
mfc2 tmp, invri[0]
.unname negR
.unname Hd
.unname Md
.unname Ld
.unname ri
.unname rf
.name invEDeli, $v7
.name invEDelf, $v8
.name EDeli, $v9
.name EDelf, $v10
# these registers are for some attribute (texture) computation
# that we are going to sneak in during edge setup.
.name nearWi, $v19
.name nearWf, $v20
#
# compute 1/r
# R is about 10 bits accurate coming from the rcp table.
# We need to do a Newton's iteration pass here to get more
# precision. Each iteration should get another 10 bits...
#
# (r and invr registers are coordinated with Newton routine)
#
jal NewtonDiv
addi rdp_flg, zero, 0x80 # delay slot
# identify left- or right-major triangle:
# if (r < 0) dir = 0 else dir = 1
#
bltz tmp, rightMajor
lb rdp_cmd, RSP_STATE_TRI(rsp_state) # delay slot
addi rdp_flg, zero, 0x0 # left-major
rightMajor:
# Ldx/Ldy, Mdx/Mdy, Hdx/Hdy:
#
# Since the rcp ROM is 10 bits, that's good enough for
# the edge slopes. Newton's doesn't help.
#
# Get triangle command from state and construct the proper RDP
# command while we do this.
#
vmudm EDeli, EDel, vconst[4] # make S15.16
vmadn EDelf, vconst, vconst[0]
vrcp invEDelf[LOWY], EDel[LOWY] # 1.0/Ldy
vrcph invEDeli[LOWY], vconst[0]
ori rdp_cmd, rdp_cmd, G_TRI_FILL
# stick in tile number
lb tmp, RSP_STATE_TEX_TILE(rsp_state)
vrcp invEDelf[MIDY], EDel[MIDY] # 1.0/Mdy
vrcph invEDeli[MIDY], vconst[0]
vrcp invEDelf[HIGHY], EDel[HIGHY] # 1.0/Hdy
vrcph invEDeli[HIGHY], vconst[0]
or rdp_flg, rdp_flg, tmp # 3 cycles after load
# open for output
#if !(defined(OUTPUT_DRAM)||defined(OUTPUT_FIFO))
jal OutputOpen
addi $18, zero, 176 # worst case guess (delay slot)
#endif /* !(OUTPUT_DRAM || OUTPUT_FIFO) */
#
# We used to shift down the rcp results all the way,
# then do the multiply. If we don't shift it down all the
# way, do the mult, then shift some more, we get better
# precision on the degenerate cases.
#
#if 0
vmudl invEDelf, invEDelf, vconst1[2] # make S15.16
sb rdp_cmd, 0(outp) # output rdp command
vmadm invEDeli, invEDeli, vconst1[2]
sb rdp_flg, 1(outp) # output poly flag
vmadn invEDelf, vconst, vconst[0]
#else
vmudl invEDelf, invEDelf, vconst1[4] # make S15.16
sb rdp_cmd, 0(outp) # output rdp command
vmadm invEDeli, invEDeli, vconst1[4]
sb rdp_flg, 1(outp) # output poly flag
vmadn invEDelf, vconst, vconst[0]
#endif
# Do some other work during the pipeline delay:
# We scale up EDel so that later, during the attribute computation,
# the 1/r multiply gives us the right S15.16 aligned answer.
vmudh EDel, EDel, vconst[5] # mult by 4 for attributes
.name xi, $v12
.name xf, $v13
.unname frontrej
.unname backrej
.unname doreject
.unname bsignr
# x setup: (S15.16)
# we load these into unusual elements so we can group the
# multiplies later during the X adjust step...
# (finish edge slopes while we do this)
# The slope answer will end up in the Y element...
# scale W's down to match 1/w for texture perspective,
# while doing this.
lsv xi[(LOWX*2)], RSP_PTS_XS(midp)
vmudl allWf, allWf, wscl[0]
lsv xi[(MIDX*2)], RSP_PTS_XS(minp) # same as high
vmadm allWi, allWi, wscl[0]
lsv xi[(HIGHX*2)], RSP_PTS_XS(minp)
vmadn allWf, vconst, vconst[0]
# y setup: (S11.2)
sll tmp, miny, 14 # get frac part of high y-coord
vmudl DxXDyf, invEDelf, EDelf[0q] # Ldx / Ldy
vmadm DxXDyf, invEDeli, EDelf[0q] # Mdx / Mdy
vmadn DxXDyf, invEDelf, EDeli[0q] # Hdx / Hdy
vmadh DxXDyi, invEDeli, EDeli[0q]
mtc2 tmp, yf[0]
vmadn DxXDyf, vconst, vconst[0]
sw maxp, 0(dscratchp)
#if 0
# no downshift needed
#else
# shift down some more...
#
# we may be able to tolerate some slop, and not do a 2-part
# shift, once the bow-tie fix is in hardware
# Tue May 16 15:14:34 PDT 1995
#
vmudl invEDelf, invEDelf, vconst[4]
vmadm invEDeli, invEDeli, vconst[4]
vmadn invEDelf, vconst, vconst[0]
vmudl DxXDyf, DxXDyf, vconst[4]
vmadm DxXDyi, DxXDyi, vconst[4]
vmadn DxXDyf, vconst, vconst[0]
#endif
.unname EDeli
.unname EDelf
.name vtmp, $v16
# clear lower bits of slope fractions to match the edgewalker
# only use this chopped frac to back up the starting point.
# pass the complete slope to the stepper.
sh maxy, 2(outp) # output y coords S11.2
vand vtmp, DxXDyf, vconst1[1]
# translate S11.2 x's to S15.16.
sh miny, 6(outp)
vmudm xi, xi, one4th
sw midp, 4(dscratchp)
vmadn xf, vconst, vconst[0]
sw minp, 8(dscratchp)
# Check DxXDy for "nearly-horizontal". Make horizontal, if so.
# (only a single-precision clamp)
sh midy, 4(outp)
vcr DxXDyi, DxXDyi, vconst1[6]
.unname miny
.unname midy
.unname maxy
# adjust x's to proper place:
#
# xHigh = xHigh - DxXHDy * yHigh.frac
# xMid = xHigh - DxXMDy * yHigh.frac
# xLow = xMid (already on sub-pixel grid)
#
# Start the output while we do this...
#
.name xHighi, $v9
.name t1i, $v10
.name t1f, $v11
# Clever use of registers, careful where answer ends up.
# Remember, the DxXDy slopes are in the Y elements...
# Do the mult for both equations at once, since we
# lined up the registers that way.
#
ssv xi[(LOWX*2)], 8(outp) # output xLow
vmudl t1f, vtmp, yf[0]
ssv xf[(LOWX*2)], 10(outp)
vmadm t1i, DxXDyi, yf[0]
ssv DxXDyi[(LOWY*2)], 12(outp)
vmadn t1f, vconst, vconst[0]
ssv DxXDyf[(LOWY*2)], 14(outp)
# do both subtracts at the same time, since we sneakily
# lined up xi/xf that way...
# find the nearest W while we do this.
# pre-compute these in the stall delay
.name ptpp, $15
.name toutp, $16
.name stmaxi, $v17
.name stmaxf, $v18
andi tmp, rdp_cmd, G_RDP_TRI_TXTR_MASK
addi ptpp, dscratchp, 8 # also the loop counter
addi toutp, dscratchp, 16
vsubc xHighf, xf, t1f[1q]
ssv DxXDyi[(HIGHY*2)], 20(outp)
vsub xHighi, xi, t1i[1q]
ssv DxXDyf[(HIGHY*2)], 22(outp)
vsubc wscl, allWf, allWf[1]
ssv DxXDyi[(MIDY*2)], 28(outp)
vlt nearWi, allWi, allWi[1]
ssv DxXDyf[(MIDY*2)], 30(outp)
vmrg nearWf, allWf, allWf[1]
ssv xHighi[(HIGHX*2)], 16(outp) # output xHigh
vsubc wscl, nearWf, allWf[2]
ssv xHighf[(HIGHX*2)], 18(outp)
vlt nearWi, nearWi, allWi[2]
ssv xHighi[(MIDX*2)], 24(outp) # output xMid
vmrg nearWf, nearWf, allWf[2]
ssv xHighf[(MIDX*2)], 26(outp)
addi outp, outp, 32 # increment output pointer
.unname xHighi
.unname vtmp
.unname t1i
.unname t1f
.unname xi
.unname xf
#
# Begin attribute setup:
#
/*
* at this point, the only registers in use should be:
*
* $v0 DxXDyi
* $v1 DxXDyf
* $v2 yf
* $v3 xHighf
* $v4 EDel
* $v27 invri
* $v26 invrf
* $v7 invEDeli
* $v8 invEDelf
*
* plus these texture things we already computed:
*
* $v5 allWi
* $v6 allWf
* $v17 stmaxi
* $v18 stmaxf
* $v19 nearWi
* $v20 nearWf
* $v21 wscl
*
*/
#define FAST_TXTR_SETUP
#ifdef FAST_TXTR_SETUP
#
# Texture setup. If we aren't doing texturing, we can skip
# around this.
#
# This version is unrolled, pipelining two groups of
# calculations. This is 23 instructions more, but
# 50 clock cycles faster.
#
blez tmp, AttributeSetup
# note delay slot.
.name ptp1, $14
.name ptp2, $17
.name ptp3, $18
.name ptTX1i, $v9 # these registers hold S, T, 1/W
.name ptTX1f, $v10 # for each vertex.
.name invW1f, $v11
.name invW1i, $v12
.name vtmpi, $v15
.name vtmpf, $v16
.name ptTX2i, $v22 # these registers hold S, T, 1/W
.name ptTX2f, $v23 # for each vertex.
.name invW2f, $v24
.name invW2i, $v25
# make sure nearW < 1.0. The reason we do this is
# to safeguard against numerical inaccuracies due to
# w divide, etc. If nearW/(nearest W) is not less than
# 1.0, the perspective scale will go the wrong direction,
# resulting in scrolling textures and wobbles.
# We've tried lots of methods to tune this, eventually
# settling on a scaling operation; we used to scale by 0.8
# but still see wobbles on large texture coordinates (repeated
# textures) so we now use 0.5.
#
# (get the point pointers while doing that)
vmudl nearWf, nearWf, vconst1[5]
lw ptp1, 0(ptpp)
vmadm nearWi, nearWi, vconst1[5]
lw ptp2, -4(ptpp)
vmadn nearWf, vconst, vconst[0]
lw ptp3, -8(ptpp)
# load S and T:
llv ptTX1i[0], RSP_PTS_S(ptp1)
llv ptTX1i[8], RSP_PTS_S(ptp2)
llv ptTX2i[0], RSP_PTS_S(ptp3)
# Load 1/W saved from vertex transform.
# Stick a magic number in for w. Later during the vmult
# this will scale and shift the frac up where we want it
# for the attribute calculations.
lsv invW1f[0], RSP_PTS_INVW_FRAC(ptp1)
lsv invW1i[0], RSP_PTS_INVW_INT(ptp1)
lsv invW1f[8], RSP_PTS_INVW_FRAC(ptp2)
vmov ptTX1i[2], vconst1[0]
lsv invW1i[8], RSP_PTS_INVW_INT(ptp2)
vmov ptTX1i[6], vconst1[0]
lsv invW2f[0], RSP_PTS_INVW_FRAC(ptp3)
vmov ptTX2i[2], vconst1[0]
lsv invW2i[0], RSP_PTS_INVW_INT(ptp3)
# normalize the W's:
# (this is NW/W)
# (we can't cheat here; we need the double-precision multiply
# in order to handle all kinds of w's, including orthographic...)
# Redundant store of nearW by the SU in the loop saves time later.
vmudl allWf, invW1f, nearWf[0]
vmadm allWf, invW1i, nearWf[0]
ssv nearWi[0], 68(dscratchp)
vmadn allWf, invW1f, nearWi[0]
ssv nearWf[0], 76(dscratchp)
vmadh allWi, invW1i, nearWi[0]
vmudl vtmpf, invW2f, nearWf[0]
vmadm vtmpf, invW2i, nearWf[0]
vmadn nearWf, invW2f, nearWi[0]
vmadh nearWi, invW2i, nearWi[0]
# multiply (S, T, W) by normalized 1/W's
vmudm vtmpf, ptTX1i, allWf[0h]
vmadh ptTX1i, ptTX1i, allWi[0h]
vmadn ptTX1f, vconst, vconst[0]
vmudm vtmpf, ptTX2i, nearWf[0]
vmadh ptTX2i, ptTX2i, nearWi[0]
vmadn ptTX2f, vconst, vconst[0]
# output to scratch memory
sdv ptTX1i[8], (16)(toutp)
sdv ptTX1f[8], (24)(toutp)
sdv ptTX1i[0], (0)(toutp)
sdv ptTX1f[0], (8)(toutp)
sdv ptTX2i[0], (32)(toutp)
sdv ptTX2f[0], (40)(toutp)
# single precision, yuk
vabs ptTX1i, ptTX1i, ptTX1i
llv nearWi[0], (16)(toutp)
vabs ptTX2i, ptTX2i, ptTX2i
llv nearWf[0], (24)(toutp)
vabs nearWi, nearWi, nearWi
# find max S' and T' coordinates for LOD normalization
vge stmaxi, ptTX1i, ptTX2i
vmrg stmaxf, ptTX1f, ptTX2f
/* DELAY HERE! */
vge stmaxi, stmaxi, nearWi
vmrg stmaxf, stmaxf, nearWf
# store of stmax happens below
.unname ptp1
.unname ptp2
.unname ptp3
.unname ptpp
.unname toutp
.unname ptTX1i
.unname ptTX1f
.unname ptTX2i
.unname ptTX2f
.unname allWi
.unname allWf
.unname vtmpi
.unname vtmpf
.unname invW1f
.unname invW1i
.unname invW2f
.unname invW2i
.unname wscl
#else
#
# Texture setup. If we aren't doing texturing, we can skip
# around this.
#
# We write out the vertex pointers, then loop through each
# vertex. This makes for the most compact code.
#
blez tmp, AttributeSetup
# note delay slot.
.name ptp, $14
.name ptTXi, $v9 # these registers hold S, T, 1/W
.name ptTXf, $v10 # for each vertex.
.name invWf, $v11
.name invWi, $v12
.name vtmpi, $v15
.name vtmpf, $v16
vmov stmaxi[0], vconst1[5] # max neg. num
vmov stmaxi[1], vconst1[5] # max neg. num
# make sure nearW < 1.0
vmudl nearWf, nearWf, vconst1[7]
vmadm nearWi, nearWi, vconst1[7]
vmadn nearWf, vconst, vconst[0]
# loop through min, mid, and max:
TexPerspLoop:
lw ptp, 0(ptpp) # get point pointer
# load S and T:
llv ptTXi[0], RSP_PTS_S(ptp)
# Load 1/W saved from vertex transform.
# Stick a magic number in for w. Later during the vmult
# this will scale and shift the frac up where we want it
# for the attribute calculations.
lsv invWf[0], RSP_PTS_INVW_FRAC(ptp)
lsv invWi[0], RSP_PTS_INVW_INT(ptp)
vmov ptTXi[2], vconst1[0]
# normalize the W's:
# (this is NW/W)
# (we can't cheat here; we need the double-precision multiply
# in order to handle all kinds of w's, including orthographic...)
# Redundant store of nearW by the SU in the loop saves time later.
/* DELAY HERE! */
vmudl allWf, nearWf, invWf[0]
vmadm allWf, nearWi, invWf[0]
ssv nearWi[0], 68(dscratchp)
vmadn allWf, nearWf, invWi[0]
ssv nearWf[0], 76(dscratchp)
vmadh allWi, nearWi, invWi[0]
# multiply (S, T, W, L) by normalized 1/W's
vmudm vtmpf, ptTXi, allWf[0]
vmadh ptTXi, ptTXi, allWi[0]
addi toutp, toutp, 16
vmadn ptTXf, vconst, vconst[0]
# single precision, yuk
vabs vtmpi, ptTXi, ptTXi
# output to scratch memory and
# find max S' and T' coordinates for LOD normalization
sdv ptTXi, (0-16)(toutp)
vge stmaxi, stmaxi, vtmpi
sdv ptTXf, (8-16)(toutp)
vmrg stmaxf, stmaxf, ptTXf
bne ptpp, dscratchp, TexPerspLoop
addi ptpp, ptpp, -4 # delay slot
# store of stmax happens below
.unname ptp
.unname ptpp
.unname toutp
.unname ptTXi
.unname ptTXf
.unname allWi
.unname allWf
.unname vtmpi
.unname vtmpf
.unname invWf
.unname wscl
.unname invWi
#endif
.name Hdai, $v9
.name Hdaf, $v10
.name Mdai, $v11
.name Mdaf, $v12
.name adei, $v13
.name adef, $v14
.name amin, $v15
.name aminf, $v16
.name tMdai, $v21
.name tMdaf, $v22
.name amid, $v23
.name amidf, $v24
.name amax, $v25
.name amaxf, $v5
.name vjunk, $v6
.name vjunkf, $v28
AttributeSetup:
# store max S' and T' coordinates for LOD normalization
slv stmaxi[0], 64(dscratchp)
slv stmaxf[0], 72(dscratchp)
.unname stmaxi
.unname stmaxf
.unname nearWi
.unname nearWf
.name ainiti, $v17
.name ainitf, $v18
.name tHdai, $v19
.name tHdaf, $v20
#
# If we aren't doing any attributes at all, let's
# bail out early.
# (clear out all the bits while we do this)
#
andi tmp, rdp_cmd, (G_RDP_TRI_ZBUFF_MASK | G_RDP_TRI_TXTR_MASK | G_RDP_TRI_SHADE_MASK)
blez tmp, SetupDone
vxor ainitf, vconst, vconst
#
# Collect all the attributes
# in a vector (r,g,b,a,s,t,w,z) with one left over (l).
# l (and z again) are computed in a second pass.
# load attributes:
# load smooth-shading colors first.
# RGBA, use fancy packed load, then shift.
# DMEM alignment is crucial here!
# add .5 to the colors in order to work around a hardware
# bug regarding span start color inprecision
# Thu Jun 8 18:49:52 PDT 1995
luv amax[0], RSP_PTS_R_NX(maxp)
vadd aminf, ainitf, vconst1[5]
luv amin[0], RSP_PTS_R_NX(minp)
vadd amidf, ainitf, vconst1[5]
andi tmp, rendState, G_SHADING_SMOOTH
vadd amaxf, ainitf, vconst1[5]
# test for flat shading
bgtz tmp, smoothShade
luv amid[0], RSP_PTS_R_NX(midp) # delay slot
# load flat-shading colors instead: (use same vertex)
luv amax[0], RSP_PTS_R_NX(flatp)
luv amin[0], RSP_PTS_R_NX(flatp)
luv amid[0], RSP_PTS_R_NX(flatp)
smoothShade:
vmudm amax, amax, vconst[7] # multiply by 1/512.0 to
vmudm amin, amin, vconst[7] # move things into lower byte.
vmudm amid, amid, vconst[7]
# load S, T, and W:
# These have been previously computed and stored in scratch memory.
ldv aminf[8], (16 + 8)(dscratchp)
ldv amin[8], (16 + 0)(dscratchp)
ldv amidf[8], (16 + 24)(dscratchp)
ldv amid[8], (16 + 16)(dscratchp)
ldv amaxf[8], (16 + 40)(dscratchp)
ldv amax[8], (16 + 32)(dscratchp)
# load z's.
# Use the proper 'screen-space' Z.
lsv aminf[14], RSP_PTS_ZSF(minp)
lsv amin[14], RSP_PTS_ZS(minp)
lsv amidf[14], RSP_PTS_ZSF(midp)
lsv amid[14], RSP_PTS_ZS(midp)
lsv amaxf[14], RSP_PTS_ZSF(maxp)
lsv amax[14], RSP_PTS_ZS(maxp)
# compute attribute deltas: (S15.16) watch alignment!
/* DELAY HERE! */
vsubc Mdaf, amidf, aminf
vsub Mdai, amid, amin
vsubc tHdaf, aminf, amaxf
vsub tHdai, amin, amax
vsubc Hdaf, amaxf, aminf
vsub Hdai, amax, amin
vsubc tMdaf, aminf, amidf
vsub tMdai, amin, amid
#
# These multiplies use the full precision of the accumulator.
# They are basically 32-bit integer multiplies, but the
# fractional component is also included, although only the
# upper 32-bits of answer are used.
#
# See note up above about why EDel is being scaled up.
#
# S15.16 * S11.4 = SS26.20
# (we only use the upper SS26.4, which we'll multiply
# by 1/r below)
#
#if 0
# compute DeAtt directly, divide Hda/ydelta,
# instead of: de = dy + dx * DxXHDy
vmudl vjunk, Hdaf, invEDelf[HIGHY]
vmadm vjunk, Hdai, invEDelf[HIGHY]
vmadn adef, Hdaf, invEDeli[HIGHY]
vmadh adei, Hdai, invEDeli[HIGHY]
# DxAtt = Mdy*Hda - Hdy*Mda
vmudn vjunk, Hdaf, EDel[MIDY]
vmadh vjunk, Hdai, EDel[MIDY]
vmadn vjunk, tMdaf, EDel[HIGHY]
vmadh vjunk, tMdai, EDel[HIGHY]
vsar Hdai, Hdai, Hdai[0]
vsar Hdaf, Hdaf, Hdaf[1]
# DyAtt = Hdx*Mda - Mdx*Hda
vmudn vjunk, Mdaf, EDel[HIGHX]
vmadh vjunk, Mdai, EDel[HIGHX]
vmadn vjunk, tHdaf, EDel[MIDX]
vmadh vjunk, tHdai, EDel[MIDX]
vsar Mdai, Mdai, Mdai[0]
vsar Mdaf, Mdaf, Mdaf[1]
# divide by r (S4.27)
# This multiply results in the proper S15.16 attributes
# that we need (texture is S10.21)
#
vmudl vjunk, Hdaf, invrf[3]
vmadm vjunk, Hdai, invrf[3]
vmadn Hdaf, Hdaf, invri[3]
vmadh Hdai, Hdai, invri[3]
vmudl vjunk, Mdaf, invrf[3]
vmadm vjunk, Mdai, invrf[3]
vmadn Mdaf, Mdaf, invri[3]
vmadh Mdai, Mdai, invri[3]
#else
/*
* We'd like to do it the above way, it's faster and
* shorter. But the precision errors keep biting us.
* If we do it this way, the errors are minimized:
*/
# DxAtt = Mdy*Hda - Hdy*Mda
vmudn vjunk, Hdaf, EDel[MIDY]
vmadh vjunk, Hdai, EDel[MIDY]
vmadn vjunk, tMdaf, EDel[HIGHY]
vmadh vjunk, tMdai, EDel[HIGHY]
vsar Hdai, Hdai, Hdai[0]
vsar Hdaf, Hdaf, Hdaf[1]
# DyAtt = Hdx*Mda - Mdx*Hda
vmudn vjunk, Mdaf, EDel[HIGHX]
vmadh vjunk, Mdai, EDel[HIGHX]
vmadn vjunk, tHdaf, EDel[MIDX]
vmadh vjunk, tHdai, EDel[MIDX]
vsar Mdai, Mdai, Mdai[0]
vsar Mdaf, Mdaf, Mdaf[1]
# divide by r (S4.27)
#
# This multiply results in the proper S15.16 attributes
# that we need (texture is S10.21)
#
# begin storing colors as we do this:
#
vmudl vjunk, Hdaf, invrf[3]
vmadm vjunk, Hdai, invrf[3]
vmadn Hdaf, Hdaf, invri[3]
vmadh Hdai, Hdai, invri[3]
vmudl vjunk, Mdaf, invrf[3]
vmadm vjunk, Mdai, invrf[3]
vmadn Mdaf, Mdaf, invri[3]
sdv Hdai[0], 8(outp)
vmadh Mdai, Mdai, invri[3]
sdv Hdaf[0], 24(outp)
# convert to edge slope representation:
# de = dy + dx * DxXHDy
/* DELAY HERE! */
vmudn vjunk, Mdaf, vconst[1]
vmadh vjunk, Mdai, vconst[1] # use accum for add...
vmadl vjunk, Hdaf, DxXDyf[HIGHY]
vmadm vjunk, Hdai, DxXDyf[HIGHY]
vmadn adef, Hdaf, DxXDyi[HIGHY]
sdv Mdai[0], 40(outp)
vmadh adei, Hdai, DxXDyi[HIGHY]
sdv Mdaf[0], 56(outp)
#endif
.unname vjunk
.unname vjunkf
.name pp1i, $v6
.name pp1f, $v28
# attribute X adjust:
# att = att - (de * yHigh.frac)
/* DELAY HERE! */
vmudl pp1f, adef, yf[0]
sdv adei[0], 32(outp)
vmadm pp1i, adei, yf[0]
sdv adef[0], 48(outp)
vmadn pp1f, vconst, vconst[0]
/* DELAY HERE! */
vsubc ainitf, aminf, pp1f
vsub ainiti, amin, pp1i # delay slot
.unname pp1i
.unname pp1f
andi tmp, rdp_cmd, G_RDP_TRI_SHADE_MASK
#
# All done.
# Write out the proper record to the RDP, based on the drawing
# modes.
#
# (get ready for next test in the branch delay slots)
# write out the rest of shade and increment outp
blez tmp, outputTXTR
andi tmp, rdp_cmd, G_RDP_TRI_TXTR_MASK # delay
addi outp, outp, 64 # increment output pointer
sdv ainiti[0], (0-64)(outp) # 0
sdv ainitf[0], (16-64)(outp) # 16
# write out texture
outputTXTR: blez tmp, outputZBUF
andi tmp, rdp_cmd, G_RDP_TRI_ZBUFF_MASK # delay
#
# Scale texture parameters to ensure that they all remain
# in-bounds for the hardware LOD computation:
#
# free up some registers
.unname amaxf
.unname tHdai
.unname tHdaf
.unname tMdai
.unname tMdaf
.unname amid
.unname amidf
.unname amax
.unname invri
.unname invrf
.name scalei, $v5
.name scalef, $v6
.name vtmpf, $v19
.name coordMi, $v20
.name coordMf, $v21
.name t1i, $v22
.name t1f, $v23
.name absdxi, $v24
.name absdyi, $v25
.name absdxf, $v26
.name absdyf, $v27
# shift >> 5 to get some guard bits for this computation:
addi $16, zero, 0x0800
mtc2 $16, vtmpf[0]
# find abs() of all the slopes:
# (sloppy, single-precision test only)
# use the original fractional vector when needed
# load maxS', maxT', and nearW into vector
vabs absdxi, Hdai, Hdai
ldv coordMi[8], 64(dscratchp)
vabs absdyi, Mdai, Mdai
ldv coordMf[8], 72(dscratchp)
# shift >> 5 to get some guard bits for this computation:
vmudm absdxi, absdxi, vtmpf[0]
vmadn absdxf, vconst, vconst[0]
vmudm absdyi, absdyi, vtmpf[0]
vmadn absdyf, vconst, vconst[0]
vmudl coordMf, coordMf, vtmpf[0]
vmadm coordMi, coordMi, vtmpf[0]
vmadn coordMf, vconst, vconst[0]
vmudn absdxf, absdxf, vconst[2]
vmadh absdxi, absdxi, vconst[2]
vmadn absdxf, vconst, vconst[0]
# compute |coordMax| + 2*|d?dx| + |d?dy|
# add using the accumulator:
vmadn t1f, absdyf, vconst[1]
vmadh t1i, absdyi, vconst[1]
addi $16, zero, 0x0040
vmadn scalef, coordMf, vconst[1]
mtc2 $16, vtmpf[0]
vmadh scalei, coordMi, vconst[1]
# find max of scale factors
vsubc t1f, scalef, scalef[5]
vge scalei, scalei, scalei[5]
vmrg scalef, scalef, scalef[5]
vsubc t1f, scalef, scalef[6]
vge scalei, scalei, scalei[6]
vmrg scalef, scalef, scalef[6]
# shift >> 10 to get the scale ratio:
vmudl scalef, scalef, vtmpf[0]
vmadm scalei, scalei, vtmpf[0]
vmadn scalef, vconst, vconst[0]
# compute 1/scalefactor
# sloppy, Newton's not needed.
vrcph t1f[0], scalei[4]
vrcpl scalef[0], scalef[4]
vrcph scalei[0], vconst[0]
# convert to s15.16
vmudn scalef, scalef, vconst[2]
vmadh scalei, scalei, vconst[2]
# if scale > 1.0, make 1.0 (don't want to scale)
vlt scalei, scalei, vconst[1]
vmrg scalef, scalef, vconst[0]
.unname absdxi
.unname absdyi
.unname absdxf
.unname absdyf
.unname coordMi
.unname coordMf
.unname t1i
.unname t1f
.unname vtmpf
.name tiniti, $v19
.name tinitf, $v20
.name tHdai, $v21
.name tHdaf, $v22
.name tMdai, $v23
.name tMdaf, $v24
.name tadei, $v25
.name tadef, $v26
# scale init, dx, dy, de
/* DELAY HERE! */
vmudl tinitf, ainitf, scalef[0]
vmadm tinitf, ainiti, scalef[0]
vmadn tinitf, ainitf, scalei[0]
vmadh tiniti, ainiti, scalei[0]
vmudl tHdaf, Hdaf, scalef[0]
vmadm tHdaf, Hdai, scalef[0]
vmadn tHdaf, Hdaf, scalei[0]
sdv tiniti[8], 0(outp)
vmadh tHdai, Hdai, scalei[0]
sdv tinitf[8], 16(outp)
vmudl tMdaf, Mdaf, scalef[0]
vmadm tMdaf, Mdai, scalef[0]
vmadn tMdaf, Mdaf, scalei[0]
sdv tHdai[8], 8(outp)
vmadh tMdai, Mdai, scalei[0]
sdv tHdaf[8], 24(outp)
vmudl tadef, adef, scalef[0]
vmadm tadef, adei, scalef[0]
vmadn tadef, adef, scalei[0]
sdv tMdai[8], 40(outp)
vmadh tadei, adei, scalei[0]
sdv tMdaf[8], 56(outp)
# write out the rest of texture parameters and increment outp:
addi outp, outp, 64 # increment output pointer
sdv tadei[8], (32-64)(outp) # 32
sdv tadef[8], (48-64)(outp) # 48
.unname scalei
.unname scalef
.unname tiniti
.unname tinitf
.unname tHdai
.unname tHdaf
.unname tMdai
.unname tMdaf
.unname tadei
.unname tadef
outputZBUF:
blez tmp, SetupDone
# note delay slot
#
# Scale Z-values up, screen coordinates were limited
# to 10 integer bits, but the hardware floating point format
# needs valid bits in the upper range for best performance.
#
vmudn adef, adef, vconst1[4]
vmadh adei, adei, vconst1[4]
vmadn adef, vconst, vconst[0]
vmudn aminf, aminf, vconst1[4]
vmadh amin, amin, vconst1[4]
vmadn aminf, vconst, vconst[0]
ssv adei[14], 8(outp) # output z stuff.
vmudn Hdaf, Hdaf, vconst1[4]
ssv adef[14], 10(outp)
vmadh Hdai, Hdai, vconst1[4]
vmadn Hdaf, vconst, vconst[0]
vmudn Mdaf, Mdaf, vconst1[4]
vmadh Mdai, Mdai, vconst1[4]
vmadn Mdaf, vconst, vconst[0]
# clamp dzdy if near zero, for decal mode:
lbu tmp, RSP_STATE_TEX_LOD(rsp_state)
sub tmp, zero, tmp
beq tmp, zero, noZClamp
mtc2 tmp, $v6[0]
vch Mdai, Mdai, $v6[0]
vcl Mdaf, Mdaf, vconst[0]
.name pp1i, $v6
.name pp1f, $v28
noZClamp:
# re-compute attribute X adjust after the Z scale:
# att = att - (de * yHigh.frac)
ssv Hdai[14], 4(outp)
vmudl pp1f, adef, yf[0]
ssv Hdaf[14], 6(outp)
vmadm pp1i, adei, yf[0]
ssv Mdai[14], 12(outp)
vmadn pp1f, vconst, vconst[0]
ssv Mdaf[14], 14(outp)
vsubc ainitf, aminf, pp1f
vsub ainiti, amin, pp1i
.unname pp1i
.unname pp1f
addi outp, outp, 16 # increment output pointer
ssv ainiti[14], (0-16)(outp) # 0
ssv ainitf[14], (2-16)(outp) # 2
SetupDone: # done or rejected. do any clean-up.
jal OutputClose
# note delay slot
SetupReject: # no OutputClose needed...
nop
jr return_save
nop
.end beginSetup
/* un-name scalar registers: */
.unname minp
.unname midp
.unname maxp
.unname flatp
.unname rdp_cmd
.unname rdp_flg
.unname tmp
.unname dscratchp
.unname rendState
/* un-name vector registers: */
.unname DxXDyi
.unname DxXDyf
.unname yf
.unname xHighf
.unname EDel
.unname invEDeli
.unname invEDelf
.unname Hdai
.unname Hdaf
.unname Mdai
.unname Mdaf
.unname adei
.unname adef
.unname ainiti
.unname ainitf
.unname amin
.unname aminf
#if 0
# test for thorough register un-naming.
.name r1, $1
.name r2, $2
.name r3, $3
.name r4, $4
.name r5, $5
.name r6, $6
.name r7, $7
.name r8, $8
.name r9, $9
.name r10, $10
.name r11, $11
.name r12, $12
.name r13, $13
.name r14, $14
.name r15, $15
.name r16, $16
.name r17, $17
.name r18, $18
.name r19, $19
.name r20, $20
.name vv0, $v0
.name vv1, $v1
.name vv2, $v2
.name vv3, $v3
.name vv4, $v4
.name vv5, $v5
.name vv6, $v6
.name vv7, $v7
.name vv8, $v8
.name vv9, $v9
.name vv10, $v10
.name vv11, $v11
.name vv12, $v12
.name vv13, $v13
.name vv14, $v14
.name vv15, $v15
.name vv16, $v16
.name vv17, $v17
.name vv18, $v18
.name vv19, $v19
.name vv20, $v20
.name vv21, $v21
.name vv22, $v22
.name vv23, $v23
.name vv24, $v24
.name vv25, $v25
.name vv26, $v26
.name vv27, $v27
.name vv28, $v28
.name vv29, $v29
#endif